libcppa
An Actor Semantic for C++11

Dominik Charousset

dcharousset@acm.org

iINET RG, Department Informatik
Hamburg University of Applied Sciences

July 2013

Agenda

Challenges of Modern Systems

Dominik Charousset iNET — HAW Hamburg

Challenges of Modern Systems

Developers face not one, but multiple trends:

m More cores on both desktop & mobile plattforms

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms

m GPGPU programming: GPUs can vastly outperform CPUs

Dominik Charousset iNET — HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m GPGPU programming: GPUs can vastly outperform CPUs

m Cloud computing: Infrastructure as a service

Dominik Charousset iNET — HAW Hamburg

Challenges of Modern Systems

Developers face not one, but multiple trends:
m More cores on both desktop & mobile plattforms
m GPGPU programming: GPUs can vastly outperform CPUs
m Cloud computing: Infrastructure as a service

= Parallelization, specialization & distribution

Dominik Charousset iNET — HAW Hamburg

Agenda

The Problem with Implicit Sharing

Dominik Charousset iNET — HAW Hamburg

The Problem with Implicit Sharing

When writing concurrent programs:
m Stateful objects need to be synchronized (if shared)
m Developer is responsible for thread-safety

m Challenges are ...

m Race conditions (“solved” by locks)

m Deadlocks/Lifelocks (caused by locks)

m Poor scalability due to queueing (Coarse-Grained Locking)
m Very high complexity (Fine-Grained Locking)

m Time-dependent errors make testing (almost) impossible

Dominik Charousset iNET — HAW Hamburg

The Problem with Implicit Sharing

When writing concurrent programs:
m Stateful objects need to be synchronized (if shared)

m Developer is responsible for thread-safety

m Challenges are ...

m Race conditions (“solved” by locks)

m Deadlocks/Lifelocks (caused by locks)

m Poor scalability due to queueing (Coarse-Grained Locking)
m Very high complexity (Fine-Grained Locking)

m Time-dependent errors make testing (almost) impossible

= Expert knowledge & experience required

Dominik Charousset iNET — HAW Hamburg 5

Locks are not Composable

“Mutable, stateful objects are the new spaghetti code.”
— Rich Hickey

Dominik Charousset iNET — HAW Hamburg

Locks are not Composable

“Mutable, stateful objects are the new spaghetti code.”
— Rich Hickey

m Libraries with threads & locks are no longer black boxes

m Composition of two thread-safe classes not necessarily thread-safe
m User has to know about implementation details:

m Which code runs asynchronously/where?
m Which functions are “thread-safe’?
m Which function uses which lock?

Dominik Charousset iNET — HAW Hamburg 6

Locks are not Composable

“Mutable, stateful objects are the new spaghetti code.”
— Rich Hickey

m Libraries with threads & locks are no longer black boxes
m Composition of two thread-safe classes not necessarily thread-safe

m User has to know about implementation details:

m Which code runs asynchronously/where?
m Which functions are “thread-safe’?
m Which function uses which lock?

= Wrong level of abstraction

Dominik Charousset iNET — HAW Hamburg

The "Right” Level of Abstraction

A programming paradigm should enable us to ...
m Easily split application logic into as many tasks as needed
m Avoid race conditions by design (no locks!)

m Keep interfaces between two software components stable:

m Whether or not they run on the same host
m Whether or not they run on specialized hardware
= Flexible composition

Dominik Charousset iNET — HAW Hamburg

Agenda

The Actor Model

Dominik Charousset iNET — HAW Hamburg

The Actor Model

Actors are concurrent entities, that ...
m Communicate via message passing
m Do not share state
m Can create (“spawn”) new actors

m Can monitor other actors

Dominik Charousset iNET — HAW Hamburg

Benefits of the Actor Model

m High-level, explicit communication: no locks, no implicit sharing

m A lightweight implementation allows millions of active actors
m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging

Dominik Charousset iNET — HAW Hamburg

10

libcppa — A C++11 Actor Library

libcppa provides an actor semantic for C++11

m Raises the level of abstraction (ease of development)
m Implements lightweight actors (ease of concurrency)
m Offers transparent OpenCL layer (ease of composition)

m Operates network transparent (ease of distribution)

Dominik Charousset iNET — HAW Hamburg 11

Multiply Matrices

static constexpr size_t matrix_size = /*...x%x/;
// always rows == columns == matrix_size

class matrix {

public:

float& operator () (size_t row, size_t column);
const vector<float>& data() const;

//
private:

vector<float> m_data; // glorified vector

};

Dominik Charousset iNET — HAW Hamburg

12

Multiply Matrices — Simple Loop

matrix simple_multiply(const matrix& lhs,
const matrix& rhs) {
matrix result;
for (size_t r = 0; r < matrix_size; ++r) {
for (size_t ¢ = 0; ¢ < matrix_size; ++c) {
// each calculation can run independently
result(r, c¢) = dot_product(lhs, rhs, r, c);
}
}
return move(result);

