
ÔÔ Ô Ô

User's
 Guide

Ô
Ô

HI-TECH C for 8051

HI-TECH Software.

Copyright (c) 2004 HI-TECH Software.
All Rights Reserved. Printed in Australia.

Produced on: 20th May 2006

HI-TECH Software Pty. Ltd.
ACN 002 724 549

PO Box 103
Alderley QLD 4051

Australia

email: hitech@.htsoft.com
web: http://www.htsoft.com
ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://www.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents iii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Typographic conventions. 1

2 HI-TIDE Overview 3
2.1 Layout Overview . 3
2.2 HI-TIDE Areas . 3

2.2.1 The Project and Build Areas. 6
2.2.2 The Workspace Area. 6

2.2.2.1 Adding a Workspace Tab. 7
2.2.2.2 Removing a Workspace Tab. 7
2.2.2.3 Renaming Workspace Tabs. 9

2.2.3 Workspace Views. 9
2.2.3.1 Displaying a View. 9
2.2.3.2 Focusing Views. .10
2.2.3.3 Splitting Views .11
2.2.3.4 Closing Views. .14
2.2.3.5 View Popup Menu. .14
2.2.3.6 Changing Font And colour. 15

2.3 General Preferences. .15
2.3.1 General Preferences Dialog. .16

2.3.1.1 Project Tab. .16
2.3.1.2 Editor Tab. .17

iii

CONTENTS CONTENTS

2.4 Third-Party Tools. .19
2.4.1 Adding and Deleting Tools. .19
2.4.2 Tool Options .21
2.4.3 Hiding and Showing Buttons. .22

3 HI-TIDE Menus and Toolbars 25
3.1 Menus. .25

3.1.1 File Menu. .25
3.1.2 Edit Menu .26
3.1.3 View Menu .27
3.1.4 Project Menu. .28
3.1.5 Build Menu. .29
3.1.6 Debugger Menu .30
3.1.7 Tools Menu. .31
3.1.8 Help Menu .31

3.2 Toolbars. .31
3.2.1 Hiding / Showing Toolbars. .31
3.2.2 Standard Tools Toolbar. .32
3.2.3 Editor Toolbar .32
3.2.4 Build Toolbar. .33
3.2.5 Views Toolbar .33
3.2.6 Tools Toolbar. .34
3.2.7 User Tools Toolbar. .34
3.2.8 Debugger Toolbar. .34

3.3 The Status Bar. .35

4 HI-TIDE Views 37
4.1 The Project Views. .37

4.1.1 Files View .37
4.1.1.1 Output File Popup Menu. 38
4.1.1.2 C Files Folder Popup Menu. 38
4.1.1.3 C File Popup Menu. 39
4.1.1.4 Assembler Files Folder Popup Menu. 39
4.1.1.5 Assembler File Popup Menu. 40
4.1.1.6 Object Files Folder. 40
4.1.1.7 Object Files. .40
4.1.1.8 Libraries Folder. .41
4.1.1.9 Library Files. .41

4.1.2 File Properties Dialog. .41

iv

CONTENTS CONTENTS

4.1.3 Code Samples View. .41
4.2 The Build Views .42

4.2.1 Error Log View. .42
4.2.2 Memory Usage View. .43
4.2.3 Psect Usage View. .44
4.2.4 Build Log View. .44

4.3 The Editor View. .45
4.3.1 Editor Gutters. .45

4.3.1.1 Breakpoint Gutter. .45
4.3.1.2 Line Number Gutter. 47

4.3.2 Creating Editor Files. .47
4.3.3 Opening Editor Files. .48
4.3.4 Saving Editor Files. .48
4.3.5 Closing Editor Files .49
4.3.6 Printing Editor Files .49
4.3.7 Syntax Highlighting .49
4.3.8 Editor Popup Menu. .49
4.3.9 Setting Source-Level Breakpoints. 50
4.3.10 Removing source-level Breakpoints. 51
4.3.11 Activating/Deactivating source-level Breakpoints. 51
4.3.12 Searching For Text. .52
4.3.13 Search Options. .52

4.4 The Debugger Views. .54
4.4.1 Disassembly View. .54

4.4.1.1 Disassembly View Layout. 54
4.4.1.2 Breakpoint Gutter. .55
4.4.1.3 Disassembly View Popup Menu. 56
4.4.1.4 Setting Assembly Level Breakpoints. 57
4.4.1.5 Removing Assembly Level Breakpoints. 58
4.4.1.6 Activating/Deactivating Assembly Level Breakpoints. 58
4.4.1.7 Displaying Program Counter Location. 58
4.4.1.8 Displaying C Source Code. 59

4.4.2 Data Memory View. .59
4.4.2.1 Data Memory View Layout. 59
4.4.2.2 Data Memory View Popup Menu. 60
4.4.2.3 Tracing Memory Usage. 61
4.4.2.4 Modifying Memory . 62

4.4.3 Registers View. .62
4.4.3.1 Registers View Layout. 62

v

CONTENTS CONTENTS

4.4.3.2 Registers View Popup Menu. 63
4.4.3.3 Tracing Register Usage. 63
4.4.3.4 Modifying Memory . 64

4.4.4 Variable Watch View. .64
4.4.4.1 Variable Watch View Layout. 64
4.4.4.2 Variable Icons and Tree Representation. 65
4.4.4.3 Variable Watch View Popup Menu. 66
4.4.4.4 Adding and Removing Variables. 67
4.4.4.5 Modifying Variables. 69

4.4.5 Local Watch View .69
4.4.6 Virtual I/O View .70

4.4.6.1 Overview .70
4.4.6.2 Virtual I/O View Popup Menu. 70
4.4.6.3 Adding Components. 71
4.4.6.4 Removing Component. 72
4.4.6.5 Component Properties. 72
4.4.6.6 Wiring Components. 72
4.4.6.7 Peripheral Components. 74

5 HI-TIDE Projects 79
5.1 Toolsuites. .79
5.2 Project Information. .80
5.3 Creating A New Project. .80

5.3.1 Project wizard .80
5.3.1.1 Project Filename. .81
5.3.1.2 Project Toolsuite. .82
5.3.1.3 Device Selection. .83
5.3.1.4 Device Package. .83
5.3.1.5 Compiler Selection. 84
5.3.1.6 Debugger Selection. 85
5.3.1.7 Project Source Files. 86

5.4 Managing Projects. .87
5.4.1 Opening Existing Projects. .87
5.4.2 Saving Projects. .88
5.4.3 Closing Projects. .88

5.5 Managing Project Source Files. .88
5.5.1 Adding Files To The Project. .88
5.5.2 Removing Files From The Project. 90
5.5.3 Changing Compiler Options. .90

vi

CONTENTS CONTENTS

5.5.4 File Properties. .90
5.5.5 Dependency Files (Header Files). 91

5.6 Changing Project Settings. .91
5.6.1 Changing Toolsuite. .91
5.6.2 Changing Device. .92
5.6.3 Changing Device Package. .92
5.6.4 Changing Debugger. .93

6 C-Wiz — The Code Wizard 95
6.1 Starting the Code Wizard. .95
6.2 The 8051 Code Wizard Dialog. .95

6.2.1 Peripheral Selection Panel. .98
6.2.2 Configuration Panel. .98
6.2.3 Messaging Panel. .98
6.2.4 Generated Code Display. .98
6.2.5 Control Panel. .98
6.2.6 Advanced Options Dialog. .99

6.2.6.1 Enable dependency handling 99
6.2.6.2 Initialisation function name 99

6.3 Selecting Peripherals. .99
6.4 Configuring Peripherals. .100
6.5 Viewing Generated Code. .101
6.6 Saving to Files .103
6.7 Accessing the Initialization Code. .105
6.8 Generating Interrupt Service Routines. .105
6.9 Handling Shared Resources. .106
6.10 Closing the Code Wizard. .107

7 HI-TIDE Compiler Options 109
7.1 Compiler Options. .109

7.1.1 Build options. .111
7.1.1.1 Warning Level. .111
7.1.1.2 Strip Local Symbols. .111

7.1.2 Global Optimization. .111
7.1.2.1 Enable Global Optimization. .111
7.1.2.2 Optimize For Speed / Space. .111
7.1.2.3 Level. .111

7.1.3 Assembler Optimization. .111
7.1.3.1 Enable Assembler Optimization.111

vii

CONTENTS CONTENTS

7.1.4 Memory Model Settings. .112
7.1.5 Banking Options. .112
7.1.6 Debugging NOPs. .112

7.2 Preprocessor options. .112
7.2.1 Specify Include Paths. .112
7.2.2 Assembler Files. .114

7.2.2.1 Preprocess assembler files. .114
7.2.3 Define Preprocessor Symbols. .114
7.2.4 Undefine Preprocessor Symbols. .114

7.3 Memory options. .114
7.3.1 Program Memory Ranges. .114

7.3.1.1 Enable on chip ranges. .116
7.3.1.2 Enable included ranges. .116
7.3.1.3 Included Ranges. .116
7.3.1.4 Enable excluded ranges. .116
7.3.1.5 Excluded Ranges. .116

7.3.2 Data Memory Ranges. .116
7.3.2.1 Enable on chip ranges. .117
7.3.2.2 Enable included ranges. .117
7.3.2.3 Included Ranges. .117
7.3.2.4 Enable excluded ranges. .117
7.3.2.5 Excluded Ranges. .117

7.3.3 Internal RAM. .117
7.3.4 Non-volatile RAM .118

7.4 Files options. .118
7.4.1 Output File Type. .118
7.4.2 Debug Information. .118

7.4.2.1 Generate assembler listing. .118
7.4.2.2 Generate map file. .118

7.5 Linker options. .118
7.5.1 Run-time Code Configuration. .121

7.5.1.1 Run-time Settings. .121
7.5.2 Vector Offset .121
7.5.3 Additional Linker Options. .121

7.5.3.1 Enable additional linker options.122
7.5.4 Advanced Linker Options. .122

7.5.4.1 Enable advanced linker options.122
7.6 Language options. .122

7.6.1 Default Char Type. .122

viii

CONTENTS CONTENTS

7.6.2 Identifier Length .122
7.6.3 ANSI Conformance .122

7.6.3.1 Enable strict ANSI conformance.122

8 HI-TIDE Compilation 125
8.1 Compiling Project Files. .125

8.1.1 Compiling Source Files. .125
8.1.2 Linking .126
8.1.3 Make .126
8.1.4 Make All .128
8.1.5 Individual Files. .128

8.2 Compiler Options. .128
8.2.1 Global Compiler Options. .128
8.2.2 File-Specific Compiler Options. .128

8.3 Build Results .129
8.3.1 Error and Warnings. .129
8.3.2 Memory Usage. .129
8.3.3 Psect Usage. .130
8.3.4 Build Log .130

9 HI-TIDE Debugging 131
9.1 Debugger Functions. .131

9.1.1 Debugger Initialization. .131
9.1.2 Breakpoints. .132

9.1.2.1 Breakpoint Restoration. .132
9.1.3 Program execution. .133

9.1.3.1 Run .133
9.1.3.2 Animate .133
9.1.3.3 Assembly Step. .133
9.1.3.4 C Step. .133
9.1.3.5 Reset. .134

9.2 8051 Debuggers. .134
9.2.1 Simulator. .134

10 C51 Command-line Driver 135
10.1 Long Command Lines. .136
10.2 Default Libraries .136
10.3 Standard Runtime Code. .136
10.4 C51 Compiler Options. .136

ix

CONTENTS CONTENTS

10.4.1 -B: Specify Memory Model .138
10.4.2 -C: Compile to Object File. .139
10.4.3 -Dmacro : Define Macro. .139
10.4.4 -Efile : Redirect Compiler Errors to a File.140
10.4.5 -Gfile : Generate source-level Symbol File.141
10.4.6 -Ipath : Include Search Path. .141
10.4.7 -Llibrary : Scan Library .142
10.4.8 -L-option : Adjust Linker Options Directly.142
10.4.9 -Mfile : Generate Map File. .143
10.4.10-Nsize : Identifier Length. .143
10.4.11-Ofile : Specify Output File .143
10.4.12-P: Preprocess Assembly Files. .143
10.4.13-Q: Quiet Mode. .144
10.4.14-S: Compile to Assembler Code. .144
10.4.15-Umacro : Undefine a Macro .144
10.4.16-V: Verbose Compile. .144
10.4.17-X: Strip Local Symbols .144
10.4.18--ASMLIST: Generate Assembler .LST Files.145
10.4.19--BANK: Specify Banking Options. .145
10.4.20--CHAR=type : Make Char Type Signed or Unsigned.145
10.4.21--CHIP=processor : Define Processor.146
10.4.22--CHIPINFO: Display a List of Supported Processors.146
10.4.23--CODEOFFSET=address : Specify an Offset For Program Code. 146
10.4.24--CR=file : Generate Cross Reference Listing.146
10.4.25--ERRFORMAT and--WARNFORMAT: Format For Compiler Messages. 147

10.4.25.1 Using the--ERRFORMAT and--WARNFORMAT Option147
10.4.25.2 Modifying the Standard Format.147

10.4.26--GETOPTION=app,file : Get Command Line Options.148
10.4.27--HELP<=option >: Display Help .148
10.4.28--IDE=type : Specify the IDE Being Used.148
10.4.29--INTRAM=address : Specify Internal RAM Address.149
10.4.30--MEMMAP=file : Display Memory Map149
10.4.31--NOEXEC: Do Not Execute Compiler. .149
10.4.32--NOPS: Insert Debug NOPs. .149
10.4.33--NVRAM=address : Specify Non-volatile RAM Address.150
10.4.34--OPT<=type> : Invoke Compiler Optimizations.150
10.4.35--OUTDIR=directory : Specify Output Directory150
10.4.36--OUTPUT=type : Specify Output File Type.150
10.4.37--PRE: Produce Preprocessed Source Code.151

x

CONTENTS CONTENTS

10.4.38--PROTO: Generate Prototypes. .151
10.4.39--RAM=lo-hi,<lo-hi,...> : Specify Additional RAM Ranges. 152
10.4.40--ROM=lo-hi,<lo-hi,...>|tag : Specify Additional ROM Ranges. . 153
10.4.41--RUNTIME=type : Specify Runtime Environment.154
10.4.42--SCANDEP: Scan For Dependencies. .155
10.4.43--SETOPTION=app,file : Set the Command Line Options For Application155
10.4.44--STRICT: Strict ANSI Conformance. .155
10.4.45--SUMMARY=type : Select Memory Summary Output Type.155
10.4.46--VER: Display the Compiler’s Version Information.155
10.4.47--WARN=level : Set Warning Level. .156

11 C Language Features 157
11.1 Files .157

11.1.1 Source Files. .157
11.1.2 Symbol files .157
11.1.3 Standard Libraries. .158
11.1.4 Run-time Startup Module. .158

11.1.4.1 Stack Initialization. .159
11.1.4.2 Initialization of Data Psects. .159
11.1.4.3 Clearing the Bss Psects. .160
11.1.4.4 Linking in the C Libraries. .160
11.1.4.5 Executing the Main Function.161

11.1.5 ThepowerupRoutine. .161
11.2 Processor-related Features. .161

11.2.1 Processor Support. .161
11.3 Supported Data Types. .161

11.3.1 Radix Specifiers and Constants. .162
11.3.2 Bit Data Types. .163

11.3.2.1 Using Bit-Addressable Registers.164
11.3.3 8-Bit Data Types. .165
11.3.4 16-Bit Data Types. .165
11.3.5 32-Bit Data Types. .165
11.3.6 Floating Point Types and Variables. .166
11.3.7 Structures and Unions. .167

11.3.7.1 Bit Fields in Structures. .167
11.3.8 Standard Type Qualifiers. .168

11.3.8.1 Const and Volatile Type Qualifiers.168
11.3.9 Special Type Qualifiers. .168

11.3.9.1 Persistent Type Qualifier. .169

xi

CONTENTS CONTENTS

11.3.9.2 Near Type Qualifier. .169
11.3.9.3 Idata Type Qualifier. .170
11.3.9.4 Far Type Qualifier. .172
11.3.9.5 Code Type Qualifier. .173

11.3.10 Pointer Types. .174
11.3.10.1 Pointers in small model. .174
11.3.10.2 Pointers in the medium, large and huge models.175
11.3.10.3 Function Pointers. .177
11.3.10.4 Combining type modifiers and pointers.177
11.3.10.5 Near and Idata pointers. .177
11.3.10.6 Far pointers. .179
11.3.10.7 Xdata pointers. .179
11.3.10.8 Pdata pointers. .179
11.3.10.9 Code pointers. .179
11.3.10.10Const pointers. .180

11.4 Storage Class and Object Placement. .180
11.4.1 Local variables. .180

11.4.1.1 Auto Variables. .181
11.4.1.2 Static Variables. .182

11.4.2 Absolute Variables. .182
11.5 Functions .183

11.5.1 Function Argument passing. .183
11.5.1.1 Small and medium model argument passing.183
11.5.1.2 Reentrant functions. .185
11.5.1.3 Large and huge model argument passing.185
11.5.1.4 Variable argument lists. .186
11.5.1.5 Small and medium model variable argument lists.186
11.5.1.6 Indirect function calls. .187
11.5.1.7 Small and medium model indirect function calls.187

11.5.2 Function return values. .189
11.5.2.1 8 Bit return values. .189
11.5.2.2 16 Bit return values. .189
11.5.2.3 32 Bit return values. .189
11.5.2.4 Structure return values. .190

11.5.3 Function Calling Conventions for Huge Model.190
11.5.3.1 Near and Basenear Functions in Huge Model.190

11.5.4 The call graph .191
11.6 Memory Models and Usage. .192
11.7 Register usage. .193

xii

CONTENTS CONTENTS

11.8 Compiler generated psects. .193
11.9 Using memory mapped I/O and SFRs. .196
11.10Interrupt handling in C. .196

11.10.1 Bank2 andBank3interrupts .198
11.10.2 Interrupt Levels in small and medium model.198
11.10.3 Interrupt handling macros. .200
11.10.4 The ei() and di() macros. .200
11.10.5 ROM_VECTOR and set_vector. .200
11.10.6 RAM based interrupt vectors. .201
11.10.7 RAM_VECTOR .202
11.10.8 CHANGE_VECTOR. .202
11.10.9 READ_RAM_VECTOR. .203
11.10.10Pre-defined interrupt vector names. .204

11.11Mixing C and 8051 assembler code. .205
11.11.1 External Assembly Language Functions.205
11.11.2 Accessing C objects from within assembler.206
11.11.3 #asm, #endasm and asm(). .206

11.12Preprocessing. .207
11.12.1 Preprocessor Directives. .208
11.12.2 Predefined Macros. .209
11.12.3 Pragma Directives. .209

11.12.3.1 The #pragma jis and nojis Directives.209
11.12.3.2 The #pragma printf_check Directive.209
11.12.3.3 The #pragma psect Directive.211
11.12.3.4 The #pragma regsused Directive.213
11.12.3.5 The #pragma strings Directive.213
11.12.3.6 The #pragma switch Directive.214

11.13Linking programs. .214
11.13.1 Replacing Library Modules. .215
11.13.2 Signature checking. .215
11.13.3 Linker-Defined Symbols. .216

11.14Standard I/O Functions and Serial I/O. .217
11.15Optimizing Code for the 8051. .217

12 Macro Assembler 219
12.1 Assembler Usage. .219
12.2 Assembler options. .220
12.3 8051 Assembly language. .221

12.3.1 Character set. .221

xiii

CONTENTS CONTENTS

12.3.2 Numbers .222
12.3.3 Delimiters. .222
12.3.4 Identifiers. .222

12.3.4.1 Assembler generated identifiers.222
12.3.4.2 Location counter. .223
12.3.4.3 Predefined Identifiers. .223

12.3.5 Strings .223
12.3.6 Temporary labels. .223
12.3.7 Expressions. .224
12.3.8 Statement format. .224
12.3.9 Addressing modes. .224
12.3.10 Program sections. .224
12.3.11 Assembler directives. .226

12.3.11.1 PUBLIC. .226
12.3.11.2 EXTRN .226
12.3.11.3 GLOBAL .226
12.3.11.4 END. .226
12.3.11.5 PSECT. .226
12.3.11.6 ORG. .229
12.3.11.7 EQU and SET. .230
12.3.11.8 DB and DW. .230
12.3.11.9 DF .230
12.3.11.10DS. .230
12.3.11.11FNADDR .231
12.3.11.12FNARG .231
12.3.11.13FNBREAK .231
12.3.11.14FNCALL. .231
12.3.11.15FNCONF .232
12.3.11.16FNINDIR .232
12.3.11.17FNSIZE. .233
12.3.11.18FNROOT .233
12.3.11.19IF, ELSE and ENDIF. .233
12.3.11.20MACRO and ENDM .234
12.3.11.21LOCAL .234
12.3.11.22REPT .235
12.3.11.23IRP and IRPC. .236
12.3.11.24SIGNAT. .237

12.3.12 Macro invocations. .237
12.3.13 Assembler controls. .237

xiv

CONTENTS CONTENTS

12.3.13.1 PAGELENGTH(n) .237
12.3.13.2 PAGEWIDTH(n) .238
12.3.13.3 XREF .238
12.3.13.4 COND. .238
12.3.13.5 EJECT. .238
12.3.13.6 GEN. .238
12.3.13.7 INCLUDE(pathname). .239
12.3.13.8 LIST. .239
12.3.13.9 SAVE and RESTORE. .239
12.3.13.10TITLE(string) .239

13 Linker and Utilities 241
13.1 Introduction. .241
13.2 Relocation and Psects. .241
13.3 Program Sections. .242
13.4 Local Psects. .242
13.5 Global Symbols. .242
13.6 Link and load addresses. .243
13.7 Operation. .243

13.7.1 Numbers in linker options. .244
13.7.2 -Aclass=low-high,... .245
13.7.3 -Cx .245
13.7.4 -Cpsect=class. .245
13.7.5 -Dclass=delta. .245
13.7.6 -Dsymfile .246
13.7.7 -Eerrfile .246
13.7.8 -F .246
13.7.9 -Gspec .246
13.7.10 -Hsymfile .247
13.7.11 -H+symfile .247
13.7.12 -Jerrcount .247
13.7.13 -K .247
13.7.14 -I .247
13.7.15 -L .248
13.7.16 -LM .248
13.7.17 -Mmapfile. .248
13.7.18 -N, -Ns and-Nc. .248
13.7.19 -Ooutfile .248
13.7.20 -Pspec. .248

xv

CONTENTS CONTENTS

13.7.21 -Qprocessor. .250
13.7.22 -S .250
13.7.23 -Sclass=limit[, bound] .250
13.7.24 -Usymbol .251
13.7.25 -Vavmap .251
13.7.26 -Wnum .251
13.7.27 -X .251
13.7.28 -Z .251

13.8 Invoking the Linker. .251
13.9 Map Files .252

13.9.1 Call Graph Information. .253
13.10Librarian .255

13.10.1 The Library Format. .255
13.10.2 Using the Librarian. .256
13.10.3 Examples. .257
13.10.4 Supplying Arguments. .257
13.10.5 Listing Format .258
13.10.6 Ordering of Libraries. .258
13.10.7 Error Messages. .258

13.11Objtohex .258
13.11.1 Checksum Specifications. .260

13.12Cref .260
13.12.1 -Fprefix .261
13.12.2 -Hheading .261
13.12.3 -Llen .261
13.12.4 -Ooutfile .261
13.12.5 -Pwidth .262
13.12.6 -Sstoplist .262
13.12.7 -Xprefix .262

13.13Cromwell .262
13.13.1 -Pname. .262
13.13.2 -D. .264
13.13.3 -C. .264
13.13.4 -F .264
13.13.5 -Okey. .264
13.13.6 -Ikey .264
13.13.7 -L .264
13.13.8 -E .264
13.13.9 -B .264

xvi

CONTENTS CONTENTS

13.13.10-M. .265
13.13.11-V. .265

13.14Hexmate. .265
13.14.1 Hexmate Command Line Options. .266

13.14.1.1 + Prefix .267
13.14.1.2 -CK .267
13.14.1.3 -FILL .267
13.14.1.4 -FIND .268
13.14.1.5 -FIND...,REPLACE. .268
13.14.1.6 -FORMAT. .269
13.14.1.7 -HELP. .269
13.14.1.8 -LOGFILE. .270
13.14.1.9 -Ofile .270
13.14.1.10-SERIAL. .270
13.14.1.11-STRING .270

A Library Functions 273

B Error and Warning Messages 377

C Chip information 485

D Regular Expressions 487

Index 491

xvii

CONTENTS CONTENTS

xviii

List of Figures

2.1 HI-TIDE without a project loaded. 4
2.2 Layout overview with project loaded. 5
2.3 Workspace area. 7
2.4 Workspace tab. 8
2.5 Unsplit view showing split buttons. .11
2.6 View split left/right .12
2.7 View split top/bottom. .13
2.8 Font/colour select dialog. .15
2.9 General preferences dialog — project tab. 16
2.10 General preferences dialog – editor. .18
2.11 Tool setup dialog. .20

3.1 The status bar. .36

4.1 Project area. .38
4.2 File properties dialog. .42
4.3 Build area. .43
4.4 Error log. .44
4.5 Memory usage output. .45
4.6 Psect usage output. .46
4.7 Editor view layout. .46
4.8 Find and Replace dialog — find. .52
4.9 Find and Replace dialog — replace. .53
4.10 Assembler view. .55
4.11 Breakpoints in assembler view. .57
4.12 Source code in assembly view. .60
4.13 Data memory view. .61

xix

LIST OF FIGURES LIST OF FIGURES

4.14 Registers view. .63
4.15 Variable Watch view .65
4.16 Add/remove variables dialog. .67
4.17 Edit IO Components dialog — Select component. 71
4.18 LCD properties dialog .75
4.19 LED properties dialog. .76
4.20 Push button properties dialog. .77

5.1 Project wizard — project details. .81
5.2 Project wizard – toolsuite selection. .82
5.3 Project wizard — target device. .83
5.4 Project wizard — device package. .84
5.5 Project wizard — compiler selection. .85
5.6 Project wizard — debugger selection. .86
5.7 Project wizard — source file selection. 87

6.1 Starting the Code wizard from within HI-TIDE. 96
6.2 A typical Code wizard dialog. .97
6.3 The Advanced Options dialog. .99
6.4 Peripheral selection panel of C-Wiz. .100
6.5 Typical I/O port configuration panel. .101
6.6 Comparison of generated code display modes. .102
6.7 Control panel of C-Wiz. .103
6.8 Message panel of C-Wiz. .106

7.1 Compiler options dialog — compiler options. .110
7.2 Compiler options dialog — preprocessor options.113
7.3 Compiler options dialog — memory options. .115
7.4 Compiler options dialog — file options. .119
7.5 Compiler options dialog — linker options. .120
7.6 Compiler options dialog — language options. .123

xx

List of Tables

7.1 Memory model types. .112

8.1 Recompile Conditions. .127

10.1 C51 file types. .135
10.2 C51 command-line options. .137
10.3 Memory model options. .139
10.4 Error format specifiers. .148
10.5 Supported IDEs. .149
10.6 Output file formats .151
10.7 Runtime environment suboptions. .154

11.1 Basic data types. .162
11.2 Radix formats. .163
11.3 Floating-point formats. .166
11.4 Floating-point format example IEEE 754. .166
11.5 Pointer classes — small model. .175
11.6 Pointer classes — medium, large and huge models.176
11.7 Interrupt handling macros. .200
11.8 Interrupt vector names. .205
11.9 Preprocessor directives. .208
11.10Predefined CPP symbols. .210
11.11Pragma directives. .212
11.12Valid regsused register names. .213
11.13Console I/O functions. .217

12.1 AS51 command-line options. .220
12.2 AS51 numbers and bases. .222

xxi

LIST OF TABLES LIST OF TABLES

12.3 AS51 operators. .225
12.4 AS51 statement formats. .225
12.5 AS51 directives. .227
12.6 Psect flags. .228
12.7 AS51 assembler controls. .238

13.1 Linker command-line options. .243
13.1 Linker command-line options. .244
13.2 Librarian command-line options. .256
13.3 Librarian key letter commands. .256
13.4 OBJTOHEX command-line options. .259
13.5 CREF command-line options .261
13.6 CROMWELL format types .263
13.7 CROMWELL command-line options. .263
13.8 Hexmate command-line options. .266
13.9 INHX types used in -FORMAT option. .270

xxii

Chapter 1

Introduction

1.1 Typographic conventions

Different fonts and styles are used throughout this manual to indicate special words or text. Com-
puter prompts, responses and filenames will be printed inconstant-spaced type. When the
filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.
<stdio.h>. These header files can be found in theINCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in
aconstant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized usingitalicized type. When part of
a term requires substitution, that part should be printed in the appropriate font, but initalics. For
example:#include <filename.h >.

1

Typographic conventions Introduction

2

Chapter 2

HI-TIDE Overview

This chapter details the different regions displayed in HI-TIDE’s main window as well as general
preferences relating to HI-TIDE and its operation.

2.1 Layout Overview

There are several different regions in the HI-TIDE main window. Apart from the window decorations
supplied byWindowsor the window manager you are running, the regions include themenus, the
toolbar, and thestatus bar. These are discussed in Sections3.1, 3.2and3.3, respectively.

Figure2.1shows the appearance of HI-TIDE underWindowswith no project loaded. The menus
and toolbar are at the top of the window and the status bar is located along the lower edge of the
window. The remainder of the HI-TIDE window is left blank. Most of the functionality of these
components is disabled until a project is loaded.

Once a project has been loaded (see Section3.1.4) the toolbar and status bar activate and HI-
TIDE’s window is populated with graphical regions, calledareas,whose state has been read in from
the project file. Areas are described in Section2.2. Figure2.2 shows how HI-TIDE may typically
appear after a project is loaded.

2.2 HI-TIDE Areas

An area is a graphical region of the main HI-TIDE window. There are three HI-TIDE areas which
can be displayed: theProject area, theBuild areaand theWorkspace area. These areas are visible
in Figure2.2and have been individually highlighted in Figures4.1, 4.3and2.3.

3

HI-TIDE Areas HI-TIDE Overview

Figure 2.1: HI-TIDE without a project loaded

4

HI-TIDE Overview HI-TIDE Areas

Figure 2.2: Layout overview with project loaded

5

HI-TIDE Areas HI-TIDE Overview

These areas consume the remainder of HI-TIDE’s main window. Borders separate the areas and
can be dragged to resize the area’s display. As the mouse is moved over the draggable area border,
it changes shape to a double-ended arrow. For example, the Project area can be resized by clicking
and dragging the divider that separates it from the Workspace area. Changing the size of the Project
area will also change the width of the Workspace area.

All areas use a tab viewer to be able to display and manage different contents and its operation
is similar to tabbed viewers in other applications. The tabs are located along the bottom of the area.
Clicking a tab replaces what is displayed in the area with the new tab pane.

Each tab pane contains one or moreviews. A view is further subdivision of a pane. In some
cases a tab may show anempty view. This is a view with no contents and it appears as a blank, grey
area.

2.2.1 The Project and Build Areas

The Project area and Build area have similar operation. They are static areas, in that their tabbed
panes and views are managed by HI-TIDE and cannot be changed by the user.

These areas can be hidden from display to allow the other area(s) to expand. The size of the
remaining area(s) automatically adjust as an area is hidden or re-shown. For example, to hide the
Project area either click on the close button in the top right corner of the area, or chooseHide Project
View from theView menu. To display the project view selectShow Project View from theView
menu. The Build area can be hidden and shown again in a similar way.

2.2.2 The Workspace Area

TheWorkspace area(often referred to just theworkspace) is the main area in which program devel-
opment and debugging takes place. This is the area where the editor and memory displays etc. are
shown. The Workspace area is shown circled in Figure2.3. Its operation is similar to the other areas,
but with some notable differences.

The Workspace area cannot be hidden. There is no close button, nor menu items, which will
completely remove it from display.

The Workspace area has tabs for showing multiple panes like the other areas, but these tabs can
be managed by the user. The user may add or remove workspace tabs, and tabs may be renamed
so that their contents are easily identified. These operations are further described in the following
sections.

Figure2.4shows a typical Workspace tab, labelleddelay.c, with an Editor view showing on the
left side and an assembly view showing on the right side.

6

HI-TIDE Overview HI-TIDE Areas

Figure 2.3: Workspace area

2.2.2.1 Adding a Workspace Tab

Views which can be displayed in the Workspace area will generally create and add a tabbed pane
themselves. This is described in more detail in Section2.2.2.1.

Another way to add a tabbed workspace is to select theNew Tab menu item in theViews menu
or theNew Tab toolbar button from the standard toolbar.

A new tab can also be created and added in by right-clicking on the tabs and selectingNew Tab
from the popup menu.

2.2.2.2 Removing a Workspace Tab

The Workspace tabs can be removed in a number of ways. The first way is to close the view using
theClose Viewbutton located in the top right corner of each view, theClose Viewmenu item from
theViewsmenu or selecting theClose Viewbutton from the standard toolbar. If this is the only view
in the tab, then the tab will be closed along with the view.

The tabbed workspace can also be closed via the tab workspace popup menu. To close the tab,
right-click over the tab and selectClose Tab from the popup menu. When a tab is closed in this
fashion, all the views it contains will be closed as well.

7

HI-TIDE Areas HI-TIDE Overview

Figure 2.4: Workspace tab

8

HI-TIDE Overview HI-TIDE Areas

2.2.2.3 Renaming Workspace Tabs

Generally, when a new tab is created by a view, it is labelled with the name of that view. For example,
if the tab was created for a file, it will be labelled with the name of the file. Or if it was created for
the assembly view, it will be labelled Assembly view. However, if the tab is created from selecting
theNew Tab menu item (from either theViews menu or a Workspace view’s popup menu), the tab
will be labelledNew Tab.

At times, these tab labels may need to be renamed to better identify the view. This might be the
case if the tab workspace contains more than one view.

The tab can be renamed in one of two ways. The first is to right-click on the tab that is to be
renamed and selectRename Tab. The label of the tab will turn into a text box where the name of
the tab can be changed. PressingEnterwill apply the changes. Pressing theEscapekey or clicking
outside the text box will cancel the action.

Alternatively, to change the name of the tab, double-click on the label of the tab. The label of
the tab will turn into a text box to allow editing of the name of the tab. PressingEnterwill apply the
changes. PressingEscapeor clicking outside the text box will cancel the action.

2.2.3 Workspace Views

Workspace viewsare the views that can be displayed inside the tabbed Workspace area. They mostly
share common properties and functionalities. The following section detail how the Workspace views
behave and how they can be adjusted to suite the requirements of the project.

2.2.3.1 Displaying a View

There are several ways in which a Workspace view may be displayed:

• Selecting the view’s namesake from theview menu.

• Clicking the view’s toolbar icon.

• Dragging the view’s toolbar icon to the Workspace area.

These methods apply to all Workspace views, except the Editor view which is discussed separately
below.

When selecting from theView menu or clicking the toolbar icon, the new view will be assigned
a new tab in the Workspace area and the contents of that view displayed in this tab. The tab’s name
will set to the name of the view when the tab is created, but can be changed as described in Section
2.2.2.3.

Dragging the toolbar icon allows for more specific configuration of the Workspace area. A
toolbar view icon dragged to an existing view will replace that view with the new contents. Thus,

9

HI-TIDE Areas HI-TIDE Overview

if a existing view is split (see Section2.2.3.3) and a view toolbar icon dragged onto the resulting
empty view, more than one view can be displayed per Workspace tab.

If a toolbar icon is dragged over an region that cannot display the view, a “no drop” circular
symbol with a line through it, will be shown for the mouse pointer while it is over that region. If the
mouse is over an region which can accept the view, the mouse pointer will become the file transfer
icon. This icon is platform dependent.

Displaying the Editor View The Editor view has neither an entry in theView menu, nor a toolbar
icon. A new Editor view may be displayed using one of several methods:

• Double-clicking a source file icon in theFilesor Code samplesview in the Project area.

• SelectingOpen from theFile menu and choosing a file.

• Clicking theFile Openbutton from toolbar button and choosing a file.

• Dragging a source file icon from theFilesor Code samplesview in the Project area.

In all methods, except when dragging a source file, a new Workspace tab is created for the view,
however if there is an existing Editor view of the same file this view will be displayed rather than
a new view. This applies regardless of whether the existing Editor view is in a Workspace tab by
itself, or is one of several views within a Workspace tab. If more than one Editor view of the same
file exists and the currently selected tab doesn’t contain one of these views, the first tab (from left to
right) in the Workspace area with the Editor view is selected and shown.

In a similar way to other views, if a source file icon is dragged to an existing view that view will
be replaced with the new contents. If a existing view is split and a source file icon icon is dragged
onto the resulting empty view, an Editor view can be shown with other views within a Workspace
tab.

If a file icon is dragged over an region that cannot display the view, the “no drop” mouse pointer
is displayed.

2.2.3.2 Focusing Views

A view is in focus if it is showing on the screen and it can accept input from the keyboard. This is
indicated by the titlebar of the view being highlighted in a system-dependent colour.

When a view has lost focus, it will be coloured differently (typically grey) to when it was focused.
Figure2.4 shows a Workspace tab with two views inside it. The Editor view on the left is in focus
and has its titlebar coloured. The assembly view on the right is not in focus and has a greyed out
titlebar.

10

HI-TIDE Overview HI-TIDE Areas

Figure 2.5: Unsplit view showing split buttons

•

The colours of the focused and unfocused titlebar is usually user-customizable through
the user’s desktop settings.

Left-clicking anywhere in the view or on its titlebar will give the view focus and all keyboard input
will then be passed to that view. Right-clicking on a view will also give that view focus. With some
views, right-clicking will also trigger the view’s popup menu.

2.2.3.3 Splitting Views

Workspace views can be split into two smaller views, allowing more then one view to be displayed
on a Workspace tab at a time. Splitting is performed by a number of ways.

One way is by dragging one of the two split buttons. One split buttons is located at the far left of
the horizontal scroll bar; the other is located at the top of the vertical scroll bar in each Workspace
view, as shown in Figure2.5. The view shown has not yet been split.

The split button on the horizontal scroll bar will split the current view into a left and right view,
i.e. after the split, there will be two views side by side (see Figure2.6). The split button on the

11

HI-TIDE Areas HI-TIDE Overview

Figure 2.6: View split left/right

vertical scroll bar will split the view into a top and bottom view, i.e. after the split, there will be
two views one on top of the other (see Figure2.7). This method of splitting will place the divider
between the two views at the location where the user releases the slit button.

Views may also be split by selecting the one of two split view menu items. TheViewsmenu has
menu items to split the currently focused view left/right or top/bottom:Split View Left/Right and
Split View Top/Bottom, respectively.

A view can also be split by right-clicking in the view and selecting the splitting of the view
options from its popup menu. The popup menu may contain options specific to that view, but will
also have theSplit View Left/Right andSplit View Top/Bottom options, which will split the views
accordingly.

Two toolbar buttons can also be used to split the view in either the horizontal or vertical direction.
After a view has been split, one of the new smaller views will be anempty view. The original

view is placed either on the left or on the top of the two views, depending on which way the view
was split. The empty view can be loaded with another view by dragging a view’s toolbar icon as
described in2.2.3.1.

The new views that are formed after splitting can be split themselves, to form more views. This

12

HI-TIDE Overview HI-TIDE Areas

Figure 2.7: View split top/bottom

13

HI-TIDE Areas HI-TIDE Overview

process can be repeated until HI-TIDE deems the views too small to be split. This is usually when
the scrollbars and split buttons cannot fit into the view’s length or width.

2.2.3.4 Closing Views

Each view that can be closed has a close button in the right corner of its titlebar. Clicking the button
will close the view. If the view is the only view in a Workspace tab, the tab will be closed as well. If
there is more than one view in the tabbed workspace, the view will be closed and the views around
the closed view are resized to fill the space that becomes available. Closing a tabbed workspace will
close all the views inside it.

The view can also be closed by selecting either theClose Viewmenu item in theViewsmenu or
theClose Viewbutton in the standard toolbar.

Right-clicking on a view will display its view-specific popup menu. In addition to the view-
specific options, the popup menu will also contain theClose Viewoption. Selecting this option will
close the view.

A view is also closed when it is replaced by another view. If a view’s toolbar is dragged onto an
existing view, the view will be closed and replaced with the new view. Refer to Section2.2.3.1for
more details on creating views from dragging view toolbar icons.

2.2.3.5 View Popup Menu

Right-clicking on Workspace views will display its popup menu. Workspace views may have their
own unique menu options, but will always have view-control menu items. The view-control menu
items have the following meanings.

Split View Top/Bottom Selecting this option will split the current view into two views, one on top
of the other. The original view will be placed in the top view space and an empty view will be
placed in the bottom view space. The two views will be approximately equal in height.

Split View Left/Right Splits the current view into two views, one beside the other. The original
view will be placed on the left and an empty view will be added to the right. The two views
will be approximately equal in width.

Close View Closes the current view. If the view is the only view in the tabbed workspace, the tabbed
workspace will be closed as well. If there are other views in the tabbed workspace, the views
will be resized to fill in the space occupied by the closed view.

New Tab Opens and adds a new tabbed workspace in the Workspace area. The new tab will be
labelledNew Tab, but can be renamed. See Section2.2.2.1for more details on adding a new
tabbed workspace.

14

HI-TIDE Overview General Preferences

Figure 2.8: Font/colour select dialog

2.2.3.6 Changing Font And colour

Most Workspace views allow the font and colours used in its display to be changed. Such views
have aFont/colours... menu item in their popup menu. Selecting this menu item will display the
Font/colour Settingsdialog, which is shown in2.8.

There are three sections in theFont/colour Settingsdialog. At the top is the Select Font area,
where the font can be set. The drop-down combo box contains the list of available fonts for that
view. To the right of the font selection combo box is the size of the selected font. The exact size can
be entered into the text field.

In the center is the colour selection area. The foreground and background font colours can be
set, by toggling between the two radio buttons. The three sliders are to adjust the red, green and blue
colour values of the font.

At the bottom of the dialog is a preview of the font type, size and colour that has been set. This
is updated as the font properties are changed.

Clicking on OK will apply the changes to the view. ClickingCancel will discard all of the
changes.

2.3 General Preferences

The general preferences settings allow customization of HI-TIDE’s operation. These preferences
include text editor functions, through to debugging features. The preferences are set via aGeneral
Preferencesdialog.

15

General Preferences HI-TIDE Overview

Figure 2.9: General preferences dialog — project tab

2.3.1 General Preferences Dialog

The General Preferencesdialog provides a graphical means of setting options that apply to HI-
TIDE and all projects that are used under HI-TIDE.

To display the dialog, selectPreferencesfrom theFile menu. TheGeneral Preferencesdialog
has tabs to group the options with similar function.

The following sections describe the tabs of the dialog and the function of each of the options.

2.3.1.1 Project Tab

TheProject tab contains options that apply generally to HI-TIDE projects. The options in this tab
are detailed below. Figure2.9shows theGeneral Preferencesdialog with theProject tab showing
the following options.

Reload last project at startup Selecting this option sets HI-TIDE to automatically reload the last
project when HI-TIDE is restarted. De-selecting this option will cause HI-TIDE to start up
without any projects opened.

Recent projects list sizeThis option sets the number of file names to display in the recent projects
list. These represent projects that have been previously opened by HI-TIDE. This list is dis-
played under theRecent Projectssub-menu of theProject menu (see Section3.1.4). The
number of entries must be between 1 and 10, inclusive.

16

HI-TIDE Overview General Preferences

Save project when closingspecifies the save action for HI-TIDE to take when a project is being
closed. The options are: to always save the project file (Always); prompt the user if the
project has changed (Prompt); or never save the project file (Never).

Stop on errors specifies whether compilation should continue if an error is encountered. Prema-
turely stopping compilation may save time compiling large projects. De-selecting this option
will force the compiler to compile all of the source files before reporting any errors. Use
this setting if you want the compiler to report all errors with all files. The link step is never
performed is there are any errors in the source files, regardless of this setting.

•

Often one error may causes other errors to occur in a snow-ball effect. Primarily concen-
trate on the first error(s) issued by the compiler. Seemingly extraneous error messages
may disappear after fixing problems earlier in the source and the project is recompiled.

Load HEX file on successful build If this option is selected, HI-TIDE will attempt to load the HEX
file into the debugger if the project was successfully built. This ensures that the debugger is
always working with the latest build output. When deselected, the user must manually load
the HEX file, if required, after a successful build.

2.3.1.2 Editor Tab

TheEditor tab sets options specific to the editor and editing of files. The options are described in
the following. Figure2.10shows theGeneral Preferencesdialog with theEditor tab showing the
following options.

Recent files list sizeThis option sets the number of file names to display in the recent files list.
These represent files that have been previously opened in an Editor view. The list is displayed
under theRecent Filessub-menu of theFile menu (see Section4.16). The number of entries
must be between 1 and 10, inclusive.

Reload modified files This option allows control over the editor’s automatic load feature. If a file
shown in an Editor view has been modified other than by the editor, it can be reloaded to
display the changes. The editor will check all files if HI-TIDE regains focus from another
application, or after compilation of any files. The options are to always reload files if they have
been modified (Always), prompt the user to reload the files if they have changed (Prompt) or
never reload the modified files (Never). If a file has been modified, but the user opts not to
update the Editor view, the normalfile modified flag will appear next to the file’s name in the
title bar of the Editor view.