}

Dominik Charousset iNET — HAW Hamburg

13

Multiply Matrices — std: :async

matrix async_multiply(const matrix& lhs,
const matrix& rhs) {
matrix result;
vector<future<void>> futures;
futures.reserve (matrix_size * matrix_size);
for (size_t r = 0; r < matrix_size; ++r) {
for (size_t ¢ = 0; ¢ < matrix_size; ++c)
futures.push_back(async(launch::async,
result(r, c) = dot_product(lhs, rhs,
)
}
}
for (auto& f : futures) f.wait();
return move (result);

}

Dominik Charousset iNET — HAW Hamburg

{
[&,r,c] {
r, c);

14

Multiply Matrices — 1ibcppa Actors

matrix actor_multiply(const matrix& 1lhs,
const matrix& rhs) {
matrix result;
for (size_t r = 0
for (size_t c =
spawn ([&,r,c]
result (r, c
1)
}

r < matrix_size; ++r) {
c < matrix_size; ++c) {

0;
{
) = dot_product(lhs, rhs, r,

}
await_all_others_done ();
return move (result);

}

Dominik Charousset iNET — HAW Hamburg

c);

15

Multiply Matrices — OpenCL Actors

static constexpr const char* source = R"__(
__kernel void multiply(__global float* lhs,

__global float* rhs,
__global float* result) A

size_t size = get_global_size (0);

size_t r = get_global_id (0);

size_t ¢ = get_global_id(1);

float dot_product = 0;

for (size_t k = 0; k < size; ++k)
dot_product += lhs[k+cx*size] * rhs[r+kx*size];
result [r+cxsize] = dot_product;

)__Il;

Dominik Charousset iNET — HAW Hamburg

16

Multiply Matrices — OpenCL Actors

matrix opencl_multiply(const matrix& 1lhs,
const matrix& rhs) {
// function signature

auto worker = spawn_cl<float* (float* ,float*)>(
// code, kernel name & dimensions
source, "multiply",

{matrix_size, matrix_sizel});
// ordinary message passing
send (worker, lhs.data(), rhs.data());
matrix result;
receive (on_arg_match >> [&](vector<float>& vec) {
result = move(vec);
b
return result;

}

Dominik Charousset iNET — HAW Hamburg

17

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
Om9.029s

Dominik Charousset iNET — HAW Hamburg

18

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Om2.428s

Dominik Charousset iNET — HAW Hamburg

18

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Om2.428s

time ./opencl_multiply
OmO0.288s

Dominik Charousset iNET — HAW Hamburg

18

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Om2.428s

time ./opencl_multiply
Om0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’
what(): Resource temporarily unavailable

Dominik Charousset iNET — HAW Hamburg

18

Multiply Matrices — Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
Om9.029s

time ./actor_multiply
Om2.428s

time ./opencl_multiply
Om0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’
what(): Resource temporarily unavailable

. apparently, one cannot start 1,000,000 threads

Dominik Charousset iNET — HAW Hamburg

18

Message Processing

?

receive
next
message

W :indu

Dominik Charousset

<\ pattern 1 matched M case 1
$ pattern 2 matched M case 2

|

]

s pattern N matched M case N

asle

os|o

9s|e

Typical actor loop

iNET — HAW Hamburg

19

Message Processing

receive
next
message

pattern 1 matched M

pattern 2 matched M

) S
o
@l
@

m Messages are copy-on-write tuples of any size

m Messages are buffered at the actor in a FIFO-ordered mailbox

m Actors set a partial function f as (replaceable) message handler

Dominik Charousset iNET — HAW Hamburg

19

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;

by

on(atom("hello™)) >> [] {

cout << "atom(hello)!" << endl;
b
on_arg match >> [] (int a, int b) {

cout << a << ", " << b << endl;

I

on("hello", arg match) >> [] (const string& name) {
cout << "hello " << name << "!I" << endl;

}
b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 20

Partial Functions in 1ibcppa

partial function f {
(on("hello™)) >> ({1 {)

cou€\5< "hello!™" 2<\33fij
Yo

matches tuples with }"~ [callback that should be
one (string) element of 1191 invoked on a match; could
value "hello" take a string as argument

(in

cout << a << ", " << b << endl;

I

on("hello", arg match) >> [] (const string& name) {
cout << "hello " << name << "!I" << endl;

}
b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;
I
(on(atom("hello"))) >> [] {
cout <<\<atom(hello)!" << endl;
by

int b) {

atoms are constants, calculated
< endl;

at compile time from short
strings (max 10 characters)

— [] (const string& name) {
cout << "hello " << name << "I" << endl;

b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 20

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;
br

on(atom("hello™)) >> [] {

cout << "atom(hello)!" << endl;
I
(on_arg match)>> [](int a, int b) {

cout X< a << ", " << b << endl;
I

deduce types from callback [] (const stringé& name) {
. . << "I << endl;

signature = match tuples with

two integers

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 20

Partial Functions in 1ibcppa

partial function f {
on("hello") >> [] {
cout << "hello!" << endl;
br

22 '] L

deduce second half of types from
callback signature = match tuples with
two strings if first element is "hello"

{
cout << a <K ", " <K< b << endl;

},

(on("hello", arg match)) >> [] (const string& name) ({
cout << "hello " << name << "!I" << endl;

}
b

assert (not f (make any tuple(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 20

Partial Functions in 1ibcppa

partial function f {

on("hello™) >> [] {
cout << "hello!" << endl;

b

on(atom("hello™)) >> [] {
cout << "atom(hello)!" << endl;

b

on_arg match >> [] (int a, int b) {
cout << a << ", " << b << endl;

libcppa's pattern matching is defined
only for any tuple, because it requires
runtime type information

st string& name) {
" << endl;

assert (not f (make any tuple)(42)));
assert (f (make any tuple("hello")));

Dominik Charousset iNET — HAW Hamburg 20

Minimal Actor Example

void math server() {
become (
on(atom("plus"), arg match) >> [] (int a, int b) {

reply(atom("result"), a + b);
}
) ;
}
void math client (actor ptr ms) {
sync_send (ms, atom("plus"), 40, 2).then(
on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;
}
) ;
}
int main () {
spawn (math client, spawn(math server));

//

Dominik Charousset iNET — HAW Hamburg

21

Minimal Actor Example

void math server () {
ontatom("plus"), arg match) >> [](int a, int b) {
reply (atom("result"), a + b);

set partial function as message
handler; handler is used until
replaced or actor is done

v — — ms) |
sync_send (ms, atom("plus"), 40, 2).then(
on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;

)7
}

int main () {
spawn (math client, spawn(math server));

//

Dominik Charousset iNET — HAW Hamburg 21

Minimal Actor Example

void math server () {
become (
Lot oo duna) match) >> [](int a, int b) {
send a message and then |, = . | 1),

wait for response
(using a "one-shot handler")

on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;
}
) ;
1
int main() {
spawn (math client, spawn(math server));
//

Dominik Charousset iNET — HAW Hamburg

21

Minimal Actor Example

become (

on(atom(\'plus"), arg match) >> [](int a, int b) {

a + b);

this actor "loops" forever
(or until it is forced to quit)
}
void math client (actor ptr ms) {

sync_send (ms, atom("plus"), 40, 2).then(

on(atom("result"), arg match) >> [=] (int result) {
cout << "40 + 2 = " << result << endl;
}
) ;
1
int main() {
spawn (math client, spawn(math server));
//

Dominik Charousset iNET — HAW Hamburg

21

Minimal Actor Example

void math server() {
be

L

messages
) ;

}
void(math client
sync_send(ms, atom(
on(atom("result")
cout << "40 + 2

) ;
}
int main () {
spawn (math client,

//

Dominik Charousset

this actor sends one
message and receives one

ch) >> [](int a, int b) {
a + b);

(actor ptr ms) {

"plus"), 40, 2).then(
, arg match) >> [=] (int result) {
= " << result << endl;

spawn (math server)) ;

iNET — HAW Hamburg

21

Minimal Actor Example

void math server() {
become (
on(atom("plus"), arg match) >> [] (int a, int b) {

reply(atom("result"), a + b);
}
)
}
void math client (actor ptr ms) {
sync_send (ms, atom("plus"), 40, 2).then(
Lozl L=t g _match) >> [=] (int result) {
<< result << endl;

usage example

}

int main () {
(spawn(math client, spawn (math server))a

//

Dominik Charousset iNET — HAW Hamburg

21

Fault Tolerance — Linking Actors

o
(®)
o

alice

Dominik Charousset

< link

exit message
(non-normal exit reaso

quit()

iNET — HAW Hamburg

22

Fault Tolerance — Linking Actors

exit message
(non-normal exit reasol

quit()

m Actors can link their lifetime

m Errors are propagated through exit messages
m When receiving an exit message:

m Actors fail for the same reason per default
m Actors can trap exit messages to handle failure manually

m Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET — HAW Hamburg

22

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail

void alice fun() {
auto bob = spawn<linked>(bob_ fun);
send (bob, "hello bob");

become (/* will bob ever call back? */);
}
void carl () {

self->trap exit (true);

auto alice = spawn<linked>(alice fun);

become (

on(atom ("EXIT"), arg match) >> [] (uint32 t r) {
if (r != exit reason::normal)
cout << "something went wrong..." << endl;