17

General Preferences HI-TIDE Overview

Figure 2.10: General preferences dialog – editor

Save modified files before buildingThis option allows control over the editor’s automatic save fea-
ture. Prior to building the project, the editor can check to ensure that each file to be compiled
has been saved. If the user opts not to save modified files, the file built during compilation will
be the file without the modifications, i.e. the file as it is stored on disc. The settings associated
with this option are to always save the files prior to building (Always), prompt if the files need
saving (Prompt) or never save modified files prior to building (Never).

This option also applies to files compiled individually from theCompile To menu under the
C File popup menu orAssembler filepopup menu.

Save modified files when closingThis option allows control over the editor’s automatic save fea-
ture. Prior to closing, the editor checks to see if any opened files have been modified. If the
user opts not to save modified files when closing, any changes made in the editor will be lost.
The settings associated with this option are to always automatically save unsaved modified
files (Always), to prompt the user if the file needs saving (Prompt) or to not save the files at
all (Never).

Wrap lines This option enables line wrapping when printing files from the editor. It is recom-
mended that this option be selected to ensure that long lines are not truncated. This is critical
when using thePrint two columns per pageoption. This option does not affect how lines are
displayed in the Editor view.

Print line numbers This option controls whether line numbers are printed with the file. When
selected, a line number will be printed at the beginning of each line of code.

Print header This option controls whether a header is printed with the file. When selected, a header
containing the filename and current date, and a footer containing a page number, are added to

18

HI-TIDE Overview Third-Party Tools

each page in the file.

Print two columns per page This option allows printing of two columns on one page with land-
scape layout. To prevent text being printed off the column and page, select theWrap lines
option when using selecting this option.

Track Program Counter This option controls how the editor behaves when stepping through a
program. When this option is enabled, the Editor view will track the program counter and
adjust its display so as the line about to be executed is visible on the screen. As the program
calls or jumps to code in different files, HI-TIDE will automatically switch views to display
the file in which the PC is located. If execution is transfered to a file that is not open in any
editor, that file will be opened.

2.4 Third-Party Tools

Third-party software tools can be executed without having to leave the HI-TIDE environment. This
feature allows customized buttons to be added to the HI-TIDE toolbar which can be used to launch
the associated third-party software. These buttons may also be used to switch to the third-party tool
once they are running.

Third-party tools, when added, are shown in the buttons list in theSetup Third-Party Tools
dialog and are represented by buttons in HI-TIDE’sUser Toolstoolbar (see Section3.2 for more
information on toolbars).

Some tools are automatically added by HI-TIDE and can not be removed from the tool buttons
list, although they may be hidden from the toolbar.

The third-party tools feature is mainly controlled via theSetup Third-Party Tools dialog. This
dialog can be opened from theTools menu and appears as shown in Figure2.11. It can be used to
add, remove and customize tools. TheSetup Third-Party Tools dialog can also be used to hide,
modify or remove the buttons once they have been installed on the toolbar.

At the top of the dialog is a list of the third-party tools buttons that are currently setup in HI-
TIDE. The center section of the dialog shows the details associated with each button. Selecting a
button from the list will enable the details panel and the details of the button will be displayed in the
corresponding text fields.

2.4.1 Adding and Deleting Tools

To add a new third-party tool to HI-TIDE, click on theNew Tool button in the tool setup dialog.
This will create a new entry and the entry is added to the list of tools. The entry will be labelled
Untitledn, wheren is a sequential index, starting from 0 which is incremented each time a new tool
button is created. The tool’s name may be changed from the default name to better describe the tool.

19

Third-Party Tools HI-TIDE Overview

Figure 2.11: Tool setup dialog

20

HI-TIDE Overview Third-Party Tools

All third-party tool buttons must have unique names. These names are used to identify the buttons.
A newly created tool button cannot have the same name as an existing one.

The new tool button entry is assigned a default “hammer” button image. The button image can
be changed to a customized image. Changing of the button image is discussed in Section2.4.2. The
other options are described in this section as well.

When all details have been entered, click either theApply button or theOK button to save the
new button. TheApply button saves the changes, but does not close the dialog. Clicking onCancel
will discard any unsaved changes. When the dialog is closed, new tools will be displayed in the
HI-TIDE toolbar.

To remove a button from the list, select the button in the list and click onRemove. Only user-
created buttons can be removed from the list. Default buttons created by HI-TIDE can not be re-
moved, but they can be hidden. For more information on hiding buttons, refer to Section2.4.3.

2.4.2 Tool Options

Adding a new tool is described in Section2.4.1and once added, the following describes the different
text fields and options within the details panel of this dialog that apply to each tool. These options
may be edited after a tool has been setup by re-opening this dialog and making the appropriate
changes.

Tool name A text field for entering the name of the third-party tool button. This name may be any
name to describe the tool, but it must be unique within the list of tools.

Command This is the actual command that is executed by HI-TIDE to start the third party software.
There is a widget button to the right of this text field that opens a file dialog to select an
executable. Thefull path of the executable should be entered here. Do not enter command-
line arguments in this field.

Additional arguments These are command-line arguments that will be passed to the executable.
Leave this field blank if there are no arguments required. Do not add the name of the com-
piler’s output file here. That can be automatically added by HI-TIDE. See theUse output file
option, described below. The arguments required and their format is specified by the applica-
tion being executed. See the documentation that came with this software for more information.

Environment variables Any required environment variables can be entered into this text field.
Leave this field blank if there are no environment variables required. The environment vari-
ables required and their format is specified by the application being executed. See the docu-
mentation that came with this software for more information.

Working directory This text field specifies the working directory for the executable. This directory
is where the command will be executed from. A widget to the right of the text field opens a

21

Third-Party Tools HI-TIDE Overview

directory chooser to help select the required directory. Leave this field blank if not working
directory need be specified.

Change icon Clicking on this button opens a file chooser to allow the button image to be specified.
A preview of the tool button image is shown above theChange iconbutton. If no image is
selected, a plain grey button is used on the toolbar. A generic image,hammer16.gif, can be
loaded from theimages directory under HI-TIDE.

Use output file This option allows the name of the compiler’s output file to be specified to the third-
party tool. Selecting this option passes the name of the compiler’s output file as an argument
to the executable command when it is executed. If the name of the output file changes, this
feature will always choose the current output file name.

When using this feature, thePrefix option to filename text field will be enabled. This field
specifies any command-line arguments that need to be prefixed with the filename. Leave this
field blank if the filename does not need a leading command-line argument before it.

Build project before execution This option controls the auto-build feature of HI-TIDE. After click-
ing on a third-party tool button, HI-TIDE checks the status of the project prior to launching the
third-party tool. IfAlways is selected, then the project is automatically built each time. Se-
lectingNever will immediately launch the third-party tool without building the project, even
if the project is out of date. IfPrompt is selected the user will be prompted to select the
required action.

In all cases, the project is built as if theBuild button or menu item was selected, and uses
dependency checking. Thus, if a build is requested, but no files have changed, no actual
compilation will take place.

OK Button Clicking on theOK button will save the current dialog settings and close the dialog.

Cancel Button Clicking on theCancelbutton will close the dialog and any unsaved changes will
be lost.

Apply Button Clicking on theApply button will save the current dialog’s settings. Once the details
have been saved, the details are not discarded when theCancelbutton is clicked.

2.4.3 Hiding and Showing Buttons

The third-party tool buttons can be removed from the toolbar without being deleted entirely from the
list of tools.

22

HI-TIDE Overview Third-Party Tools

•

If a tool button should be showing on the toolbar, but is not present, it may be that the
toolbar is hidden. Refer to Section3.2.1for more details on displaying the Tools tool
bar.

All the created tool buttons are listed in the tool buttons list. The list contains two columns: The
first column is theShowcolumn which contains checkboxes. The second column contains theTool
Name, which displays the names assigned to each button. Deselecting the check box in the show
column for a button will remove that button from the HI-TIDE toolbar, but will not remove the button
from the list. Selecting the checkbox will display the button in the HI-TIDE toolbar.

Changes to hiding or showing the buttons will only apply if theOK button orApply button in
the dialog is clicked.

23

Third-Party Tools HI-TIDE Overview

24

Chapter 3

HI-TIDE Menus and Toolbars

3.1 Menus

This section presents a description of each of the HI-TIDE menus.

3.1.1 File Menu

The File menu contains menu items that relate to files used by HI-TIDE. To conform with other
applications, this menu also contains a preferences item and an exit menu item. The following
describe the menu items in detail.

New File This will create a new text editor file. Each new file is opened in a new Workspace tab.
As new files are created, they will be namedUntitledn wheren is a sequential number. The
Workspace’s tab in the editor will be labelled with the same name as the file.

Open... Opens a file dialog to select a file to load in the editor. The selected file will be opened in
a new editor Workspace tab. The Workspace’s tab in the editor will be labelled with the same
name as the file.

Recent Files A sub-menu that lists the files that have been recently opened in HI-TIDE. The size of
the list can be set in the editor options of theGeneral Preferencesdialog, see Section2.3.1.2.
The selected file will be opened in a new Workspace tab. The tab will be labelled the same as
the name of the file.

Save File Saves the opened editor file that is currently in focus. If the currently focused view is not
of an editor file this action will have no effect. If the file is a new file that has not yet been

25

Menus HI-TIDE Menus and Toolbars

saved with a user-specified name, the user will be prompted to enter a name with which to
save the file as.

Save All Saves all of the currently opened editor files and the project file. Untitled files will be
saved in the same manner asSave File As.

Save File As...Opens a file dialog to allow entry of a new file name with which to save the current
file. This will rename the opened file.

Print... Displays thePrint dialog for printing of an editor file. Only editor views can be printed.
This menu item will only open thePrint dialog if an editor view was focused prior to selecting
this option. Selecting this option while an editor view is not in focus will not have any effect.
See Section4.3.6for more details on printing editor files.

General Preferences...Opens theGeneral Preferencesdialog for selecting preferences that apply
to HI-TIDE and other components of HI-TIDE.

Exit Close and exit from HI-TIDE. If there is a project currently opened, the user may be prompted
to save the project, as dictated by the general preferences settings described in Section2.3.1.1.

3.1.2 Edit Menu

TheEdit menu provides functions relating to the text editor. The functions are listed and described
as follows.

Undo Reverses the last text editor action. Several editor actions can be reversed by using this item
repeatedly.

Redo Restores the edit action that was removed by the lastUndo action.

Cut Copies the currently selected text in a text editor view to the clipboard and then deletes the
selected text.

Copy Copies the currently selected text to the clipboard. The selected text is not deleted.

Paste Inserts the contents of the clipboard into the selected editor file, before the current position of
the cursor.

Find... Opens theFind & Replace dialog with theFind tab selected. This allows the user to search
for text within the currently selected editor view. An editor view must be selected for this
menu item to have an effect. See Section4.8for a detailed description of theFind & Replace
dialog.

26

HI-TIDE Menus and Toolbars Menus

Find Again Repeats the last search without displaying theFind & Replace dialog. An editor view
must be selected for this menu item to have an effect.

Replace...Opens theFind & Replace dialog with theReplacetab selected. This allows the user
to search and replace text within the currently selected editor view. An editor view must be
selected for this menu item to have an effect. See Section4.9for a detailed description of the
Find & Replace dialog.

3.1.3 View Menu

TheView menu provides actions that relate to some of the visual components within HI-TIDE. The
menu items are described below.

Toolbar TheToolbar menu is a submenu that shows a list of the toolbars available in HI-TIDE. The
user is able to select which toolbars will be displayed in HI-TIDE by selecting the appropriate
item in theToolbar menu. The toolbars which are displayed are marked with a check.

Split View Top/Bottom Splits the currently selected Workspace view into two views. The result
will be two views, one on top of the other. The original view will be placed in the new top
view. The bottom view will be an Empty view. See Section2.2.3.3for more details on splitting
of views. Selecting this option while no views are in focus will have no effect.

Split View Left/Right Splits the currently selected Workspace view into two views. The result will
be two views side by side. The original view will be placed in the new left view. The right-
hand side view will be an Empty view. See Section2.2.3.3for more details on splitting of
views. If a view is not in focus when selecting this option, it will have no effect.

Close View Closes the currently focused Workspace view. If this Workspace view is the only view
in the Workspace tab, the tab is removed as well. If the Project area or Build area are in
focus when this option is selected, they are hidden from display . For more information on the
Workspace area, refer to Section2.3.

New Tab Adds a new tab to the Workspace area. The new tab will be labelledNew Tab and will
contain an Empty view. See Section2.2.2.1for more details.

Show/Hide Project area Shows or hides the Project area. Refer to Section4.1 for more details on
the Project area.

Show/Hide Build area Shows or hides the Build area. Refer to Section4.2 for more details on the
Build area.

27

Menus HI-TIDE Menus and Toolbars

The followingView menu items create new views which are then added in new tabs in the Workspace
area. As the views are plugins, the order in which they appear in the menu may differ. The views are
described in alphabetical order.

Data Memory Displays the writable memory of the target device. See Section4.4.2for more de-
tails.

Executable Memory Displays the executable memory of the target device. See Section4.4.1for
more details.

Registers Displays the registers memory of the target device. See Section4.4.3for more details.

Variable Watch Displays the view to monitor variables and their values. This view can be used to
display any variables defined by a program. See Section4.4.4for more details.

Local Watch Displays the view to monitor block-scope variables and their values. This view au-
tomatically populates withauto and static local variables defined within the function being
executed. See Section4.4.4for more details.

Virtual I/O Displays a view in which peripheral device panels which can be added and wired to the
simulator.

3.1.4 Project Menu

TheProject menu contains project-related menu items. These are described below.

New Project. . . Opens the Project wizard which will help create a new HI-TIDE project.

Open Project. . . Opens a file dialog for selection of an existing project to load.

Recent Projects A submenu which displays a history list of projects that have been opened previ-
ously. The number of projects in the history can be set in theGeneral Preferencesdialog, see
Section2.3.1.1. Selecting a project from this submenu will reopen the project if the project
file still exists.

Close Project Closes the currently opened project. Options in theGeneral Preferencesdialog can
be set to determine if the project file is to be saved before closing, see Section2.3.1.1. Similar
options also apply for unsaved Editor view files that are being closed.

Save Project Saves the currently opened project file to disk.

Save Project As...Saves the currently opened project under a different name or path. A file dialog
will appear for the user to select the new name and path.

28

HI-TIDE Menus and Toolbars Menus

Add Files To Project. . . Opens a file dialog for the user to select files to add to the project. The
files that can be added to the project include source files (.c or .as), object files (.obj) and
library files (.lib). Multiple file selection can be performed in the file dialog.

Add File To Project Adds the currently opened and focused Editor view file to the project. If the
file cannot be added to the project, this option is disabled.

Change Toolsuite Version. . . Selects the toolsuite version to use with the project. The toolsuite re-
lates to the compiler and compiler version. For more details on toolsuites, refer to Section5.1.
For more details on changing toolsuites, refer to Section5.6.1.

Change Device. . .Selects the target device for the project. A chip selection dialog is shown to
enable the selection of the new microcontroller. This action can also be performed by double-
clicking on the target name in the status bar. Section5.6.2has more details on changing target
devices.

Change Package. . .Selects the package type of the target device. A chip package selection dialog
will appear to enable the selection of the new chip package. Some microcontrollers have
functionality that is dependent on the package type. See Section5.6.3for more information
on Variable Watch view package types.

Change Debugger. . .Selects the debugger to use with the project. The debuggers available will
depend on the toolsuite selected. This action can also be performed by double-clicking on the
debugger name in the status bar. For more details on changing debuggers, see Section5.6.4.

Global Compiler Options. . . Opens theGlobal Compiler Options dialog to allow setting of global
compiler options. Global compiler options affect all the files in the project. The dialog and
options displayed by this menu are very much dependent on the toolsuite selected. The com-
piler options are discussed in detail in Chapter7. TheGlobal Compiler Options dialog can
also be displayed by double-clicking on the output node in the Files view in the Project area.

3.1.5 Build Menu

TheBuild menu contains the actions to build the current project. The options are:

Make Builds the project with dependency checking. Only source files that are not up to date are
recompiled. If the output node is not up to date, the object files are linked to create an updated
output node.

Make All Compiles all of the source files in the project and then links to create the output node.This
action always recompiles each source file and relinks the project even if the files have not been
modified.

29

Menus HI-TIDE Menus and Toolbars

Clean Deletes all compiler-generated files, e.g. object files (.obj), list files (.lst), source-level
debugging files (.sdb, .sym), etc. Object files that are specified in the project are not removed.

Compile To Object File Compiles the current focused file showing in the Editor view to an object
file. This option is only enabled if the view in focus is an editor view. No other files are
compiled and the project is not linked. This option can be used to locate errors within the file
currently being developed.

3.1.6 Debugger Menu

The menu items in theDebugger menu are to control the selected debugger. If no debugger is
selected, this menu has no effect. The active debugger is displayed in the status bar. The menu items
are described in the following.

Reset Performs a reset of the debugger. Refer to the documentation of the debugger for more details
on what the reset action does at the debugger level.

Run Commences full-speed execution of the program in the debugger. Debugger views will not be
updated during full-speed execution. To stop this action, use theStop item.

Animate Continuously executes single assembler steps, updating debugger views after each step.
Execution is slower than that associated with theRun action. To stop the debugger, useStop.

Stop Stops the current execution of the debugger.

C Step Makes the debugger execute a series of assembler instructions which correspond to one line
of C source code. The number of executed instructions will depend on the C source statement.
Debugger views are updated when the debugger has executed the instructions.

Assembler StepMakes the debugger execute a single assembler instruction. Debugger views are
updated once the debugger has executed the instruction.

Set/Remove BreakpointAllows a breakpoint to be set or removed on the C line which contains the
caret in a focused Editor view, or on the highlighted assembler line in a focused Disassembly
view. A set breakpoint is indicated by a red dot. The dot disappears if no breakpoint is set on
this line. See Section9.1.2for more information.

Disable Breakpoint Disables, but does not remove, a breakpoint from the C line which contains the
caret in a focused Editor view, or on the highlighted assembler line in a focused Disassembly
view. The disabled breakpoint is indicated by a grey dot.

Remove All Breakpoints Removes all breakpoints from the program, whether they were set on C
statements or assembler instructions.

30

HI-TIDE Menus and Toolbars Toolbars

Disable All Breakpoints Disables, but does not remove, all breakpoints from the program, whether
they were set on C statements or assembler instructions.

Enable All Breakpoints Enables all disabled breakpoints from the program.

Run To Cursor Causes a temporary breakpoint to be inserted on the C line which contains the caret
in a focused Editor view, or on the highlighted assembler line in a focused Disassembly view
and program execution to continue from the current program counter location.

Load HEX File. . . Opens a file dialog to select the HEX file to load into the debugger memory.
This can be used to over-write a HEX file previously loaded into memory. The HEX file can
be automatically loaded after building. See Section2.3.1.1.

3.1.7 Tools Menu

TheToolsmenu provides functions to access external or third party tools, as well as the Code Wizard.

Code Wizard Opens theCode Wizard dialog. The Code Wizard is used to aid in the initialization
of target device peripherals. See Chapter6 for more information.

Setup User Tools. . . Opens theSetup Third-Party Tools dialog. See Section2.4 for more details
on user tools.

3.1.8 Help Menu

Contains various help information.

About Shows theAbout dialog, listing details of HI-TIDE, including the version number, copy-
right, contact and trademark information.

3.2 Toolbars

This section presents an item-by-item description of each of HI-TIDE’s toolbars and the functions
of each of the toolbar buttons.

3.2.1 Hiding / Showing Toolbars

HI-TIDE’s toolbars can be hidden from view so that they do not clutter the toolbar display.
To hide a toolbar, select theView menu, and then theToolbar sub-menu. This will display a list

of the available toolbars. The toolbars that are currently visible will be marked with a check next to

31

Toolbars HI-TIDE Menus and Toolbars

their name. Those without the check are hidden. To hide a toolbar that is showing, select that toolbar
name from theToolbar sub-menu.

To show the toolbar, select the toolbar name from the same menu.

3.2.2 Standard Tools Toolbar

The Standard Tools toolbar provides standard tools such as creating new files, saving files, printing
and splitting of views. The standard toolbar buttons are listed and described below.

New File This will create a new editor text file calledUntitledn, wheren is a sequential number.
This is the same as selectingNew File menu item in theFile menu. TheNew File toolbar
button can be “dragged and dropped” to an Editor view create a new file. Refer to Section4.3.2
for more details.

Open File Opens a file dialog for selection of an existing text file to open in the editor. This is the
same as selecting theOpen Filemenu item in theFile menu.

Save File Saves the currently focused file in the editor. This is the same as selecting theSave File
option in theFile menu.

Save All Saves the currently focused file in the editor. This is the same as selectingSave All in the
File menu.

Print Opens thePrint dialog for setting up print options and printing an editor file. This is the same
as selectingPrint... from theFile menu.

New Tab Creates and adds a new Workspace tab to the Workspace area. This is the same as select-
ing theNew Tabmenu item in theView menu.

Split View Top/Bottom Splits the currently focused view into two views, one on top of the other.
This is the same as selectingSplit View Top/Bottom in theView menu.

Split View Left/Right Splits the currently focused view into two views, side by side. This is the
same as selectingSplit View Left/Right in theView menu.

Close View Closes the focused view. The is the same as selectingClose Viewin theView menu.

3.2.3 Editor Toolbar

The Editor toolbar provides tools essential to the editor. These include actions such as cut, copy and
paste. The editor toolbar buttons are listed and described below.

32

HI-TIDE Menus and Toolbars Toolbars

Undo Reverses the last editor text action(s). This has the same effect as selectingUndo from the
Edit menu.

Redo Restores the edit action that was reversed by the lastUndoaction. This is the same as selecting
Redofrom theEdit menu.

Cut Copies the selected text from the editor text file to the clipboard and then deletes that selected
text from the file. This is the same action as selectingCut from theEdit menu.

Copy Copies the selected text from the editor text file to the clipboard. This is the same as selecting
Copy from theEdit menu.

Paste Inserts the contents of the clipboard into the editor text file before the current position of the
cursor. This is the same as selectingPastefrom theEdit menu.

3.2.4 Build Toolbar

The Build toolbar provides tools related to project compilation. The build toolbar buttons are listed
and described below.

Make Project Builds the current project files, using dependency checking. This is the same as
selecting theMake option in theBuild menu

3.2.5 Views Toolbar

The Views toolbar provides means of creating and adding new views to the Workspace area. The
buttons in the Views toolbar can be “dragged and dropped” into the Workspace area to create new
views. Clicking on the view buttons will create a new view in a new Workspace tab. Dragging the
button and dropping the view will replace the current view with the dragged view. See Section2.2.3
for more information.

The Views toolbar buttons are listed and described below.

Data Memory Creates a new view containing the writable memory view of the target device. This
is the same as selectingData Memory from theView menu. This button can also be dragged
and dropped to create a new view.

Executable Memory Creates a new view of the of executable memory of the target device. This is
the same as selecting theExecutable Memorymenu item from theView menu. This button
can also be dragged and dropped to create a new view.

Registers Creates a new view of the registers of the target device. This is the same as selecting
Registers from the view menu. This button can also be dragged and dropped to create a new
view.

33

Toolbars HI-TIDE Menus and Toolbars

Watch Variables Displays the view to monitor variables and their values. This view can be used to
display any variables defined by a program. This is the same as selecting theWatch Variables
menu item from theView menu. This button can also be dragged and dropped to create a new
view.

Local Watch Displays the view to monitor block-scope variables and their values. This view au-
tomatically populates withauto and static local variables defined within the function being
executed. See Section4.4.4for more details.

Virtual I/O Displays a view in which peripheral device panels which can be added and wired to the
simulator.

3.2.6 Tools Toolbar

The Tools toolbar contains any tools that are provided with HI-TIDE. The buttons in this toolbar are
listed and described below.

Code Wizard Launches theCode Wizard dialog. See Chapter6 for more information.

3.2.7 User Tools Toolbar

The User Tools toolbar contains user-defined tools and actions. The buttons are customizable and
may contain different icons. See Section2.4 for more details on setting up and using third party
tools.

3.2.8 Debugger Toolbar

The Debugger toolbar buttons are used to control the debugger that is selected. The buttons are
disabled if there is no debugger selected for the current project.

The basic functions of the debugger are controlled by these toolbar buttons, which are listed and
described below.

Reset Resets the debugger. The extent of the reset will be dependent on the debugger. Refer to the
debugger’s documentation for more details on what type of reset the debugger performs. This
button has the same effect as selectingResetin theDebuggermenu.

Run Does a full speed execution of the code in the debugger. Debugger views are not updated
while the debugger is running at full speed. While the debugger is running, this button is
replaced with theStop button, which is used to terminate the full speed execution of the
debugger. Clicking on this button has the same effect as selectingRun in the Debugger
menu. This button is disabled while another action such asAnimate, C Stepor Assembler
Step is executing.

34

HI-TIDE Menus and Toolbars The Status Bar

Animate Continuously executes single assembler steps, updating debugger views after each step.
This has the same effect as continuously clicking on the assembler step button.Debugger
views are updated while this action is running. While the debugger is running, theAnimate
button is replaced by theStop button. The debugger views are updated at the end of each
execution each assembler instruction. This action can also be performed by selecting the
Animate option from theDebuggermenu. This button will be disabled while the debugger is
operating underRun, C Stepor AssemblerStep.

C Step Steps the debugger a series of assembler instructions equivalent to one line of C source
code. While the debugger is stepping, this button is replaced with theStop button and is
reinstated after the stepping stops. Selecting this button is the same as selectingC Step from
theDebuggermenu. The debugger views are not updated while the debugger is stepping, but
are updated once the stepping is completed. This button will be disabled while other actions
such asRun, Animate or Assembler Stepare being executed by the debugger.

Assembler StepMakes the debugger execute one assembler instruction. The debugger views are
updated at the end of the execution of the assembler step. This is the same as selecting the
Assembler Stepoption from theDebuggermenu. This button will be disabled while the
debugger is operating underRun, Animate, or C Step.

Stop This button will appear in place of theRun button,C Stepbutton orAnimate button, when
one of those actions have been selected. TheStopbutton will appear in lieu of the button that
started the debugger. Selecting this button will stop the debugger, and the original button will
be again displayed.

3.3 The Status Bar

The Status Bar can contains information relating to the Editor view, the currently selected debugger,
the selected target device, and information relating to the execution of a program being debugged.
A typical status bar display is shown in Figure3.1.

On the far left of the status bar is the Editor view;s caret position indicator. This indicator shows
the line number and column position of the caret, in relation to the file in the Editor view that is
currently being edited. If an Editor view is not in focus, no line or column information will be
displayed.

To the right of the caret position indicator is the editor status. This reports events in the editor.
The events are reported as text messages. Typical events can include if a search in the editor has
reached the end of file, etc.

To the right of the editor status is a description of the debugger that is currently selected. This will
display either the name of the debugger that is selected or the textNo Debuggerwhen a debugger

35

The Status Bar HI-TIDE Menus and Toolbars

Figure 3.1: The status bar

is not selected. Double clicking on this section will display a dialog to allow selection of a different
debugger, if a different debugger is available.

The name of the project target device is displayed in the third section of the Status Bar. Double
clicking on this section will display a dialog to allow selection of a different target device.

The fourth section contains the value of the program counter. If no debugger is selected this
section will be blank.

The next section after the program counter indicates the status of the debugger. The debugger can
be in one of three states and is indicated by the text:Stopped, Busyor Running. Stopped indicates
that the debugger has halted and is not performing any tasks. Busy indicates that the debugger
is performing some task that does not involve program execution. Example of a busy state for a
debugger could be resetting or downloading memory. The Running state indicates that the debugger
is executing the program.

A description of why the debugger last stopped is shown in the far right section of the Status
Bar. On most occasions this section will displayUser Requestedor Breakpoint as the reason
execution was stopped. On some occasions there will be an error in executing the program causing
the debugger to stop, an explanation of the error will be displayed in this section.

36

Chapter 4

HI-TIDE Views

This chapter looks at all the views which can be displayed in HI-TIDE.

4.1 The Project Views

The views within the Project area are static views that are always visible and which are managed by
HI-TIDE. The following sections describe their purpose and options.

4.1.1 Files View

The Files view is one of two views within the Project area and displays the files associated with the
application being developed. It is shown circled in Figure4.1.

The files are displayed like a directory structure. At the top (root) of the structure is the output
file (or output node). The next level under this root are the file folders. The folders contain the source
files, object files and libraries associated with the project.

The folders areC Files (which contains C source files),Assembler Files(which contains assem-
bler source files),Object Files (which contains user-supplied relocatable object files) andLibraries
(which contain user-supplied, HI-TECH-format library files).

By right-clicking on the files or folders a popup menu will be displayed showing various options.
These options include functions such as adding files to the project, creating new files, opening the
file in the editor, etc. The following sections describe these options in detail.

37

The Project Views HI-TIDE Views

Figure 4.1: Project area

4.1.1.1 Output File Popup Menu

Double-clicking on the output file node will open theGlobal Compiler Options dialog for the
project. Right-clicking on the output file node provides the following options in a popup menu.

Global Compiler Options... TheGlobal Compiler Options... command opens theGlobal Com-
piler Options dialog for the project. The dialog allows the setting of project-related options,
on a global scale to the project. These options include compiler options, memory options and
linker options. These options are discussed in Chapter7.

Properties TheProperties command opens theFile Properties dialog, which displays properties
of the default output file stored on disk. See Section4.1.2for more information on theFile
Propertiesdialog.

4.1.1.2 C Files Folder Popup Menu

Right-clicking on theC Files folder provides the following options.

Add Existing C File(s) This command allows one or more existing C files to be added to the
project. The file(s) to be added to the project can be selected via the file dialog that is shown.

38

HI-TIDE Views The Project Views

Create And Add New C File This command will show the file dialog which will prompt for a file
name and path. Once a file name is entered, the new file, with the specified name, will be
added to the project in the appropriate file folder and will be opened in the editor as a new file.

4.1.1.3 C File Popup Menu

Double clicking on a file in theC Files folder will open that file in the editor. If the file is currently
opened in the project, the editor will bring the view with that file into focus. If the file is not opened
in the editor, the file will be opened and placed in a new Workspace tab, and the tab will be labelled
with the name of the file.

Right-clicking on the individual C file will select that file and show a popup menu with the
following options:

Remove from project This option removes the selected file from the project.

File-specific options...TheFile-specific options...command allows the setting of compiler options
which only apply to the selected file. Any options set for a single file will override the global
options specified for the project. The file-specific options which can be specified will be
dependent on the compiler selected.

Compile to... This menu contains commands to compile the selected C file to the following formats

Preprocessed fileThis command compiles the selected file to a pre-processed file (.pre).
The output file will be the name of the C file but will have a.pre extension.

Assembler file This command compiles the selected file to an assembler file (.as). The
output file will be the name of the C file but will have a.as extension.

Object file This option compiles the selected file to a re-locatable object file (.obj). The
output file will be the name of the C file but will have a.obj extension.

Properties... TheProperties...command opens a dialog that displays properties of the selected file
stored on disk. See Section4.1.2for more information on theFile Propertiesdialog.

4.1.1.4 Assembler Files Folder Popup Menu

Right-clicking on theAssembler Filesfolder provides the following options:

Add Existing Assembler File(s) This command allows one or more existing assembler files to be
added to the project.

Create And Add New Assembler File This command will prompt for a file name and path. Once
a file name is entered, the new file with the specified name will be added to the project and is
also opened in the editor as a new file.

39

The Project Views HI-TIDE Views

4.1.1.5 Assembler File Popup Menu

Double clicking on the file will open the file in the editor. If the file was not already opened in the
editor, the file will be opened and placed in a new Workspace tab, with the tab labelled with the
name of the file. If the file was already opened, the editor will bring that file into focus.

Right-clicking on the individual assembler file will select that file and show a popup menu with
the following options:

Remove from project This option removes the file from the current project.

File-specific options...TheFile-specific options...command allows the setting of compiler options
which only apply to the selected file. Any options set for a single file will override the global
options specified for the project. The file-specific options which can be set will be dependent
on the compiler used.

Compile to... TheCompile to... menu contains commands to compile the selected assembler file
to the following formats

Preprocessed fileThis command compiles the selected file to a pre-processed file (.pre).
The resulting file will be the name of the C file but will have a.pre extension.

Object file This option compiles the selected file to a relocatable object file (.obj). The
resulting file will be the name of the C file but will have a.obj extension.

Properties... TheProperties... command opens a dialog that displays properties of the file stored
on disk. See Section4.1.2for more information on theFile Propertiesdialog.

4.1.1.6 Object Files Folder

Right-clicking on theObject Files folder will show a popup menu with the following options.

Add Existing Object File(s) This command allows additional pre-compiled object files to be added
to the project. D not add object files created from C or assembler project files.

4.1.1.7 Object Files

Right-clicking on theObject Files will select that file and show a popup menu with the following
options.

Remove From Project TheRemove From Projectcommand will remove the object file from the
project. If the object file is the standard object file, confirmation will be required before the
file is removed as this is not a common operation.

40

HI-TIDE Views The Project Views

Properties... TheProperties... command opens a dialog that displays properties of the file stored
on disk. These properties are the absolute path of the file, the file’s size in bytes and the time
and date it was last modified. See Section4.1.2for more information on theFile Properties
dialog.

4.1.1.8 Libraries Folder

Right-clicking on theLibraries folder shows a popup menu with the following options.

Import Library This command allows the addition of pre-compiled libraries to be added to the
project.

4.1.1.9 Library Files

Right clicking on the library file selects that file and provides the following options.

Properties... TheProperties...command opens a dialog that displays properties of the selected file
stored on disk. See Section4.1.2for more information on theFile Propertiesdialog.

Remove From Project TheRemove From Projectcommand will remove the selected library file
from the project. If the library file is a standard (compiler supplied) library file, confirmation
will be required before the file is removed as this is not a common operation.

4.1.2 File Properties Dialog

The File Properties dialog displays the properties of a file stored on disk. The information includes
the name of the file, the full directory path of the file, the size of the file and when it was last
modified.

Additional information can also be associated with the file. This information includes the author
of the file, the company and any accompanying notes. The additional information are text saved
with the file and can optionally be filled in. This information is not actually saved with the file but
with the project information and will not affect the file in any way. Figure4.2 shows a typicalFile
Propertiesdialog.

4.1.3 Code Samples View

The File Properties dialog displays sample files that maybe be referenced during program develop-
ment. The files shown are the contents of thesamples directory contained in the selected toolsuite’s
distribution. These files may opened in an Editor view by either double-clicking their icon, or drag-
ging the file icon to a Workspace view.

The files shown in this view are not stored in the project file.

41

The Build Views HI-TIDE Views

Figure 4.2: File properties dialog

4.2 The Build Views

The views within the Build area display information relating to compilation of the project. The Build
views are static views that are always visible and which are managed by HI-TIDE. There are four
tabs, labelled:Error Log , Memory Usage, Psect UsageandBuild Log . Each view is described in
the following sections.

The termsbuild andbuildingused in the following sections refer to either compiling, or compil-
ing and linking of the files in the project. Figure4.3shows the Build area circled.

4.2.1 Error Log View

The Error Log view displays error and warning messages that were issued by the compiler when
building the project. The errors/warnings are displayed in a table with four columns, marked:Type,
File, Line # andDescription.

Double clicking on a error or warning will display the file that contains the error and move the
caret to the line on which the error occurred. Figure4.4 shows a typical error summary in this tab,
showing both warning and error messages.

TheType column displays easy-to-identify images which indicate either an error, warning or a
successful build. A redE shown in the type column denotes an error occurred while building and
the row that it appears on contains the error message that was issued by the compiler. A yellowW

42

HI-TIDE Views The Build Views

Figure 4.3: Build area

in the type column denotes a warning message, issued by the compiler. If the build was successful,
a green tick will be displayed.

TheFile column displays the file where the error or warning occurred. Some errors or warnings,
such as linker errors, may not display a file name.

The Line # column indicates the line number of the file, shown in theFile column, where the
error or warning occurred. Some errors or warnings, such as linker errors, may not display a line
number.

The Description column displays a short description of the error or warning that occurred. A
successful build will yield the textNo Errors. in this column.

4.2.2 Memory Usage View

The Memory Usage view displays memory usage statistics for the compiled program. This tab will
only show the memory statistics if the build was successful, i.e. there were no errors. If errors
occurred during in the build of the project, this tab will be blank.

The memory information that is displayed will be compiler specific. A typical memory usage
output is shown in Figure4.5.

43

The Build Views HI-TIDE Views

Figure 4.4: Error log

4.2.3 Psect Usage View

The Psect Usage view displays psect information for the program sections in the compiled program.
This tab will only show the psect usage if the build was successful , i.e. there were no errors. If
errors occurred during the build of the project, this tab will be blank.

The psect usage information that is displayed will be compiler specific. Figure4.6 shows a
typical psect usage output.

4.2.4 Build Log View

The Build Log view displays detailed information on the build process. The information in the
build log includes the date and time the build occurred, the dependency checking process used by
HI-TIDE, command line options passed to the compiler to build and link the files and any compiler
output.

The build log is updated on each build and will be updated even if errors occurred during building
of the project. For a detailed description of when the build log is updated and the meaning of the
contents of the log see Section8.3.4.

44

HI-TIDE Views The Editor View

Figure 4.5: Memory usage output

4.3 The Editor View

The Editor view is used to display and edit text files in HI-TIDE. The editor provides syntax high-
lighting for C source and header files. The editor also contains cut, copy and paste functionality and
multi-level undo and redo.

The editor also provide a means of debugging source code, by allowing the setting of source-level
breakpoints and tracing the code execution.

The Editor view consists of three regions - the line number gutter, the breakpoint gutter and the
main text area, as shown in4.7.

4.3.1 Editor Gutters

4.3.1.1 Breakpoint Gutter

The Breakpoint gutter, on the very left of the Editor view, is to provide a view of the breakpoints that
have been set for the file showing in the Editor view. The items that can be shown in the breakpoint
gutter are a “red dot”, a “grey dot”, a “green arrow” and a “red arrow”.

A “red dot” denotes that an enabled breakpoint has been set for the source code line on which the
dot is shown. Breakpoints can be disabled without having to remove the breakpoint entirely. A “grey

45

The Editor View HI-TIDE Views

Figure 4.6: Psect usage output

Figure 4.7: Editor view layout

46

HI-TIDE Views The Editor View

dot” denotes that a breakpoint has been set at the source code line but the breakpoint is disabled.
Source code lines that do not have any dots beside them means that there are not breakpoints set for
that source line. Figure4.7shows breakpoints set, breakpoints enabled and disabled.

source-level breakpoints can be managed by right-clicking in the breakpoint gutter and selecting
from popup menu or by double-clicking in the breakpoint gutter at the line of code. Refer to Section
4.3.8for more details on the popup menu. Refer to Sections4.3.9and4.3.11for more details on
managing source-level breakpoints from within the breakpoint gutter.

The breakpoint gutter also provides an indication of the program counter. While stepping the
debugger, a program counter indicator (“green arrow”) will appear in the breakpoint gutter. This
denotes the source statement that will be executed next. If the debugger stops at an assembler
instruction that is within the block of instructions corresponding to a C statement, the arrow will
point to that C statement. If the debugger stops on an activated source-level breakpoint, a “red
arrow” will be displayed to show that the debugger has stopped on a breakpoint.

4.3.1.2 Line Number Gutter

The Line Number gutter is to the immediate right of the breakpoint gutter (see Figure4.7). The line
number gutter displays sequential line numbers with every line of source code. The line numbers
form no part of the source file or program, but can be used to make reference to particular source
lines easier.

4.3.2 Creating Editor Files

A new file can be created by selectingNew File from theFile menu or by clicking on theNew File
button in the standard toolbar. A new Editor view will be created and displayed in a new Workspace
tab. A new file will be opened in the Editor view, in a tab calledUntitledn, wheren is a number.

•

The new file will not be saved to disk until it is explicitly saved. Closing the file without
saving will lose all unsaved data. When the file is saved, a file name and directory of
the file can be set.

A new file can also be created from the project view by right clicking on aC FilesorAssembler Files
folder and selectingCreate and Add menu. This will display an Editor view in a new Workspace
tab and also save the file to disk.

Alternatively, new editor files can be created by dragging theNew Filebutton from the Standard
toolbar to a workspace view. The mouse pointer changes to indicate that the view over which the
pointer sits can be replaced by the editor.

47

The Editor View HI-TIDE Views

4.3.3 Opening Editor Files

There are a number of different ways to open files in the Editor view.
A file can be open by selectingOpen File from theFile menu. This action will display a file

dialog that will allow a file to be selected and displayed. Opening a file through this menu will create
a new view in a new Workspace tab, labelled with the name of the file. The editor also stores a list
of files that have been recently opened.

To open a file that has been recently opened, select the file from theOpen Recently Opened
File submenu in theFile menu. This action will display the selected file in an Editor view in a new
Workspace tab. The Workspace tab will be labelled with the name of the file. The number of files
stored in theOpenRecently Opened Files can be configured in theGeneral Preferencesdialog.

A C or assembler source file that is part of the project can be opened by double clicking on the
file’s icon in the Files view in the Project area. This action will display the selected file in an Editor
view in a new Workspace tab if the file is not already opened. If the file is already opened in an
editor, the editor will locate the first view that contains the file and give focus to that view.

A C or assembler file that is part of the project can also be opened by dragging the file from the
project view and dropping the file onto an existing view. When the file is dropped, the existing view
will be replaced by an Editor view displaying the selected file.

Files can also be reloaded if they are externally modified. By default the user is prompted
to reload the file when it is detected as being modified externally, but this can be changed in the
General Preferencesdialog.

4.3.4 Saving Editor Files

To save a file, make sure the file is in focus and selectSave Filefrom theFile menu. If the file
is a new untitled file, a file dialog will be displayed where a file name and path for the file can be
selected. If the file is not in focus, selecting theSave Filemenu item will have no effect.

SelectingSave All from theFile menu will save the project file and all opened files in all Editor
views.

To save a file under a different name and/or directory selectSave File Asfrom theFile menu.
When this action is selected, a file dialog will be displayed where a different file name and path for
the file can be selected.

Files can also be configured to save automatically when building or when closing a project. By
default, all files are saved when a project is about to be built, but this can be changed in theGeneral
Preferencesdialog.

When a project is closing, HI-TIDE will, by default, prompt to save any modified files. This
action can be changed in theGeneral Preferencesdialog.

48

HI-TIDE Views The Editor View

4.3.5 Closing Editor Files

A file is considered closed when all of the Editor views displaying the file are closed.Editor views
are closed in the usual way: selectingClose Viewfrom theView menu, or by clicking on the close
button in the view’s title bar to close the tab that contains the view.

4.3.6 Printing Editor Files

Afile open in an editor can be printed by focusing the Editor view and then selecting thePrint...
option from theFile menu, or by clicking thePrint button in the toolbar. The Print dialog will
appear, to allow print options to be set. The appearance of the print dialog will be platform specific.

•

If more than one Editor view is opened in a Workspace tab, take care to ensure that the
correct file is focused, otherwise the incorrect file may be printed.

The editor provides additional print options, such as printing line numbers and line wrapping, that
might be useful when printing program code. See Section2.3.1.2for more details on these print
options.

4.3.7 Syntax Highlighting

The Editor view uses a colour coding scheme to highlight the syntax of C files and header files. The
editor detects if the file opened is a C file or a header file by the file’s extension. C files have the
extension.c and header files have the extension.h.

4.3.8 Editor Popup Menu

Right-clicking on any of the Editor views will display the Editor popup menu. The following de-
scribes the items in that menu that are specific to the Editor view. The view control menu items
which will appear in the Editor’s popup menu are described in Section2.2.3.5.

Set Breakpoint Selecting this option sets a source-level breakpoint in the debugger currently se-
lected in HI-TIDE. The breakpoint is set on the line over which the popup menu is raised.
This option is only enabled if a debugger is selected in HI-TIDE, a HEX file is loaded and the
source code actually defines executable assembler instructions. See also Section4.3.9.

Remove Breakpoint This menu item replaces theSet Breakpoint menu item in the popup if the
mouse is right-clicked over a source line that already has a breakpoint set at that location. This
option removes the breakpoint entirely from the debugger.

49

The Editor View HI-TIDE Views

Remove All Breakpoints Clears all of the breakpoints that have been set in the debugger.

Disable Breakpoint This turns off the breakpoint without removing the breakpoint. The breakpoint
can be re-enabled by theEnable Breakpoint option.

Enable Breakpoint This menu item replaces theDisable Breakpoint menu item if the mouse is
right-clicked over a source line that already has a disabled breakpoint set at that location. This
option re-enables the disabled breakpoint.

Disable All Breakpoints This option deactivates all of the breakpoints that are currently set. This
menu item is only enabled if there have been breakpoints set in the debugger. If there are
no breakpoints set, this menu item will be disabled. This option does not affect disabled
breakpoints.

Enable All Breakpoints This menu item activates all of the disabled breakpoints. This menu item
is only enabled if there have been breakpoints set in the debugger. If there are no breakpoints,
this option is disabled. This option does not affect enabled breakpoints.

Cut This menu item performs the editor cut selected text operation See4.3.8.

Copy This menu item performs the editor copy selected text operation See4.3.8.

Paste This menu item performs the editor paste text See Section4.3.8.