Dominik Charousset iNET — HAW Hamburg

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail
void alice fun() {

auto bob = @pawn<linked§ybob_fun);

send (bob, "hellg/bob");
become (/* wi bob ever call back? */);

—

spawn bob with linked lifetime:
if bob fails, alice fails as well
(and vice versa)

d>(alice fun);

become (
on(atom("EXIT"), arg match) >> [] (uint32 t r)
if (r != exit reason::normal)
cout << "something went wrong..." << endl;

Dominik Charousset iNET — HAW Hamburg

{

23

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail
void alice fun() {
auto bob = spawn<linked>(bob_ fun);
send (bob, "hello bob");
become (/* will bob ever call back? */);
}
void carl () {
>trap exit (true);
autoNalice = spawn<linked>(alice fun);

ch) >> [](uint32 t r) {
self always points to the running [normal)

actor itself ent wrong..." << endl;

Dominik Charousset iNET — HAW Hamburg

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail
void alice fun() {
auto bob = spawn<linked>(bob_ fun);
send (bob, "hello bob");
become (/* will bob ever call back? */);
}
void carl () {
self-Xtrap exit (true))
auto alice = fpawn<linked>(alice_fun);

become (

ch) >> [](uint32 t r) {
normal)
ent wrong..." << endl;

receive exit messages as
ordinary messages; overriding
the default behavior

Dominik Charousset iNET — HAW Hamburg

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail
void alice fun() {

auto bob = spawn<linked>(bob_ fun);

send (bob, "hello bob");

become (/* will bob ever call back? */);
}
void carl () {

self->trap exit (true);

auto alice = (spawn<linked>)alice fun);

become (

on(atom("EXIT"), [arg match) >> [] (uint32 t r)

*(carl traps exit messages of alice, 1)
alice would fail whenever carl

} fails (default behavior)

Dominik Charousset iNET — HAW Hamburg

rong..." << endl;

{

23

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail
void alice fun() {
auto bob = spawn<linked>(bob_ fun);
send (bob, "hello bob");
) ——— 22 pack? */)
} exit messages always consist of the
vq atom 'EXIT' and the exit reason as uint32

auto alice = spawn<linked>(alice fun);
become (
(on(atom ("EXIT"), arg match) >> [] (uint32 t r)) {
if (r != exit reason::normal)
cout << "something went wrong..." << endl;

Dominik Charousset iNET — HAW Hamburg

Linking Actors in 1ibcppa — Example

void bob_fun(); // will fail
void alice fun() {
auto bob = spawn<linked>(bob_ fun);
send (bob, "hello bob");
become (/* will bob ever call back? */);

——

a normal exit reason would
indicate that alice is done

(no failure occurred) ked> (alice fun);

become (
on (atom ("EXIT"), g match) >> [] (uint32 t r)
if (r !::@xit_reason::normag)

cout << "something went wrong..." << endl;

Dominik Charousset iNET — HAW Hamburg

{

23

Message Processing Performance

35001
3000
2500

2000

Time [s]

1500
1000

500

—X—cppa
—O— OpenMPI

Dominik Charousset

Number of Workers [#]

iNET — HAW Hamburg

24

Message Processing Performance

3500 T T T T T T T T T T
—X—cppa
3000 —O— OpenMPI
2500 B
__ 2000 9
£,
g
= 1500 B
1000 SN]
~
500 o o B
0 T T T T T T T T T T
3 12 15 18 21 24 27 30 33 36

Number of Workers [#]

m Calculation of Mandelbrot set in a distributed system
m Same C++ implementation for both programs
m Despite higher level of abstraction, 1ibcppa up 23s faster

Dominik Charousset iNET — HAW Hamburg 24

Agenda

libcppa Facts Sheet

Dominik Charousset

iNET — HAW Hamburg

25

libcppa Facts Sheet

m Open source (LGPLv2) C++11 actor library

m Runs on GCC > 4.7, Clang > 3.2 (Linux + Mac)

m Will run on Windows as soon as MSVC supports required features
m Hosted on GitHub

m Feedback & contributions always welcome!

Dominik Charousset iNET — HAW Hamburg

26

Thank you for your attention!

Developer blog: http://libcppa.org
Sources: https://github.com/Neverlord/libcppa

iNET working group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET — HAW Hamburg

27

	Challenges of Modern Systems
	The Problem with Implicit Sharing
	Locks are not Composable
	The ``Right'' Level of Abstraction

	The Actor Model
	Benefits of the Actor Model
	libcppa – A C++11 Actor Library
	Multiply Matrices using Actors vs. std::async
	Message Processing

	libcppa Facts Sheet