4.3.9 Setting Source-Level Breakpoints

Source-level breakpoints can only be set on the line of source code, which generates an instruction
or symbol. Not all C statements generate executable code. An example of such a statement is the
declaration of an unitialized local variable. In some instances, the optimizer may remove or merge
the generated executable instructions associated with source code which may result source code that
does not referencing assembler instructions. Source-level breakpoints cannot be set for these lines.

To set a breakpoint, right-click the mouse over the line where the breakpoint is to be set. The
Editor view popup menu will appear. If a valid source-level breakpoint is available for that line of
source code, theSet Breakpoint option will be enabled in the popup menu. If a valid source-level
breakpoint is not available, then theSet Breakpoint option will be disabled. If a breakpoint is
already set at that line, the optionRemove Breakpointwill appear in lieu ofSet Breakpoint.

A source-level breakpoint can also be set by double-clicking on the breakpoint gutter or the
line number gutter. If a valid source-level breakpoint is available for that line of code, then the
breakpoint will be set. If a valid breakpoint is not available, double-clicking in the breakpoint gutter
or line number gutter for that line will have no effect, that is, the breakpoint will not be set. Double-
clicking on a breakpoint that is already set will activate or deactivate the breakpoint. See Section
4.3.11for more details on activating and deactivating of breakpoints.

50

HI-TIDE Views The Editor View

When a source-level breakpoint is set for a line of source code, a “red dot” will appear in the
breakpoint gutter. This is shown in Figure4.7, where lines 14 and 15 of the source code have enabled
breakpoints set.

When a source-level breakpoint is set, a breakpoint will be set in the debugger at the assem-
bly level at the assembly instruction or symbol that maps to the source code line. The assembly
breakpoint will be shown in the Disassembly view. Refer to Section4.4.1.4for more details on
breakpoints in the Disassembly view.

4.3.10 Removing source-level Breakpoints

To remove a source-level breakpoint, right-click over the breakpoint location and select theRe-
moveBreakpoint option from the popup menu. The red dot or grey dot will be removed when the
breakpoint is removed. Removing a source-level breakpoint will also remove the assembly level
breakpoint that maps to the source-level breakpoint.

To remove all breakpoints, right-click in the Editor view and selectRemove All Breakpoints.
Breakpoints set in both the Editor view and Disassembly view will be removed. Refer to Section
4.4.1.5for more details on removing breakpoints in the Disassembly view.

4.3.11 Activating/Deactivating source-level Breakpoints

Sometimes it is more desirable to disable a breakpoint than to remove the breakpoint altogether.
This allows the user to temporarily deactivate that breakpoint, to later reactivate it, without having
to remember where it was set.

To disable an activated breakpoint, right-click over the source-code line at which the breakpoint
is set and selectDisable Breakpoint from the popup menu. TheDisable Breakpoint menu item is
only available if an activated breakpoint is set at that source code line location. See Section4.3.8
for more details on the popup menu. Alternatively, double-clicking on the activated breakpoint (“red
dot”) in the breakpoint gutter will deactivate the breakpoint. Disabling of the breakpoint will be
denoted by the “grey dot”. Figure4.7shows a deactivated breakpoint at line 17 of the source code.

All breakpoints can be disabled by selecting theDisable All Breakpoints option from the Editor
view’s popup menu.

Breakpoints can be enabled by right-clicking on the Editor view at the source-code line with the
breakpoint and selectingEnable Breakpoint from the popup menu. TheEnable Breakpoint menu
item is only available when the selected line of source code has a disabled breakpoint set at that
location. See Section4.3.8for more details on the popup menu. Similar to disabling breakpoints,
a deactivated breakpoint can also be activated by double-clicking on it. The deactivated breakpoint
(shown with a “grey dot”) will change to a “red dot”.

Deactivated breakpoints can also be activated by selecting theEnable All Breakpoints option
from the Editor view popup menu.

51

The Editor View HI-TIDE Views

Figure 4.8: Find and Replace dialog — find

4.3.12 Searching For Text

The editor can search for text and regular expressions, and replace text using theFind & Replace
dialog. To open the Find & Replace dialog, select theFind menu item from theEdit menu. Figure
4.8shows the dialog with theFind tab selected. Clicking on theFind button will perform a search
of the current Editor view for the text shown in theFind text text field.

Figure4.9shows the dialog with theReplacefunction tab selected. Clicking on theFind button
will search the current Editor view for the text shown in theFind text text field. Clicking on the
Replacebutton will do a find and replace action. That is, any currently found text will be replaced
prior to the dialog locating the next occurrence of the text in theFind text text field.

TheFind text text field accepts regular expressions as part of the search string. A table of the
accepted regular expressions and their meaning is tabulated in SectionD.

4.3.13 Search Options

By default, searches are performed from the current location of the editor caret, left-to right and
downwards in the editor document. The searched text can be part of a word or a whole word and
will be case-insensitive. The search will stop at the bottom of the document.

Options in theFind & Replace dialog allows refinement of the search. As the options are
checkboxes, any combination of the options can be selected. Each option is described individually
in the following sections.

Whole word Selecting this option will restrict the text found to those that are whole words only. For
example, if the search text isin, the possible matches will be:in, In, iN or IN. If this option

52

HI-TIDE Views The Editor View

Figure 4.9: Find and Replace dialog — replace

is unchecked, the search text may also form part of a larger word, such as;int, include or
BIN. Selecting theWhole word search will disable the search forRegular expressionoption.

Match case When this option is selected the search will only find words or expressions that are of
the same case as the search text. For example, searching forstart will not find Start or
START. Unchecking this option will make the search case-insensitive and would, for the same
example search string, matchstart, Start, sTaRt etc.

Regular expressionSelecting this option makes the text in theFind text text field a regular expres-
sion rather than a text string. Selecting theRegular expressionsearch option will disable the
search forWhole word option.

Find backwards By default, the search is performed from the current caret position, going left to
right and downwards in the editor document. If a caret was to the right or below a string or
expression being searched for, it will not be located. Selecting theFind backwards option
changes the search to start from the current caret position, going right-to-left and upwards in
the editor document. Deselecting this option will return it to the default search order.

Wrap at the end of file By default, if searching in default order, the search will stop once the end
of the file is reached. If theFind backwards option is selected, the search will stop at the top
of the file. Selecting the Wrap at the end of file option will allow the search to “wrap” around
the document. That is, if the search is in the default order, once the search reaches the end of
the file, it will start searching from the top of the file again. If theFind backwards option is
selected, the search will restart from the bottom of the file once it has reached the top of the
file.

53

The Debugger Views HI-TIDE Views

4.4 The Debugger Views

Several of the available views are collectively known as the Debugger views. These views interact
with the selected debugger. If no debugger is selected then these views are not applicable and cannot
be displayed. These views include the Disassembly view, Data Memory view, Registers view, and
Variable Variable Watch view, Local Variable Watch view.

If any of these views are displayed and the debugger is changed to no debugger, then the view
will remain in the Workspace area, but become blank, i.e. have no contents, although the title bar and
layout will remain. Blank views may be closed in the usual way, and if a debugger is again selected,
the view display will be updated.

4.4.1 Disassembly View

The Disassembly view provides a view of the executable memory of the target device, as well as a
means to step through the code and set breakpoints in the code. The following sections describe the
Disassembly view in detail.

4.4.1.1 Disassembly View Layout

The Disassembly viewconsists of a tabulated view, with 6 columns (see4.10). Each row of the
view is shown as a disassembled assembler instruction. The Disassembly view always interprets the
memory as executable assembler instructions, even if the bytes located here are program data.

The first column on the left of the view is the Breakpoint gutter. This is similar to the Breakpoint
gutter in the Editor view. The Breakpoint gutter allows setting and viewing of breakpoints, as well
as tracing the program counter. See Section4.4.1.2for more details.

The second column from the left side of the view, labelledAddress, displays the starting address
of the program memory being displayed. As instructions may be of fixed width, the addresses may
not increase linearly.

TheData column shows the target device’s numeric machine code corresponding to the instruc-
tion represented by the line. The codes shown will vary depending on the instruction set of the target
device.

TheLabel column displays any symbol that is associated with the address of the assembled line.
Note that there can be more than one label at the same address. The label that is last read from the
debugging file will be the one displayed. If there is no label available for the assembled line, the
entry in theLabel column will be left blank on this line.

TheOpCodecolumn shows the human-readable interpretation of the machine code instruction.
TheOperandscolumn shows the operands used with the opcode. These are usually displayed

as addresses in hexadecimal format. If a label or register name is found at the referenced address,
the human-readable form of that address is displayed.

54

HI-TIDE Views The Debugger Views

Figure 4.10: Assembler view

The Disassembly view title bar contains a combo box which contains the names of memory
spaces available on the device that is selected. Harvard architecture devices may contain more than
one memory space. The disassembled memory shown in this view will be that from the selected
memory space.

4.4.1.2 Breakpoint Gutter

The breakpoint gutter in the Disassembly view shows the assembly level breakpoints and also traces
the program counter. It also allows the setting, deactivating and activating of breakpoints. The items
that are shown in the breakpoint gutter are a “red dot”, a “grey dot”, a “green arrow” and a “red
arrow”. See4.10.

A “red dot” denotes that anactivatedbreakpoint has been set for the memory address represented
by the assembled line of program memory. A “grey dot” denotes that a breakpoint has been set at
that address but the breakpoint is disabled.

Assembly level breakpoints can be managed by right-clicking in the breakpoint gutter and se-
lecting from the popup menu or by double-clicking in the breakpoint gutter at the assembly line.

The breakpoint gutter also provides a trace of the program counter. While stepping the debugger,
a program counter indicator (“green arrow”) will appear in the breakpoint gutter. This denotes an

55

The Debugger Views HI-TIDE Views

instruction that is to be executed next. If the debugger stops on an activated breakpoint, a “red arrow”
will be displayed to show that the debugger has stopped on a breakpoint.

4.4.1.3 Disassembly View Popup Menu

Right-clicking on any of the Disassembly views will display the Disassembly view popup menu.
The following describes the items in that menu that are specific to the Disassembly view. The view
control menu items are described in Section2.2.3.5.

The Disassembly view can have its colours and font customised. This is set via theFont/colours...
popup menu item. TheFont/colour Settingsdialog is described in Section2.2.3.6.

Set Breakpoint Selecting this option sets an assembly-level breakpoint in the current debugger.
This option is only enabled if a debugger is selected in HI-TIDE and a HEX file has been
loaded.

Remove Breakpoint This menu item only appears (in lieu ofSet Breakpoint) if the mouse is right-
clicked over assembled line that already has a breakpoint set at that location. WhenRemove
Breakpoint is displayed, theSet Breakpointmenu item will not be displayed.

Remove All Breakpoints Clears all of the breakpoints that have been set in the debugger.

Disable Breakpoint This turns off the breakpoint without removing the breakpoint. The breakpoint
can be enabled by theEnable Breakpoint option.

Enable Breakpoint This menu item only appears (in lieu ofDisable Breakpoint) if the mouse is
right-clicked over Disassembly view line that already has a breakpoint set at that location and
that breakpoint is disabled itself.

Disable All Breakpoints This option deactivates all of the breakpoints that are currently set. This
menu item is only enabled if there have been breakpoints set in the debugger. If there are not
breakpoints set, this menu item will be disabled. Selecting this option on breakpoints that have
been deactivated will have no effect.

Enable All Breakpoints This menu item activates all of the breakpoints that are currently set. This
menu item is only enabled if there have been breakpoints set in the debugger. If there are not
breakpoints, this option is disabled. Selecting this option on breakpoints that are activated will
have no effect.

Show PC Selecting this option displays the program memory, in the Disassembly view, starting
from the address of where the program counter is at. See also Section4.4.1.7.

56

HI-TIDE Views The Debugger Views

Figure 4.11: Breakpoints in assembler view

Show C SourceSelecting this option displays the C source code line that was compiled to produce
the compiler instructions displayed. Deselecting this option hides the C source code. Figure
4.10 shows an example of an Disassembly view with C source code showing. Figure4.11
shows an example of an Disassembly view without C source code showing. Refer to Section
4.4.1.8for more details.

Track PC Location The option is a check box option. When the option is checked, the Disassem-
bly view will automatically update the view to follow the location of the program counter.
Unchecking the option will turn off this feature. See also Section4.4.1.7.

4.4.1.4 Setting Assembly Level Breakpoints

Unlike source-level breakpoints, assembly level breakpoints can be set at any assembly line, since
each assembly line is executable. When a source-level breakpoint is set, the breakpoint will also
appear in the Disassembly view. Setting an assembly level breakpoint will not necessarily make the
breakpoint appear in the Editor view, as not all source code will line up with assembly instructions.

To set a breakpoint, right-click the mouse over the line that the breakpoint is to be set. The
Disassembly view popup menu will appear. If a breakpoint has not been set at that assembly line
address, theSetBreakpoint option will be displayed in the popup menu. If a breakpoint is already
set at that line, the optionRemove Breakpointwill appear in lieu ofSet Breakpoint.

A source-level breakpoint can also be set by double-clicking on the breakpoint gutter next to the
address of where the breakpoint is to be set. When the new breakpoint is set, a “red dot” will appear
in the breakpoint gutter (as shown by the line at Address 1110 in Figure4.11).

Double-clicking on a set breakpoint will either activate or deactivate that breakpoint. If a break-
point is set and activated (red), double-clicking on it will deactivate that breakpoint (as shown by

57

The Debugger Views HI-TIDE Views

the line at Address 1116 in4.11). See Section4.4.1.6for more details on activating and deactivating
breakpoints. Double-clicking on a deactivated breakpoint will activate that breakpoint.

4.4.1.5 Removing Assembly Level Breakpoints

To remove an assembly level breakpoint, right-click over the set breakpoint and select theRemove
Breakpoint option from the popup menu. The red or grey dot denoting the breakpoint will be re-
moved. If the assembly line mapped to a line of source code, the breakpoint will also be removed
from the Editor view.

To remove all breakpoints, right-click in the Disassembly view and selectRemove All Break-
points. Breakpoints set in both the Disassembly view and Editor view will be removed. Refer to
Section4.3.10for more details on removing breakpoints from the Editor view.

4.4.1.6 Activating/Deactivating Assembly Level Breakpoints

To deactivate an enabled breakpoint, right click on the assembly line that the breakpoint is set for
and selectDisable Breakpoint from the popup menu. TheDisable Breakpoint menu item is only
available if an activated breakpoint is set at that source code line location. See Section56 for more
details on the popup menu. Alternatively, double-clicking on the activated breakpoint (“red dot”) in
the breakpoint gutter will deactivate the breakpoint. Disabling of the breakpoint will be denoted by
the “grey dot”.

Breakpoints can be disabled, as a whole, by selecting theDisable All Breakpoints option from
the Disassembly view popup menu.

Breakpoints can be enabled by right-clicking on the Disassembly view at the assembly line with
the breakpoint and selectingEnable Breakpoint from the popup menu. TheEnable Breakpoint
menu item is only available when the selected assembly line has a disabled breakpoint set at that
location. Similar to disabling breakpoints, a deactivated breakpoint can also be activated by double-
clicking on it. The deactivated breakpoint (shown as a “grey dot”) will change to a “red dot”.

Deactivated breakpoints can also be activated by selecting theEnable All Breakpoints option
from the Disassembly view popup menu.

4.4.1.7 Displaying Program Counter Location

The Disassembly view is capable of indicating where the program counter is at. While stepping the
debugger, the value of the program counter is indicated by a “green arrow” (as shown by the line at
Address 1100 in4.11). This denotes the instruction that is to be executed next.

When the program counter changes, the “green arrow” will move to reflect the change and show
the new location. The “green arrow” is only updated if the debugger is stepping - single stepping,
continuous (animating) or source-level stepping (C stepping). If the debugger is running, the “green
arrow” will not be updated until the debugger stops.

58

HI-TIDE Views The Debugger Views

While the debugger is stepping, it is possible that the program counter may be at a value that is
not currently displayed in the Disassembly view. There are two ways to display the assembly line
where the program counter is at, if it is out of view.

Right-clicking in the Disassembly view and selecting theShow From PC Valueoption from the
Disassembly view popup menu will display memory in the Disassembly view, with the first assembly
line starting from the address of where the program counter is at.

Alternatively, the Disassembly view is able to automatically track the program counter so that if
it is at a location that is not currently displayed, it will scroll to the location of where the program
counter is at. This is similar to automatically selecting theShow From PC Valueeach time the
debugger steps and the program counter is not displayed. To enable this feature, right-click on the
Disassembly view and select theTrack PC Location option. When enabled, the option will have
a checked tickbox displayed next to the option. When disabled, the option will have an unchecked
tickbox displayed next to it. See Section4.4.1.3for more details on the Disassembly view popup
menu.

4.4.1.8 Displaying C Source Code

The Disassembly view is capable of displaying mixed C code and assembly code within the view.
Each C code line shown is grouped with the block of assembler code that was generated from that
C line. Thus, making the view similar to that of an assembler listing file. The number of assembler
instructions that follow a C line will vary, depending on the C source code itself.

To display C source code in the Disassembly view, right-click on the Disassembly view and
selectShow CSource from the popup menu. The C code is shown in bold type and is placed in the
Data column.4.12shows a typical Disassembly view with C code showing.

4.4.2 Data Memory View

The Data Memory view displays the writable memory of the target device. It also shows the memory
locations that have had their values changed, to aid in debugging. The view is described in detail in
the following sections.

4.4.2.1 Data Memory View Layout

The Data Memory view displays the writable memory in a table format. Each row of the view
displays a range of memory addresses and the ASCII value of each memory address. The number of
addresses displayed in the row varies, depending on the width of the view, as well as the format of
the data to be displayed. Figure4.13shows a typical Data Memory view.

On the very left of the Data Memory view, theAddresscolumn displays the starting address for
each row. The addresses are always displayed in hexadecimal. On the far right, the Data Memory

59

The Debugger Views HI-TIDE Views

Figure 4.12: Source code in assembly view

view always has anASCII column. TheASCII column displays the ASCII value of each of the
memory addresses for that row. The other columns display the contents of each of the memory
locations in the row.

The number of memory columns shown per row will depend on the width of the format of the
displayed data, however the number of bytes shown will always be 16.

The Data Memory view title bar contains a combo box which contains the names of memory
spaces available on the device that is selected. Harvard architecture devices may contain more than
one memory space. The displayed data memory shown in this view will be that from the selected
memory space.

4.4.2.2 Data Memory View Popup Menu

Right-clicking on any of the Data Memory views will display the Data Memory view popup menu.
The following describes the menu items that are specific to the Data Memory view. The view control
menu items are described in Section2.2.3.5.

The following three menu options change the radix of the displayed memory.

Hex Selecting this option displays all memory locations in hexadecimal.

60

HI-TIDE Views The Debugger Views

Figure 4.13: Data memory view

Decimal Selecting this option displays all memory locations in decimal.

Octal Selecting this option displays all memory locations in octal.

The following three options changes the number of bytes displayed per location column in the Data
Memory view.

Byte Selecting this option displays one byte of memory per location column in the view.

Word Selecting this option displays the number of memory locations required to show a word per
location column. The number of bytes per word will depend on the device selected.

Long Selecting this option displays the number of memory locations required to show a long type,
per location column. The number of bytes per long will depend on the selected device.

4.4.2.3 Tracing Memory Usage

Each time the debugger is stopped, the Data Memory view updates the values displayed. The mem-
ory locations whose contents have changed since the debugger was started (stepping, animating or
running) will be highlighted in red. The locations whose contents have not changed are shown in

61

The Debugger Views HI-TIDE Views

the normal font colour set for the view (black by default). Note: to improve performance, only those
memory locations that have been previously displayed in the view are highlighted when changed
and no updates are performed while the debugger is actually running.

4.4.2.4 Modifying Memory

The memory locations in the Data Memory view can be modified by the user. To modify the value
stored at a memory location, click (or double-click) on that location and type the new value into the
memory location cell. Pressingenteror clicking the mouse in any other column will modify the
location. Pressingescapewill cancel the change. Changed values will appear highlighted in red
type.

•

To prevent accidental changes in this view, click the mouse on any column other than
the memory columns to deselect any selected memory location cell.

The new value must be specified as a hexadecimal number. If the new value is not a valid hexadeci-
mal number, no change is made. If the new value is a valid hexadecimal number, but is too large for
the the memory location, it will be truncated to fit. For example, if an attempt is made to change a
16-bit wide word location to the hexadecimal value123456, the location will be assigned the value
3456.

4.4.3 Registers View

The Registers view displays the registers of the target device. The view is described in detail in the
following sections.

4.4.3.1 Registers View Layout

The Registers view contains two columns:NameandValue. TheNamecolumn displays a human
readable form of the register’s name, while theValue column displays the contents of the register.
The register’s contents can be displayed in several radices which are selectable from the view’s
popup menu. Figure4.14shows a typical Registers view.

The Registers view title bar contains a combo box which contains the names of different types
of registers available on the selected device. Typically a device will have CPU registers, e.g. accu-
mulators and status registers; and special function registers — those registers used to control and
monitor on-board peripherals. The registers shown in this view will be those specified by the combo
box selection.

62

HI-TIDE Views The Debugger Views

Figure 4.14: Registers view

4.4.3.2 Registers View Popup Menu

Right-clicking on any of the Registers views will display the Registers view popup menu. The
following describes the menu items that are specific to the Registers view. The view control menu
items are described in Section2.2.3.5.

The Registers view can have its colours and font customised. This is set via theFont/colours...
popup menu item. TheFont/colour Settingsdialog is described in Section2.2.3.6.

The following three menu options changes the radix of the displayed memory.

Hex Selecting this option displays all the memory values in hexadecimal.

Decimal Selecting this option displays the memory values in decimal

Octal Selecting this option displays the memory values in octal.

Binary Selecting this option displays the memory values in binary.

4.4.3.3 Tracing Register Usage

Each time the debugger is stopped, the Registers view updates the values displayed. The registers
whose contents have changed since the debugger was started (stepping, animating or running) will

63

The Debugger Views HI-TIDE Views

be highlighted in red. The registers whose contents have not changed are shown in the normal
font colour set for the view (black by default). Note: to improve performance, only those memory
locations that have been previously displayed in the view are highlighted when changed. Note: to
improve performance, only those memory locations that have been previously displayed in the view
are highlighted when changed and no updates are performed while the debugger is actually running.

4.4.3.4 Modifying Memory

The registers in the Registers view can be modified by the user. To modify the value stored in a
register, click (or double-click) on the desired register’sValue column cell and type the new value.
Pressingenteror clicking the mouse in any other column will modify the location. Pressingescape
will cancel the change. Changed values will appear highlighted in red type.

•

To prevent accidental changes in this view, click the mouse on any column other than
theValue column to deselect any selected register contents cell.

The new value must be specified as a hexadecimal number. If the new value is not a valid hexadeci-
mal number, no change is made. If the new value is a valid hexadecimal number, but is too large for
the the register, it will be truncated to fit. For example, if an attempt is made to change a 16-bit wide
register to the hexadecimal value123456, the register will be assigned the value3456.

4.4.4 Variable Watch View

The Variable Watch view is a view for monitoring non-local program variables. Specifically it can
display all variables that are not defined within a C function. The variables are represented in the
symbolic debug information file, or SDB file. SDB files are generated by the code generator and one
is produced for each C source file in the project.

The view is described in detail in the following sections.

4.4.4.1 Variable Watch View Layout

The Variable Watch view is composed of several columns. Each column has a label at the top of the
view. TheNamecolumn is always present and by default aLocation, Decimal, HEX andASCII
contents column are also displayed. Additional columns can be added via the Variable Watch popup
menu. Figure4.15shows a typical Variable Watch view.

The width of the columns can be adjusted. As the mouse pointer is moved over the divider of
the column name, it changes to a horizontal resize cursor. Click and drag the divider to the required
position. All the available columns in the Variable Watch view are summarized below.

64

HI-TIDE Views The Debugger Views

Figure 4.15: Variable Watch view

Name This permanent field shows the name of the C identifier being displayed. This is not the
symbol that would be used in assembler code to access this variable. An icon is used to show
the type of the variable represented by the symbol and a tree structure is used to indicate
the scope of the variable within the program’s hierarchy. The icons and symbols are fully
described in Section4.4.4.2.

Location displays the location of the variable. The location can either be the hexadecimal address
of the memory that holds the specified memory or a register name.

Type displays the C types of displayed variables.

Decimal/HEX/ASCII/Binary displays the contents of the variable in decimal, hexadecimal, ASCII
character and binary format, respectively. The stringOut of scope is displayed if the vari-
able is not legally accessible at the point at which the program is stopped.

4.4.4.2 Variable Icons and Tree Representation

The Name column in the Variable Watch view uses icons and a tree structure is used to indicate the
scope of the variable within the program’s hierarchy. This view can be used to display the contents

65

The Debugger Views HI-TIDE Views

of both local and global objects so some means of indicating the scope of the variables is required
since there may be more than one variable with the same name.

If any variables added to this view are local to a function or block of code within a function,
a bolded row which contains an object file icon and the object filename is displayed. In a tree
emanating down from this module name is a row which contains a square blue box and name of the
function in which the variable is defined. Parentheses,(), are placed after the function’s name. The
local variables are shown in a subtree emanating down from this function name. Each variable has a
green dot next to its name.

Variables which are defined outside a function, but which arestatic have scope only within the
module in which they are defined. Such variables are shown in the tree emanating from the module
name icon.

Variables defined outside a function and which have external linkage are shown independent of
any tree and as the last rows in the view.

Objects of aggregate type (arrays and structures) can expanded to display the individual elements
or members within the object. Array object names are followed by square brackets,[], and structures
are followed by braces,{}. Double-clicking the name column associated with any other these types
will expand or collapse the contents of the type. The elements of an array are represented by their
numerical index; structure members are represented by their member name. If the structure contains
bitfield variables, a colon and the size of the bitfield is given following its name.

Pointer types can also be shown in an expanded state to reveal the contents of the variable or
object to which it refers. They are initially shown expanded and a red arrow is displayed on the
second line. The contents of the object to which the pointer refers is displayed on this line as well as
its location in memory if the appropriate columns have been set up.

4.4.4.3 Variable Watch View Popup Menu

Right-clicking anywhere in the Variable Watch view window will display a popup menu. The fol-
lowing describes the menu items contained in this menu. The view control menu items are described
in Section2.2.3.5.

Add/Remove Variables Selecting this option will bring up aAdd Watch Variables dialog as de-
scribed in Section4.4.4.4. Variables can be added to, or removed from, this view using this
dialog.

Showcolumn There is one menu item for each column that can be displayed in the Watch view,
except theNamecolumn which cannot be hidden from view, which can be used to show or
hide the column. When a column is visible, a tick is shown next to the menu item.

66

HI-TIDE Views The Debugger Views

Figure 4.16: Add/remove variables dialog

4.4.4.4 Adding and Removing Variables

Source variables can be added to, or removed from, the Variable Watch view at any time via theAdd
Watch Variables dialog as shown in Figure4.16. This dialog is opened by selectingAdd/Remove
Variables menu item from the Variable Watch view popup menu.

On the left of this dialog is a scrollable text box which lists all variables that can be displayed
in this view. This list is searchable. To find a known variable quickly, start typing the name of the
variable into the text field above the list box. The first variable whose name matches the search string
is selected in the list box. Continue typing letters of the variable’s name until the required variable
is selected. The search string is not case sensitive.

A variable is added to the view by selecting it and clicking theAdd selection button. The
component will then appear in the scrollable list box on the right of the dialog, under theWatched
Variables label.

More than one variable may be added in one operation. Select all the variables required whilst
holding down theshift key (consecutive selection) orcontrol key (nonconsecutive selection), and
then click theAdd selectionbutton. All the available components may be added simultaneously by
clicking theAdd all button.

As a program may contain a large number of variables, the number of variables shown in the

67

The Debugger Views HI-TIDE Views

Available Variables list can be limited to variables of a particular type. Checkboxes are present in
the centre of the dialog and have the following meanings.

Show all types Enables all the checkboxes under theVariable Type group.

Primitives Deselecting this option will remove primitive types (basic types such aschar, int etc)
from the list of available types which can be selected and displayed in the view. Conversely,
checking this option will show and allow selection of these variables.

Pointers Deselecting this option will remove all pointer types from the list of available types which
can be selected and displayed in the view. Conversely, checking this option will show and
allow selection of these variables.

Arrays Deselecting this option will remove all array types from the list of available types which can
be selected and displayed in the view. Conversely, checking this option will show and allow
selection of these variables.

Structures Deselecting this option will remove all structure and union types from the list of avail-
able types which can be selected and displayed in the view. Conversely, checking this option
will show and allow selection of these variables.

Absolutes Deselecting this option will remove all variables, regardless of their type, which are
defined as absolutes from the list of available types which can be selected and displayed in the
view. Conversely, checking this option will show and allow selection of these variables.

Locals Deselecting this option will remove all variables, regardless of their type, which are local
(defined within a function) from the list of available types which can be selected and displayed
in the view. Conversely, checking this option will show and allow selection of these variables.

Globals Deselecting this option will remove all variables, regardless of their type, which are global
(defined outside a function) from the list of available types which can be selected and displayed
in the view. Conversely, checking this option will show and allow selection of these variables.

Variables may be removed by opening theAdd Watch Variables dialog by clicking theAdd/Remove
Variables menu item from the Variable Watch view popup menu. The variables already displayed
in the view will be shown in the scrollable list box under theWatched Variables label. This list is
searchable. To find a connected variable quickly, start typing the name of the variable into the text
field above the list box. The first variable whose name matches the search string is selected in the
list box. Continue typing letters of the variable’s name until the required variable is selected. The
search string is not case sensitive.

A variable is removed by selecting it and clicking theRemove selectionbutton. The variable
will then disappear from the list box.

68

HI-TIDE Views The Debugger Views

More than one variable may be removed in one operation. Select all the variables required whilst
holding down theshift key(consecutive selection) orcontrol key (nonconsecutive selection), and
then click theRemove selectionbutton. All the available variables may be removed simultaneously
by clicking theRemove allbutton.

4.4.4.5 Modifying Variables

The variables in the Variable Watch view can be modified by the user. To modify the value stored in
a variable, click (or double-click) on any of the desired variable’s contents columns (Decimal, HEX,
ASCII, binary) and type the new value. Pressingenteror clicking the mouse in any other column will
modify the location. Pressingescapewill cancel the change. Changed values will appear highlighted
in red type.

•

To prevent accidental changes in this view, click the mouse on any column other than
the variable’s contents columns to deselect any selected variable contents cell.

The new value must be specified in the same radix as the selected contents cell displays, e.g. if you
are changing aDecimal display cell, then the new value is assumed to be decimal. If the new value
is not valid, no change is made. If the new value is valid, but is too large for the the register, it
will be truncated to fit. For example, if an attempt is made to change a 16-bit wide variable to the
hexadecimal value123456, the variable will be assigned the value3456.

4.4.5 Local Watch View

The Local Watch view is a view for monitoring local program variables. Specifically it displays all
variables that are defined within a C function, i.e.auto andstatic local objects whose scope is
limited to a function or a block within a function. As these variables cannot be accessed when they
are out of scope, this view automatically updates its contents during program execution with those
local variables currently in scope. Variables cannot be manually added to, or removed from this
view.

The operation of this view is identical to the Variable Watch view which is described in Section
4.4.4, with the exception of information relating to adding and removing variables from the view.

The name of the function in which scope is limited to is displayed in the title bar for this view.

69

The Debugger Views HI-TIDE Views

4.4.6 Virtual I/O View

4.4.6.1 Overview

The Virtual I/O view is like an electronic test area where virtual components can be placed and wired
to the microcontroller being simulated. A range of components is available which allow the operation
of the program to be seen as well as allow the user to interact with the program. For example, an
LED and push button switch might be wired to the peripheral port of the microcontroller. As a
program is simulated, the LED will turn on and off as values are written to the port, and the switch
may be clicked with the mouse which in turn changes values read back from the port. This might
be used to verify that the settings associated with the port, such as the data direction register etc, are
correctly configured.

The Virtual I/O view is primarily intended to be used when the simulator is selected as the
debugger, in fact the simulator is considered as one of the available components that can be wired
and represent the simulated microcontroller. However it is possible to use the Virtual IO without a
simulator connected.

•

To quickly see the operation of the Virtual IO view without having to write or compile
a program, add a push button and an LED and wire them together. As you push the
button, you should see the LED illuminate.

The Virtual I/O view is initially empty when first opened. A grid is drawn over the view which
can be used to help align components on the screen. The items in the Virtual I/O popup menu are
described in the following sections.

4.4.6.2 Virtual I/O View Popup Menu

The view-control menu items for manipulating Workspace views are described in Section2.2.3.5.
The following specific menu items are contained in the Virtual I/O view popup menu.

Add/Remove/Edit Component. . . Clicking this item opens theEdit IO Componentsdialog show-
ing theSelect Componentdisplay. This is shown in Figure4.17. The full details of how to
add and configure components are given in Section4.4.6.3.

Edit Wiring. . . Clicking this item opens theEdit IO Components dialog showing theWire Com-
ponentdisplay. This is shown in Figure . This menu item is only0 accessible after components
have been added to the Virtual IO view. The full details of how to wire components are given
in Section4.4.6.6.

70

HI-TIDE Views The Debugger Views

Figure 4.17: Edit IO Components dialog — Select component

4.4.6.3 Adding Components

Components can be added by opening theEdit IO Components dialog from the Virtual IO view
popup menu. This dialog is illustrated in Figure4.17.

A list of the all the available components is shown in the scrollable list box on the left side of the
dialog, under theAvailable Component label. This list is searchable. To find a known component
quickly, start typing the name of the component into the text field above the list box. The first
component whose name matches the search string is selected in the list box. Continue typing letters
of the component’s name until the required component is selected. The search string is not case
sensitive.

A component is added by selecting it and clicking theAdd selectionbutton. The component
will then appear in the scrollable list box on the right of the dialog, under theAdded Components
label. A component may be added more than once by clicking the Add Selection button as many
times as required.

More than one component may be added in one operation. Select all the components required
whilst holding down theshift key (consecutive selection) orcontrol key (nonconsecutive selection),
and then click theAdd selectionbutton. All the available components may be added simultaneously
by clicking theAdd all button.

To complete the addition of the components, clickOK to close the dialog. The new components
will be shown in the Virtual IO view. Alternatively clickEdit Wiring to save any components added
and go to the next display in theEdit IO Components dialog. Wiring is discussed in Section4.4.6.6.

71

The Debugger Views HI-TIDE Views

4.4.6.4 Removing Component

Components may be removed from the Virtual IO view several ways. Components may be removed
by selecting theAdd/Remove/Edit Component. . . menu item from the Virtual IO view popup
menu. The components already added will be shown in the scrollable list box under theAdded
Components label. This list is searchable. To find a connected component quickly, start typing
the name of the component into the text field above the list box. The first component whose name
matches the search string is selected in the list box. Continue typing letters of the component’s name
until the required component is selected. The search string is not case sensitive.

A component is removed by selecting it and clicking theRemove selectionbutton. The compo-
nent will then disappear from the list box.

More than one component may be removed in one operation. Select all the components required
whilst holding down theshift key(consecutive selection) orcontrol key (nonconsecutive selection),
and then click theRemove selectionbutton. All the available components may be removed simul-
taneously by clicking theRemove allbutton.

A component may also be removed from the Virtual IO view itself. As described in Section , all
components are shown in a small window with a close button on the right. Clicking this button will
also remove the component.

4.4.6.5 Component Properties

Some components have properties that can be changed. Properties might include the number of
items within a component or the polarity of input or output pins. The properties of a component can
be set or changed by opening theAdd/Remove/Edit Component. . . menu item from the Virtual
IO view popup menu. Select the desired component from theAdded Componentslist on the right
of the dialog. Then clickProperties. This will open theEdit Component Propertiesdialog. The
contents of this dialog is different for each component and is described in the section relating to that
component later in this chapter.

More than one component may be customized at the same time. Select all the desired compo-
nents from theAdded Componentslist on the right of the dialog whilst holding down theshift key
(consecutive selection) orcontrol key (nonconsecutive selection),. After clickingProperties, the
Edit component Propertiesdialog will open with one tab for each component. Configure each
component on every tab pane, then clickOK .

4.4.6.6 Wiring Components

After components have been added to the Virtual IO view, they can be connected.
The wiring dialog can be opened by selectingEdit Wiring. . . from the Virtual IO view popup

menu, or by clicking on theEdit Wiring button after having selected theAdd/Remove/Edit Com-

72

HI-TIDE Views The Debugger Views

ponent. . . menu item from the Virtual IO view popup menu. There must be components added
before any wiring can take place.

A connection is made by first selecting a pin of one device and a pin of another device. All added
components listed in two scrollable text boxes on the left and right of the dialog. Select the desired
component from either list. This list is searchable. To find a known component quickly, start typing
the name of the component into the text field above the list box. The first component whose name
matches the search string is selected in the list box. Continue typing letters of the component’s name
until the required component is selected. The search string is not case sensitive.

With a component selected, the pins associated with that component are displayed in scrollable
text box under the components. The pins’ names are display here, along with symbols to indicate
the type of the pin. The symbol showing an arrow pointing toward the pin is an input pin. The
symbol is coloured green if the pin is able to be connected. Some pins do not need connection. Such
pins include the components power supply or peripheral pins which have not been implemented in
HI-TIDE. These pins have greyed out names and pin symbols. The other pin types represented are
output pins, and bi-direction pins which can be either input or output. Select the desired pin from
the list.

Select the device and pin from the other lists in the dialog. Clicking Connect will make the
connection which will then listed in theConnectionslist. A connection is displayed with a form:

device_name.pin_name - device_name.pin_name

The connection will not be allowed if the selected pins are incompatible, e.g. if both are inputs or
both are outputs. Bi-directional pins may be connected to either inputs or outputs, however the code
associated the the peripheral must ensure that the pin is set up in the desired state.

More than one pin can be connected with the same operation. Select the pins from each selected
component using theshift key (consecutive selection) orcontrol key (nonconsecutive selection),
then clickConnect. The number of pins selected for each component must be the same otherwise
no connections will be made. Connections are made from the first (top to bottom) selected pin in
one pin list to the first selected pin in the other list, then the second pin in each list, etc. The pin pairs
must be compatible otherwisenoconnections will be made.

If multiple pins are to be connected, but the order in which the pins should be connected is the
reverse, clickConnect Reverse Orderafter selecting the pins in the usual way. For example, if pins
A andB (top to bottom in that order) have been selected for componentone, and pinsX andY (top
to bottom in that order) have been selected for componenttwo, selecting Connect would make the
connections:

one.A - two.X
one.B - two.Y

but clicking Connect Reverse Order would make the connections:

73

The Debugger Views HI-TIDE Views

one.A - two.Y
one.B - two.X

If more devices need to be added, the button Edit Devices will take you to theEdit IO Components
dialog showing theSelect Componentdisplay after first saving any connections made.

4.4.6.7 Peripheral Components

The following describe the individual components in detail. More than one of the same component,
except for the simulator component, can be added to the Virtual IO view. If more than one compo-
nent of the same type has been added, they can be configured independently. The options for each
component can be specified by selecting the component from theAdded Componentslist in the
Edit IO Components dialog and clicking thePropertiesbutton.

8051simulator The 8051simulator is considered a peripheral component. Adding a simulator is
not mandatory, although is typically done. The simulator component represents the microcontroller
being simulated by the debugger.

The available pins on the simulator correspond to the pins of the microcontroller. Not all pins
can be wired, e.g. the power supply pins and crystal oscillator pins are assumed to be wired in such
as way that the microcontroller would operate normally. Refer to your 8051 datasheet for more
information.

The simulator does not have a graphical representation in the Virtual IO view, nor are there any
options that can be specified for this view.

LCD Display (Liquid Crystal Display) The LCD Display simulates a LCD with a standard 14
pin IDC connector and LCD controller, such as the Hitachi HD44780. Figure4.18shows theEdit
Components Propertiesdialog for the LCD panel. The default options and graphical display can
be seen.

The options are as follows.

Display Mode Specifies the size and configuration of the LCD panel. The number of characters
wide, and the number of rows can be specified.

Background Colour Specified the background colour of the LCD panel.

The LCD panel specifies twelve pins. The power pins are assumed to be pre-wired and do not appear
in the pin list. The pins’ operation is described as follows.

Contrast This input is not connected.

74

HI-TIDE Views The Debugger Views

Figure 4.18: LCD properties dialog

RS (register select) This input pin specifies whether the current read or write cycle is accessing data
in the internal RAM of the LCD (high) or is a control operation (low).

R/W (read / write) This input determines if the current memory access is a read (high) or write (low)
cycle.

E (enable) This input acts as a data strobe. A high-to-low transition indicates that the data bus is
valid.

DB0. . . DB7 Bidirectional data bus pins.

The 8051 simulator doesnotsimulate the data setup and hold times associated with the LCD memory
interface.

LED Panel The LED panel simulates a bank of one or more light-emitting diodes. Figure4.19
shows theEdit Components Propertiesdialog for a bank of four LEDs in a panel. The following
options are available.

Number of LEDs This specifies the number of LEDs that will appear in the panel. Up to 32 LEDs
may be specified.

LED colour This allows selection of the LED colour.

75

The Debugger Views HI-TIDE Views

Figure 4.19: LED properties dialog

76

HI-TIDE Views The Debugger Views

Figure 4.20: Push button properties dialog

Vertical orientation The LED panel can be shown with the LEDs aligned vertically by checking
this option.

Active low inputs With this checkbox in the default unchecked setting, the diode has its cathode
connect to ground and the anode as input. If a high voltage is applied to the diode’s input, the
LED illuminates. Enabling this checkbox connects the diode’s anode to the positive supply
rail and the cathode becomes the input. If a low voltage is applied to the diode’s input, the
LED illuminates.

LED panels have one input pin for each diode in the component. The input is either the anode or
cathode of the diode, and the other pin associated with each diode is connected to either the ground
or positive supply, respectively, depending on the diode’s property settings.

Push Button The push button simulates a single momentary switch. Figure4.20shows theEdit
Components Propertiesdialog for the push button. The following options are available.

Switch has bounceEnabling this checkbox causes the output voltage of the switch to “bounce”
with each press, as would be expected with a mechanic switch. The bounce period can be
specified in theBounce periodspin box. This period is specified in instruction cycles.

Output when pressed This option specifies the output voltage when the switch is pressed. Chang-
ing this setting changes the virtual wiring for the switch. Selecting High will result in the
output pin of the switch normally at a low voltage, but will become high whilst pressed.

Push buttons have one output pin.

77

The Debugger Views HI-TIDE Views

78

Chapter 5

HI-TIDE Projects

HI-TIDE encapsulates various aspects of an application being developed. This information is called
a project and is saved on disk as aproject file. The state and views of the project are part of the
information saved to disk and are restored upon reloading that project.

This chapter explains what information is stored in a project and how to create, open and manage
projects within HI-TIDE.

5.1 Toolsuites

A toolsuiteis a set of HI-TECH components with which projects can be created, built and executed.
A toolsuite typically includes the following tools.

• Compiler options and driver

• Debugger options and drivers

• Code wizard options

A project file is specific to both a toolsuite and the toolsuite’s version.
The components of a toolsuite are contained in files that are shipped with a compiler package

and a toolsuite has the same version number as the compiler with which it is distributed.
As more recent versions of a toolsuite are installed, a HI-TIDE project can be updated to make

use of the new toolsuite, see Section5.6.1for information on changing toolsuite versions. A new
toolsuite version may contain new devices that can then be selected, new compiler options, new
features in the Code wizard or even totally new debuggers and debugger options. Once the project
file has been updated to use the new toolsuite, these new features will become available via the

79

Project Information HI-TIDE Projects

menus and dialogs. A project converter is automatically run when you update toolsuite version to
maintain the project file, but as new options may be available, the options associated with all the
components should be reviewed.

It is also possible to change the toolsuite associated with a project, e.g. a project set up for HI-
TECH C for MSP430 could be changed to HI-TECH C for ARM. No project conversion takes place
when changing toolsuite, but those settings which are common to both toolsuites will be preserved
across the change. See Section5.6.1for more information. With a different toolsuite set up with a
project, you can then select a different family of devices and debuggers available for these devices.

5.2 Project Information

HI-TIDE’s project files can be given any file name with the extension.hprj.
A project keeps track of all the files that are associated with the application, as well as what

options are selected. Information specifying the graphical layout of the views are also saved in the
project. Also saved in the project file are the tools used with the project. This includes the toolsuite,
its version, compiler and debugger used.

Some configuration information is not considered to be part of a project. This information relates
to general preference options for HI-TIDE. This information is stored in separate files in the .hitide
directory placed in the home directory of the user. It specifies such things as the general preferences,
the size of the HI-TIDE window, its relative screen position, recently opened files and plugin settings.

5.3 Creating A New Project

To create a new project, selectNew Project from theProject menu. TheProject wizardwill then be
displayed. The Project wizard will present a series of dialogs collecting the information needed to
create a new project. If there was a project opened prior to selecting the menu item, it will be saved
(depending on the preferences set - see Section2.3).

•
When the project is created, it will then be displayed in HI-TIDE. The new project will
not be saved to file until it is explicitly saved by selecting Save Project from the Project
menu.

5.3.1 Project wizard

The Project wizard is broken up into seven screensproject filename, project toolsuite, target device,
target device package, compiler, debuggerandproject source files.

80

HI-TIDE Projects Creating A New Project

Figure 5.1: Project wizard — project details

5.3.1.1 Project Filename

The project filename screen is where the name of the project file and the directory is set. TheProject
Name textfield is where the name of the project is specified. TheProject Location text field is
where the directory of the project is specified. The complete path of the project filename is shown
underneath in theProject File Path field. The path of the project file will be updated as the name or
directory is entered. See5.1.

When the project file is saved, if the name of the project file does not have the.hprj extension,
HI-TIDE will automatically append this extension to the filename.

The Project Location field specifies the directory where the project file and other compiler
generated files are to be placed. The directory can be entered manually or can be selected via the
directory chooser by clicking on theBrowse Directories(“ ...”) button.

•
The name of the project must be filename only and not a path. The file name must not
include any of the following characters:! @ # $ % ^ & * () - + = | , < > :
; { } [] / \

When a filename is entered, theNext button will be enabled. When the next button is selected, the
Project wizard will check the validity of the filename. If the filename is not a valid filename, the
Project wizard will notify the user. If the filename points to a file that already exists, the user will be
asked whether the file should be overwritten.

81

Creating A New Project HI-TIDE Projects

Figure 5.2: Project wizard – toolsuite selection

5.3.1.2 Project Toolsuite

The project toolsuite selection screen is where a toolsuite to be used for the project is selected.
The left column of the project toolsuite screen, labelledSupported Tools, contains the toolsuites

available for selection. Selecting a toolsuite from the list will populate the versions list, labelled
Supported Versions, on the right hand side. The versions list shows the versions of a toolsuite that
are installed and are available for selection.

•
The Supported Versions list only displays the toolsuite version supported by that version
of HI-TIDE. A user may have more toolsuites installed that what is displayed, but those
versions not displayed are not supported by HI-TIDE and should not be used.

A typical project toolsuite selection screen is show in Figure5.2.
Although a toolsuite is required to be selected to create a new project, it can be changed at

anytime once the project is created. See section5.6.1 for more details on changing the project
toolsuite.

When a toolsuite is selected from theSupported Toolslist, the Project wizard will automatically
highlight the latest version of the toolsuite in theSupported Versionslist.

Selecting an item from the versions list will enable theNext button. Clicking on theNext button
will prompt the Project wizard to proceed to the next screen. Clicking on thePrev button will return
to the previous screen in the Project wizard.

82

HI-TIDE Projects Creating A New Project

Figure 5.3: Project wizard — target device

5.3.1.3 Device Selection

The device is the chip that is to be used for the project. Although the device must be selected to
create a new project, it can be changed at any time once the project has been created. See Section
5.6.2for more details on changing the project target device.

The device selection screen contains a table with the chips. The chips shown in the list are the
chips available and supported in the version of the selected toolsuite. The data shown in the device
selection screen may differ depending on specific toolsuite, but will mainly consist of the name of
the chip, its manufacturer (if the chips are produced by more than one manufacturer) and its various
device memory. Figure5.3shows a typical target device selection screen.

When a chip is selected, theNext button will be enabled. Clicking on theNext button will
proceed to the next screen in the Project wizard. Selecting thePrev button will return to the previous
screen in the Project wizard.

5.3.1.4 Device Package

The device package selection screen is used to select the packaging type of the target chip. The chip
package may affect things such as thecode wizardor the simulator as the chips outputs may map
to different pins in different packages. Although a chip package must be selected to create a new
project, it can be changed at any time. See Section5.6.3for more details on changing the device
package types.

The device package selection screen consists of a list of the packages available for the selected

83

Creating A New Project HI-TIDE Projects

Figure 5.4: Project wizard — device package

target device. Figure5.4shows a typical target device selection screen.
When a package type is selected, theNext button will be enabled. Clicking on theNext button

will proceed to the next screen in the Project wizard. Selecting thePrev button will return to the
previous screen in the Project wizard.

•

If there is only one device package type, it will by automatically highlighted and the
Next button will be enabled as a result..

5.3.1.5 Compiler Selection

The compiler selection screen allows the user to select the compiler from the toolsuite to be used
with the project. The compiler is closely tied in with the toolsuite and cannot be changed without
changing toolsuite. For example if a project was using a compiler version 9.0 and was to be compiled
using version 9.20, the toolsuite will have to be changed to version 9.20 to use the compiler from
that version. Figure5.5shows a typical compiler selection screen.

•

If there is only one compiler available for selection from the toolsuite, the Project wizard
will automatically select the compiler and skip the compiler selection screen, This will

84

HI-TIDE Projects Creating A New Project

Figure 5.5: Project wizard — compiler selection

be the case with most toolsuites.

5.3.1.6 Debugger Selection

The debugger selection screen allows the selection of the debugger to be used with the project. A
debugger must be selected for the project, but can be changed at any time, once the project is created.
Refer to Section5.6.4for more information on changing the project debugger.

The debugger selection screen is similar to both the package type selection and compiler selec-
tion. Figure5.6shows a typical debugger selection screen.

The debugger list shows the debuggers that are available in the selected toolsuite for the selected
target device. Some toolsuites (especially later versions) may have more debuggers available than
others. The debuggers shown are also affected by the selected device. A debugger may support one
device over another.

•

At the least, the list of debuggers will always contain the item No Debugger. Selection
of the No Debugger will set the project to, not having a debugger and the debugger
related menu items and toolbars will be disabled.

85

Creating A New Project HI-TIDE Projects

Figure 5.6: Project wizard — debugger selection

When a debugger (orNo Debugger) is selected, theNext button will be enabled. Clicking on the
Next button will proceed to the next screen in the Project wizard. Selecting thePrev button will
return to the previous screen in the Project wizard.

5.3.1.7 Project Source Files

The project source files selection screen is to allow the quick addition of source files into the project.
This step is not necessary in the creation of the project, and hence theFinish button is enabled
without having to add any files.

To add files to the project, click on theAdd button. This will display the file chooser dialog for
selection of files. Files can be selected one at a time or multiple files can be selected from this dialog.
When the files are selected from the file chooser dialog, they will be added to the list of source files
in the project source files screen. The order in which the files are added will be the order that they
appear in the list. Figure5.7shows a typical source files selection screen with some files added.

To remove files from the list, select the file to be removed. This will enable theRemovebutton.
Clicking on theRemovebutton will delete the file from the source files list.

•

The order in which the files appear in the source files selection screen is the order in
which the files will be added to the project. This will also be the order that they appear
in the project view. This is also the order in which the files are compiled and linked.

86

HI-TIDE Projects Managing Projects

Figure 5.7: Project wizard — source file selection

As it is not necessary to select source files in the creation of a new project, theFinish button is
always enabled. Clicking on theFinish button will close the Project wizard and the new project will
be created and opened in HI-TIDE. Clicking on thePrev button will return to the previous screen in
the Project wizard.

5.4 Managing Projects

5.4.1 Opening Existing Projects

An existing project can be opened by selectingOpen Project... from theProject menu. When this
menu is selected a file dialog will be shown allowing a project file to be selected.

A recently opened project can be opened quickly by selecting from theRecent Projectssubmenu
in theProject menu. The submenu will display the paths to a number of project files that have been
recently opened. Selecting a project file will open that project in HI-TIDE. The number of files
stored in this menu can be configured in theGeneral Preferencesdialog.

HI-TIDE, by default, will load the last opened project when starting. This behaviour can be
configured in theGeneral Preferencesdialog as well. See Section2.3 for more information on
setting and changing the preferences.

87

Managing Project Source Files HI-TIDE Projects

5.4.2 Saving Projects

To save the state of the project to disk, selectSave Projectfrom theProject menu. Selecting the
SaveAll menu item from theFile menu orSave All button from the standard toolbar will also save
the project file, as well as all opened editor files.

To save the opened project file under a different filename and/or directory, select theSave Project
As from theProject menu. When theSave Project Asmenu is selected a file dialog will be shown
which will allow a new file name and/or directory to be selected. This will change the name of the
project currently opened to the new name. The title of the project in the HI-TIDE window will also
be updated to show this change. The output node in the project view will also be updated.

5.4.3 Closing Projects

To close a project, selectClose Projectform theProject menu. Opened projects will automatically
be closed when exiting HI-TIDE.

Saving of project files when a project is closed can be configured in theGeneral Preferences
dialog. By default if the project has been modified and is about to be closed, a prompt will appear
requesting if the project file should be saved. Other settings are a project file should always be saved
when it is closed or a project file should never be saved when it is closed.

5.5 Managing Project Source Files

The managing of project source files, and library files, can easily be done via the project view or file
menus. Through the project view, the files are mainly managed by right-clicking on the file or folder
and using the associated popup menu.

The options available include adding and removing source files from the project, compiling
of files to intermediate files and setting of the compiler options for the files. These functions are
described in detail in the following sections.

5.5.1 Adding Files To The Project

There are several methods of adding files to the project. The files that can be added to a project
include C or assembler source files (.c or .as), library files (.lib) and object files (.obj). Source
files can be existing or new files can be created and added. The methods of adding source files are
described in the following.

•

A project cannot have two or more files (source or object) with the same filename (not
including extension). When adding a file, if a file with the same name is already in the

88

HI-TIDE Projects Managing Project Source Files

project exists, the second file will not be added and HI-TIDE will issue an error

The first method is the addition of existing source files to the project via the source file selection
screen in the Project wizard, when creating a new project (see Section5.3.1.7). This method adds
the source files into the project at the time when the project is created.

Another method of adding existing source files to the project is through the use of the popup
menu in the project view. Right clicking on theC Files folder orAssembler Filesfolder will show
the popup menus for those folders respectively. Existing C or assembler files can be added by
selectingAdd Existing C File(s)... orAdd Existing Assembler File(s)... menu items from the
respective popup menus. This will open a file dialog to select any number of files. The files will
then be added in to their corresponding folders. When using theAdd Existing C File(s)... option,
non-C files cannot be added. Similarly, when using theAdd Existing Assembler File(s)...option,
non-assembler files cannot be added.

Addition of existing source files can also be done through theProject menu, using theAdd Files
To Project... menu option. This is similar to right-clicking and using the file folder popup menus,
except that it is not file specific like the folders. Both C and assembler files can be selected from the
file dialog and added. HI-TIDE will sort the file into their appropriate folders.

Alternatively, if a file is opened in the file editor, and a file of the same name is not already
included in the project, the file can be added to the project by selecting theAdd File To Project
option from theProject menu. This menu item will only be enabled if the file is valid for addition
to the project.

A new source file can be created and added to the project in one action by the file folders’ popup
menu. If a new C file is to be created and added to the project, right-click on theC Files folder and
select the popup menu itemCreate And Add New C File. This will open a file dialog, prompting
for the filename to save the new file as. SelectingSave in the file chooser dialog will create the
file and add that file to the project. The file will also be opened in an editor view and added to the
workspace in a new workspace tab labelled as the filename.

Existing object or library files can be added to their respective file folders by right-clicking on
theObject Files folder orLibraries folder. Selecting theAdd Existing Object File(s)... menu item
or Add Existing Library File(s)... menu item (from the respective popup menus) will open a file
dialog for selection of the existing object files or library files. The file dialog supports selection of
one or more file at a time, but the files must be of the correct type - i.e. only .obj files can be selected
for object files and .lib files can be selected for libraries. Clicking theOpenbutton in the file dialog
will import the selected file(s) to the project.

With all of the file folders, pressing the Insert key on the selected file folder will open the file
dialog to add existing files of the folder type. This is the same as the selecting theAdd Existing ...
file type popup menu option for each of the respective folders.

89

Managing Project Source Files HI-TIDE Projects

5.5.2 Removing Files From The Project

To remove one or more files from the project, select the file that are to be removed from the project
view by right-clicking on it and selectRemove From Projectfrom the popup menu.

To select more than one file at a time hold down thecontrol key (for non-contiguous selection)
or Shift key (for contiguous selection) when selecting the files. Right-clicking over the files after
they have been selected will trigger the popup menu. SelectRemove From Projectto remove the
selected files.

•

The file folders cannot be removed from the project. Right-clicking on the folders only
allow files to be added.

Files can also be removed by pressing the Delete key on the selected file.

5.5.3 Changing Compiler Options

Compiler options can be set on a global basis or per file basis. Global options are handled by the
output file and apply to all files that do not havefile specific optionsset. Global compiler options
are changed through theGlobal Compiler Optionsdialog. This dialog can be opened by double
clicking on the output node in the project view or by right-clicking on the output node and selecting
Global Compiler Options... from the popup menu. TheGlobal Compiler Optionsdialog can also
be displayed by selectingGlobal Compiler Options... from theProject menu.

Project source files can have compiler options that are specific to the file and different to the
global compiler options. These options are referred to asfile specific options. By default when a C
or assembler file is added to the project, global compiler options are applied to the file and used for
that file when it is compiled. To change the options of a file to be file-specific, right-click on the file
node in the project view and selectFile Specific Optionsfrom the popup menu. This will show the
File Specific Optionsdialog, which is very similar to theGlobal Options Dialog, where the options
can be set for that file only. To switch between using file-specific options and global options, select
or deselect the “Use customoptions” checkbox in theFile Specific Optionsdialog.

5.5.4 File Properties

HI-TIDE can display the properties of files in a project in theFile Propertiesdialog. The properties
tah are displayed include the filename, file path, file size and when a file was last modified.

To open aFile Propertiesdialog, right-click on the file in the project view and selectProperties
from the popup menu of that file node. Figure4.2shows a typicalFile Propertiesdialog for a file.

90

HI-TIDE Projects Changing Project Settings

5.5.5 Dependency Files (Header Files)

Dependency files are automatically handled by HI-TIDE. Dependency files are files, usually header
files, that are #included into another file. When a file is added to the current project, or it is compiled,
HI-TIDE does a scan for the dependencies of this file, and the dependencies are added to the project.

To view the dependencies of a particular file, right-click on that file node in the project view. If
the file has dependency files, theOpen Dependencymenu item in the popup menu will be enabled.
If the file does not have dependency files, the menu item will be disabled. TheOpen Dependency
option is a sub-menu, which expands to list the dependency files of that particular file. Clicking on a
dependency file will open the file in an editor view in a new workspace tab. The workspace tab will
be labelled with the name of the file.

5.6 Changing Project Settings

When a project is created, certain options were selected in order to create a project. These included
the toolsuite, the target device to be used, the package type of the target device and the debugger.
Once the project is created, all these options can be changed. The following describe how to change
these settings.

5.6.1 Changing Toolsuite

Toolsuite is an essential part of a HI-TIDE project, and a project must always have a toolsuite set.
The toolsuite determines the chips that are available for the project as well as the tools to use to
compile and debug the project. A toolsuite must be selected when creating a project, but can be
changed at any time.

Once a toolsuite is selected for a project, a toolsuite from a different chip architecture type cannot
be selected to replace the original. Only toolsuites of the same architecture type can replace the
original. This allows you to change between different versions of toolsuites from the one toolsuite
family.

To change toolsuites, select theChange Toolsuite...menu item from theProject menu. ASelect
Toolsuite dialog will appear to allow selection of a different toolsuite. The dialog will be similar in
appearance to the project toolsuite selection screen in the Project wizard (see Figure5.2).

The list of Supported Toolslist, however, will only display the name of the currently selected
toolsuite and it will be highlighted as well. TheSupported Versionslist will display the different
toolsuite versions available for selection. The currently selected toolsuite version should be high-
lighted to indicate that it is currently selected.

Clicking on theFinish button will set the newly selected toolsuite as the toolsuite to use (if it has
changed). SelectingCancelwill cancel the operation and restore the current toolsuite.

91

Changing Project Settings HI-TIDE Projects

•

When a new toolsuite is selected, it may not have support for the currently selected
target device, especially if the newly selected toolsuite is older in version number to the
currently selected toolsuite. A different target device and device package type may need
to be selected as a result. Likewise, the newly selected toolsuite may not support the
debugger previously selected. A different debugger may need to be selected. HI-TIDE
will notify the user in all cases where the previous selections cannot be restored when a
new toolsuite is selected.

5.6.2 Changing Device

A project must always have a target device selected, however, the target device can be changed.
This can be done by selectingChange Device...from theProject menu. This will display theSelect
Devicedialog, to select a different target, which is similar in appearance to the target device selection
screen in the Project wizard (see Figure5.3). The dialog should display the selected chip at the top
of the view. The list of chips available for selection will be the devices supported by the selected
toolsuite.

The target device can also be changed by double clicking on the target section of the status bar
(see Section3.3). This will also display theSelect Devicedialog.

•

The package type for the current target device may not be supported in the new device.
Selecting a new device may also require selection of a package type for the new device.
HI-TIDE will notify the user of this requirement. Likewise, the debugger selected for
the current device may not support the new device. A different debugger selection may
also be required on selection of the new device. HI-TIDE will also notify the user of
this requirement.

Clicking onFinish will set the newly selected chip as the target device (if it has changed). Clicking
onCancelwill restore the current device.

5.6.3 Changing Device Package

Some tools can be affected by the device package type. An example could be the simulator, where
it simulates the output of the device, and the output may map to different pins, depending on the

92

HI-TIDE Projects Changing Project Settings

package type of the target device. Target package types can be changed to accommodate such needs
when dealing with chips that have different package types.

To select a different package type, select theChange Package...menu item from theProject
menu. TheSelect Device Packagedialog will appear to allow the selection of a different package.
The dialog will be similar in appearance to the target device package selection screen in the Project
wizard (see Figure5.4).

Clicking onFinish will set the newly selected device package type (if it has changed). Selecting
Cancelwill restore the current package type.

5.6.4 Changing Debugger

To change debuggers, select theChange Debugger...menu item from theProject menu. This will
display theSelect Debuggerdialog. The dialog is similar in appearance to the debugger selection
screen in the Project wizard (see Figure5.6).

Unlike the toolsuite, target device or device package type, a debugger does not need to be set for
the project. This can be set by selecting “No Debugger” from the debugger list.

The debugger can also be changed by double-clicking on the debugger name of the status bar
(see Section3.3). This will display theSelect Debuggerdialog.

Clicking on Finish will set the newly selected debugger as the debugger to use. Clicking on
Cancelwill restore the current debugger.

93

Changing Project Settings HI-TIDE Projects

94

Chapter 6

C-Wiz — The Code Wizard

An advanced feature integrated with the HI-TIDE toolkit is C-Wiz, the Code wizard. This is a graph-
ical development tool designed to minimize the burden associated with setting up microcontrollers
and their on-board peripherals. Instead of searching through manufacturer’s data sheets to learn the
bit manipulations needed by each peripheral in order to get it to work, you can simply run the Code
wizard and let it do the job for you. The dialog lets you select which peripherals you intend to use
and describe how you would like each one to operate. The Code wizard translates these settings into
corresponding C code that can be executed on your selected target device to set up the peripherals to
the given specifications.

6.1 Starting the Code Wizard

As the Code wizard is a plug-in tool to HI-TIDE, it can be started by clicking theCode Wizard
button in the user-tools toolbar. Alternately, theTools menu contains an item calledCode Wizard,
selecting this item will also open the8051 Code Wizarddialog. Figure6.1 shows the HI-TIDE
dialog indicating both methods to start the Code wizard.

If the button and menu item are deactivated, this indicates that the Code wizard doesn’t support
the microcontroller selected in the HI-TIDE project.

6.2 The 8051 Code Wizard Dialog

The graphical interface of the Code wizard is composed of five smaller panels inside a dialog. A
typical screenshot of dialog is given in Figure6.2.

The panels which make up the8051 Code Wizarddialog are described as follows:

95

The 8051 Code Wizard Dialog C-Wiz — The Code Wizard

Figure 6.1: Starting the Code wizard from within HI-TIDE

96

C-Wiz — The Code Wizard The 8051 Code Wizard Dialog

Figure 6.2: A typical Code wizard dialog

97

The 8051 Code Wizard Dialog C-Wiz — The Code Wizard

6.2.1 Peripheral Selection Panel

The upper-left-most panel of the8051 Code Wizarddialog is the Peripheral Selection Panel. This
panel lists all of the configurable peripherals that are available to the microcontroller selected in the
current HI-TIDE project.

Each peripheral in this list will have a checkbox toactivate(indicate the peripheral is to be
initialized) and a button used toselectthe peripheral. When a peripheral is selected its configurable
settings are displayed in the Configuration Panel.

6.2.2 Configuration Panel

The Configuration Panel occupies the main central area of the8051 Code Wizarddialog.
This panel displays the configurable settings available for the currently selected peripheral. Ini-

tialization code is generated for each peripheral based on the settings made in the Configuration
Panel.

6.2.3 Messaging Panel

The panel to the lower-left of the dialog is the Messaging Panel. The Code wizard will use this panel
to report any warnings or messages that result during the generation of initialization code.

In most cases these messages will result from conflicts which arise when multiple peripherals try
to access the same resource. Such messages are interpreted in Section6.9of this manual.

The newest messages appear at the top of the Messaging Panel. If the list of messages grows too
long, it can be cleared at any time by pushing theClear messagesbutton.

6.2.4 Generated Code Display

The right-most panel contains a large text area used to display the generated initialization code.
The code in this window is dynamically generated and can be seen changing in accordance with
adjustments in the Peripheral Selection Panel and Configuration Panel.

Controls are available to switch between viewing the generated code for the whole system or
viewing the specific code generated for the currently selected peripheral. A comparison of the dif-
ferent views for the Generated Code Display is shown in Figure6.6.

6.2.5 Control Panel

At the bottom of the8051 Code Wizarddialog is a small panel with controls which allow the
generated code to be output to a file. The facility is also available to automatically import this file
into the current HI-TIDE project. Also within this panel is theAdvanced options. . .button as well
as theOK andCancelbuttons used to exit the Code wizard.

98

C-Wiz — The Code Wizard Selecting Peripherals

Figure 6.3: The Advanced Options dialog

6.2.6 Advanced Options Dialog

Apart from those options available in the Control Panel the Code wizard has various options that
can be configured using theAdvanced Optionsdialog. This is shown by clicking theAdvanced
Options. . . button within the Control Panel of the8051 Code Wizarddialog. The layout of the
Advanced Optionsdialog is shown in Figure6.3.

The advanced options that can be configured include:

6.2.6.1 Enable dependency handling

This checkbox enables you to toggle the Code wizard’s automatic handling of shared resources
(dependency handling). This is discussed further in Section6.9.

6.2.6.2 Initialisation function name

This text field allows you to specify the name of the function the Code wizard will create when
saving a file. By default the function name is set toinit. See Section6.6 for more information
about saving to files.

6.3 Selecting Peripherals

Microcontrollers can contain a large number of internal peripherals, so it would be unnecessary and
wasteful to generate initialization code for peripherals that you don’t intend to use. For this reason
the Code wizard allows you to select which peripherals you require code to be generated for. This is
done via the Peripheral Selection Panel by ticking the checkbox associated with each peripheral. As
this box is ticked, its corresponding selection button will be activated. Pushing the selection button

99

Configuring Peripherals C-Wiz — The Code Wizard

Figure 6.4: Peripheral selection panel of C-Wiz

will select the peripheral so that its setting are displayed in the configuration window. The Peripheral
Selection Panel is illustrated by Figure6.4.

In this figure,USART 1 is a peripheral that has been deactivated. Its checkbox is clear and its
selectionbutton deactivated. No code will be generated forUSART 1. Timer A has been activated
so initialization code will be generated for this peripheral.USART 0 is activated and selected, this
means that code will be generated forUSART 0 and its settings will presently be displaying in the
Configuration Panel.

It is important to understand that if a peripheral is deactivated in the Code wizard, that does
not guarantee that the peripheral will be inactive in your target system. If a peripheral receives no
initialization code it will operate in its default state, which in some cases might be active.

Code generation for each peripheral can be activated or deactivated at will, with the exception
of the Core module. Every microcontroller supported by the Code wizard will have a configurable
module calledCore. Initializing the Core module is required for setting up system-critical attributes
such as oscillator settings, global interrupt control or memory configuration.

6.4 Configuring Peripherals

As mentioned earlier, the Configuration Panel of the Code wizard can present the initialization op-
tions for each of the device’s peripherals in turn. To configure initialization code for a selected pe-
ripheral it must be activated (via the checkbox in the Peripheral Selection Panel) and selected. The
Configuration Panel only presents the settings that are available for the peripheral that is currently
selected.

100

C-Wiz — The Code Wizard Viewing Generated Code

Figure 6.5: Typical I/O port configuration panel

When the Configuration Panel display is displaying settings for a particular peripheral, it is only a
matter of adjusting the selection components to describe your system’s needs. A brief description for
each setting will appear in a floating text box if the mouse is left to float over a selection component
for more than a second. If a selection component is deactivated or unavailable, the floating text box
will give the reason why the setting is unavailable. In Figure6.5, the floating text box explains that
all selections for I/O Port 2, bit 5 are unavailable because this I/O line is already in use by USART 0
(see Section6.9for information on shared resources).

As each setting is adjusted, the consequential code is automatically updated in the Generated
Code Display.

This process can be repeated for all of the peripherals that require to be initialized.

6.5 Viewing Generated Code

Program code generated by the Code wizard is shown in the Generated Code Display. Changes made
in the Configuration Panel will be dynamically updated in the Generated Code Display.

Generated program code is fully commented so that the selected modes/settings encoded with
each instruction can be clearly identified. This also makes for easier program maintenance if there

101

Viewing Generated Code C-Wiz — The Code Wizard

Figure 6.6: Comparison of generated code display modes

is a need to modify the initialization code at a later date.

Radio button controls below the text area are used to select how the generated code will be
presented. If view is set toAll code, one largecode viewarea will show the commented initialization
code for all of the activated peripherals. A scroll bar can be used to roll the view over the entire block
of generated code.

If the Current module codeoption is selected, the output display will split into two code views.
The code view shows initialization code that affects multiple or all peripherals (common code). The
lower code view shows initialization code that is specific to the currently selected peripheral. The
border between the peripheral and common code views can be dragged by the mouse to adjust the
ratio between the two views. These two views are compared in Figure6.6.

102

C-Wiz — The Code Wizard Saving to Files

Figure 6.7: Control panel of C-Wiz

6.6 Saving to Files

If it is desired to save a copy of the generated initialization code to a file, this can be done via the
Control Panel. To save the generated code to a file specify the path and file name in theOutput
source filetext field, then press theSavebutton. To search your file system for a specific directory,
press theSave As. . .button. This opens a dialog box to allow you to search your file system to find
a suitable directory to save the generated code to.

If the Import source file to project checkbox is ticked when either theSaveor Save As. . .
button is pushed, the source file named in the text box will also be imported to the current HI-TIDE
project.

The saved file will contain the initialization code and comments for all peripherals that have
been activated in the Code wizard. This is true even if the Generated Code Display has been set to
view only the code for the current peripheral. When the code is saved, the code wizard will create a
function definition, with a name specified in theAdvanced Optionsdialog (see Subsection6.2.6),
which will contain the generated code. A small sample of the generated code is as follows:

#include <msp430.h>
/* Initialisation code generated for the HI-TECH Software

MSP430 C compiler by the HI-TIDE Peripheral Wizard */
void init(void)
{
/****** The general purpose, common code ******/
/* Oscillator fault interrupt disabled
* UART0 interrupts enabled
*/
IE1 = 0b11000000;
/* Basic timer interrupt enabled
* UART1 interrupts enabled
*/
IE2 = 0b10110000;
/****** System Clock initialization code ******/
/* Global interrupts are enabled */

103

Saving to Files C-Wiz — The Code Wizard

_BIS_SR(GIE);
/****** Watchdog module initialization code ******/
/* WDT operates in Off mode
* WDT interval is tSMCLK x 64
* NMI pin causes reset
*/
WDTCTL = 0b0101101010000000;
/********** Basic Timer initialization code **********/
/* Initial value on timer 1 is 0
* Initial value on timer 2 is 0
*/
BTCNT1 = 0b00000000;
BTCNT2 = 0b00000000;
}

Inside the function, the initialization code required for each peripheral is quite separate. Code for
each different peripheral is introduced with a large identifying comment. This makes it easier to sep-
arate specific code if it is intended to isolate individual peripheral segments to independent functions
or modules.

The only exception to the rule is in the case where a single instruction may have an effect on
multiple peripherals. An example of this is as follows:

/* Basic timer interrupt enabled
* UART1 interrupts enabled
*/
IE2 = 0b10110000;

This is a typical case where a single register is responsible for controlling attributes (in this case
interrupts) for several peripherals. Since such code can’t be solely associated with any single periph-
eral, it is classified ascommon codeand will appear in a separate section to be found at the beginning
of the function.

It is important to remember at all times that the file saved to is a generated file. This is relevant
because any modifications you make to the file later will be lost if you later ask the Code wizard
to save the file again. In this event, the Code wizard will simply re-generate the code from the
peripheral settings it has been given and overwrite the specified file. It has no knowledge of any
changes that you have made to the file since last time. Take care and be aware of this consideration
if you are modifying the generated file.

104

C-Wiz — The Code Wizard Accessing the Initialization Code

6.7 Accessing the Initialization Code

If the Code wizard is instructed to save its generated code, it will be saved to the specified file in a
function with the name specified in theAdvanced Optionsdialog (see Subsection6.2.6). It is likely
that this file will ultimately be included as an additional file in your HI-TIDE project. If so, any
module that would call on this function will require a function prototype such as this:

extern void init(void);

It is recommended for your program to call this function very early in its execution, so that the device
and its peripherals are ready before any peripherals are accessed and before any system events such
as interrupts or watchdog timeout. The function call would look like:

init(); // Initialize device and peripherals

Upon return from this function call, the microcontroller and its peripherals will have been set to the
modes specified in the8051 Code Wizarddialog. It is not a strict requirement for this function to be
calledinit so if you choose to rename the function, also adjust the function prototype and function
calls accordingly.

6.8 Generating Interrupt Service Routines

Some peripherals have the ability to trigger an interrupt on a particular condition or specific event. If
so, the Code wizard can generate a function template to enable your program to service this interrupt.
To generate an interrupt service routine, simply tick the checkbox in the peripheral’s settings corre-
sponding to generating an interrupt function. Some peripherals can have multiple interrupt routines,
each triggered on a different event. In this case there may be a separate checkbox to generate each
different interrupt function.

It is important to realize that there is a difference between selecting toenablean interrupt and
selecting togeneratean interrupt function. Enabling an interrupt sets up the device to trigger an
interrupt (and go to an interrupt function) upon the trigger condition being satisfied. It is quite valid
to have an interrupt function without enabling the interrupt - you may want to enable it later in your
program, but it is unwise to enable an interrupt trigger without also providing an interrupt function
to service it.

Of course the Code wizard has no idea of what you want your interrupt service routine to do,
so it will only generate a template of the interrupt function. In this way it sets up vectoring to the
function automatically, so all that is left for you to do is fill in the content of the interrupt service
routine in the template provided.

Any generated interrupt service routines can be found at the end of the source file that the Code
wizard saves to. It is recommended that you move them from the generated file and into a separate

105

Handling Shared Resources C-Wiz — The Code Wizard

Figure 6.8: Message panel of C-Wiz

file. The reason for this is that if you were to make modifications to this file, all changes will be lost
if this file is regenerated at a later date.

6.9 Handling Shared Resources

If configuring several microcontroller peripherals, it is possible for select combinations of settings
to cause two or more peripherals to rely upon access to the same resource simultaneously. If the
device is allowed to operate in such a state, the devices can conflict it is possible that one or all the
peripherals involved will not function as expected.

The Code wizard has the ability to identify hazardous conflicts between peripherals and will
notify you whenever such a conflict occurs. In this event a brief report will appear in the code
wizard’s Messaging Panel. Figure6.8 gives an example of a typical message generated when two
peripherals are contesting for the same output pin on a microcontroller.

In this example the Messaging Panel indicates while the user was setting up the device’s periph-
erals, four pin conflicts were identified. One of the reports from the messaging window is:

PIN 2:A3 overrides P6.3
This informs us that pin 2 of this microcontroller was initially set toP6.3 (an I/O port pin mode).

Later another peripheral also needed the use of pin2. The report explains that pin 2 switched from
P6.3 mode toA3 mode (an analog channel). The identities of these modes:A3, P6.3, CA0 etc. can
be found in the manufacturer’s data sheet for your selected microcontroller.

While a conflict is present, the Code wizard disables any settings and revokes any code that
involves the disputed pin functioning in the defeated mode. In this example, any code used to set-up
P6.3 will be nullified while the settings that depend onA3 still exist.

Resting the mouse over a disabled setting will produce a floating message identifying which

106

C-Wiz — The Code Wizard Closing the Code Wizard

peripheral has created the conflict so that you know where to go in order to fix the problem.6.5
shows an example of such a message. If the setting that created the conflict is reversed or adjusted
in a way that avoids the conflict, a message such as this will be reported:

A3 surrenders PIN2
Note that if a pin function has beensurrendered, this does not mean that it has been disabled. It

simply means that in the current settings, that pin functionality is no longer required.
The handling of these shared resources (also known as dependency handling), can be toggled on

and off using theAdvanced Optionsdialog (see Subsection6.2.6). Whilst the handling is disabled,
all configurations are accepted and the code is generated accordingly. This means that two periph-
erals may be configured on the same pin and may operate unexpectedly. It is not recommended that
the dependency handling be disabled unless the peripheral interactions are understood intimately.

6.10 Closing the Code Wizard

When finished with the Code wizard, there are two different types of closing procedures.
Firstly, closing via theOK button (see Figure6.7): This type of exit will close the Code wizard

and record all of the settings that have been made in the dialog and import a saved file to HI-TIDE if
requested. TheOK button is convenient if you plan to run the Code wizard again later in this project
and don’t want to have to start from scratch. Although closing via theOK button will record your
peripheral settings, a generated source file will only contain the initialization code that existed at the
time of the last file-save operation. This means that any changes made after the last save operation
will not be present in the Code wizard’s output file.

The alternative is to close via theCancel button. Exiting this way will close the Code wizard
without recording any new changes to the peripheral settings. If you were to re-run HI-TIDE again
later and re-open the code wizard, it would only be restored to the point of the last file-save orOK
operation. If neither of these events had ever occurred, the code wizard will not be able to restore
any settings and will open in its initial blank state with all peripherals deactivated.

Closing the Code wizard via the exit button in the top-right corner of the dialog has the same
effect as closing via theCancelbutton.

107

Closing the Code Wizard C-Wiz — The Code Wizard

108

Chapter 7

HI-TIDE Compiler Options

This chapter of the manual will explain each of the HI-TECH C compiler specific options that can
be configured from within theGlobal Compiler Options dialog in HI-TIDE. To access theGlobal
Compiler Options dialog selectGlobal Compiler Options... from theProject menu.

Each compiler will have its own unique set of global compiler options which can be configured
through theGlobal Compiler Options dialog. The global compiler options have been divided up
into six sub-sections referred to by each tab in theGlobal Compiler Options dialog, these are:

• Compiler options

• Preprocessor options

• Memory options

• Files options

• Linker options

• Language options

The purpose and behaviour of these options will be described briefly in the following sections,
however you may want to refer to the HI-TECH C Compiler Options section (Section10.4) for a
more detailed explanation on how each option controls the compiler.

7.1 Compiler Options

Figure7.1shows theCompiler Options tab of theGlobal Compiler Options dialog. Each specific
option is explained below.

109

Compiler Options HI-TIDE Compiler Options

Figure 7.1: Compiler options dialog — compiler options

110

HI-TIDE Compiler Options Compiler Options

7.1.1 Build options

7.1.1.1 Warning Level

Setting theWarning level value to anything other than zero enables the command-line driver--WARN
option, (see Section10.4.47) which is used to adjust the sensitivity level for compiler warning mes-
sages.

7.1.1.2 Strip Local Symbols

By
This option corresponds to the command-line driver-X option (see Section10.4.17), which strips

local symbols from any files compiled, assembled or linked.

7.1.2 Global Optimization

7.1.2.1 Enable Global Optimization

Selecting theEnable global optimization option will enable global code optimization. The level
of optimization is specified in theLevel option. Global optimization is also applied for speed or for
space. For more information on global optimization, see Section10.4.34.

7.1.2.2 Optimize For Speed / Space

Selecting theOptimize for speedor Optimize for spacewill respectively specify the suboptions
speed or space to the--OPT= command-line driver option.

7.1.2.3 Level

TheLevel value will specific the level of optimization that will apply to the--OPT= command-line
driver option (see Section10.4.34). Note thatEnable global optimization must be selected before
the value ofLevel can be set.

7.1.3 Assembler Optimization

7.1.3.1 Enable Assembler Optimization

Selecting theEnable assembler optimizationoption will activate the assembler optimizer. This will
set the command-line driver--OPT option to--OPT=as_all. For more information on assembler
optimization, refer to Section10.4.34.

111

Preprocessor options HI-TIDE Compiler Options

Table 7.1: Memory model types

Memory model Setting
small s
medium m
large l
huge h

7.1.4 Memory Model Settings

This option selects the memory model to implement. Figure7.1show the memory models available
and the equivalent command-line driver option,-B, see Section10.4.1.

7.1.5 Banking Options

TheBanking Options setting is on enabled when theMemory Model option is set toHuge. This
option is disabled if theMemory Model option is set to any other mode.

Selecting theSpecify banking configurationoption will enable the text fields to enter the bank-
ing configuration information. This will specify the--BANK option (see Section10.4.19) on the
command-line driver. The text fields will be added as the appropriate arguments.

7.1.6 Debugging NOPs

Selecting the Insert Debugging NOPs option will cause NOP instructions to be placed within the
output code. These instructions are used to reserve space for certain debuggers. See Section10.4.32
for more information.

7.2 Preprocessor options

Figure7.2 shows thePreprocessor Optionstab of theGlobal Compiler Options dialog. Each
preprocessor option is explained below.

7.2.1 Specify Include Paths

This is where you will specify the list of paths that the compiler will search in to find#included
files. Include paths can be added by typing the include path in the list. Multiple include paths can
be listed by entering each on a new line. Alternatively you can press theBrowsebutton and select

112

HI-TIDE Compiler Options Preprocessor options

Figure 7.2: Compiler options dialog — preprocessor options

113

Memory options HI-TIDE Compiler Options

a path from theBrowse dialog. This option will specify the parameters for the-I command-line
driver option (see Section10.4.6).

7.2.2 Assembler Files

7.2.2.1 Preprocess assembler files

Selecting thePreprocess assembler filesoption will set the compiler to preprocess assembler files
prior to assembling, thus allowing the use of preprocessor directives such as#include. This is
equivalent setting-P on the command-line driver, see Section10.4.12.

7.2.3 Define Preprocessor Symbols

This is where you will specify any symbols that you want to be defined and passed to the prepro-
cessor. Multiple symbols can be defined if each appears on a new line. The values in the list will
specify the parameters for the-D command-line driver option (see Section10.4.3).

7.2.4 Undefine Preprocessor Symbols

This is where you will specify any symbols that will be passed to the preprocessor that are to be
undefined during the preprocessing stage of the compile process. Symbols can be added to the list
by typing the symbol name in the list and separating multiple symbols by a new line. The values in
the list will specify the parameters for the-U command-line driver option (see Section10.4.15)

7.3 Memory options

Figure7.3shows theMemory Options tab of theGlobal Compiler Options dialog. Each specific
option is explained below.

7.3.1 Program Memory Ranges

This area is where you can specify any additional program memory ranges or ROM that the compiler
can use to store code in. If there are any areas of memory that you want to reserve from being used
as program memory then you can specify these ranges in theExcluded Ranges. These options will
specify the parameters for the--ROM command-line driver option (see Section10.4.40).

114

HI-TIDE Compiler Options Memory options

Figure 7.3: Compiler options dialog — memory options

115

Memory options HI-TIDE Compiler Options

7.3.1.1 Enable on chip ranges

If the Enable on chip rangescheckbox is selected then the default memory ranges as specified
in the chipinfo file will be available for the compiler to use as program memory. Otherwise these
default memory ranges will not be used, unless specified in theIncluded Ranges.

7.3.1.2 Enable included ranges

If the Enable included rangescheckbox is selected then the memory ranges as specified in the
IncludedRanges list will be available for the compiler to use as program memory.

7.3.1.3 Included Ranges

This is where you can specify additional memory ranges that the compiler can use to store code in.
To add a memory range you will need to press theAdd... button, which will display theAdd Range
dialog, where you can specify the start address and the end address of the memory range. Once you
have specified the start address and the end address, selectOK to add the range to the list ofIncluded
Ranges. Note that you will not be able add memory ranges that overlap.

7.3.1.4 Enable excluded ranges

If the Enable excluded rangescheckbox is selected then the memory ranges as specified inEx-
cludedRanges list will be made unavailable for the compiler to use as program memory.

7.3.1.5 Excluded Ranges

This is where you can specify memory ranges that the compiler will exclude from storing code in.
To add a memory range you will need to press theAdd... button, which will display theAdd Range
dialog, where you can specify the start address and the end address of the memory range. Once
you have specified the start address and the end address, selectOK to add the range to the list of
Excluded Ranges.

7.3.2 Data Memory Ranges

This area is where you can specify any additional data memory ranges or RAM that the compiler
can use to store data in. If there are any areas of memory that you want to reserve from being used as
data memory then you can specify these ranges in theExcluded Ranges. These options will specify
the parameters for the--RAM command-line driver option (see Section10.4.39).

116

HI-TIDE Compiler Options Memory options

7.3.2.1 Enable on chip ranges

If the Enable on chip rangescheckbox is selected then the default memory ranges as specified in
the in the chipinfo file will be available for the compiler to use as data memory. Otherwise these
default memory locations will not be used, unless specified in theIncludedRanges.

7.3.2.2 Enable included ranges

If the Enable included rangescheckbox is selected then the memory ranges as specified inIncluded
Ranges list will be available for the compiler to use as data memory.

7.3.2.3 Included Ranges

This is where you can specify additional memory ranges that the compiler can use to store data in.
To add a memory range you will need to press theAdd... button, which will display theAdd Range
dialog, where you can specify the start address and the end address of the memory range. Once you
have specified the start address and the end address, selectOK to add the range to the list ofIncluded
Ranges. Note that you will not be able add memory ranges that overlap.

7.3.2.4 Enable excluded ranges

If the Enable excluded rangescheckbox is selected then the memory ranges as specified inEx-
cludedRanges list will be made unavailable for the compiler to use as data memory.

7.3.2.5 Excluded Ranges

This is where you can specify memory ranges that the compiler will exclude from storing code in.
To add a memory range you will need to press theAdd... button, which will display theAdd Range
dialog, where you can specify the start address and the end address of the memory range. Once
you have specified the start address and the end address, selectOK to add the range to the list of
Excluded Ranges. Note that you will not be able add memory ranges that overlap.

7.3.3 Internal RAM

Selecting theSpecify internal RAM addressoption will enable the text field to enter the starting
address of the internal RAM. This will specify the parameter for the--INTRAM command-line driver
option (see Section10.4.29).

117

Files options HI-TIDE Compiler Options

7.3.4 Non-volatile RAM

Selecting theSpecify non-volatile RAM addressoption will enable the text field to enter the starting
address of the non-volatile RAM. This will specify the parameter for the--NVRAM command-line
driver option (see Section10.4.33).

7.4 Files options

Figure7.4shows theFile Options tab of theGlobal Compiler Options dialog. Each specific option
is explained below.

7.4.1 Output File Type

This options allows the type of the output file to be set. The path of the output file is shown in the
text field. This option will specify the parameters for the--OUTPUT command-line driver option (see
Section10.4.36). The default output file type is grey out in the list of file types.

7.4.2 Debug Information

7.4.2.1 Generate assembler listing

If the Generate assembler listingcheckbox is selected then an assembler listing file (.lst) will be
generated for each C module in the project when compiled. This option will enable the--ASMLIST
command-line driver option (see Section10.4.18).

7.4.2.2 Generate map file

If the Generate map filecheckbox is selected then a Map File will be generated for the project when
compiled. This option will enable the-M command-line driver option (see Section10.4.9).

7.5 Linker options

Figure7.5 shows theLinker Options tab of theGlobal Compiler Options dialog. Each specific
option is explained below.

118

HI-TIDE Compiler Options Linker options

Figure 7.4: Compiler options dialog — file options

119

Linker options HI-TIDE Compiler Options

Figure 7.5: Compiler options dialog — linker options

120

HI-TIDE Compiler Options Linker options

7.5.1 Run-time Code Configuration

This section allows you to customize the Run-time code generated by the compiler. These options
will specify the parameters for the--RUNTIME command-line driver option (see Section10.4.41for
more information on all the available suboptions).

7.5.1.1 Run-time Settings

Initialize data psect Selecting theInitialize data psectcheckbox will specify theinit suboption
to the--RUNTIME command-line driver option.

Clear bss psect Selecting theClear bss psectcheckbox will specify theclear suboption to the
--RUNTIME command-line driver option.

Link C library Selecting theLink C library checkbox will specify thec_libs suboption to the
--RUNTIME command-line driver option.

Initialize stack pointer Selecting theInitialize stack pointer checkbox will specify thestack
suboption to the--RUNTIME command-line driver option.

Keep generated startup code file Selecting theKeep generated startup code filecheckbox will
remove thekeep suboption from the--RUNTIME command-line driver option.

Do not link default startup module Selecting theDo not link default startup module checkbox
will specify theno_startup suboption to the--RUNTIME command-line driver option.

Enable stack checking Selecting theEnable stack checkingcheckbox will specify thestack_check
suboption to the--RUNTIME command-line driver option.

7.5.2 Vector Offset

Enable vector offset Selecting theEnable vector offsetcheckbox will allow you to enter the
offset address. The address to offset can be entered in the text box. The address is in hexadecimal
format (without the leading0x). This will specify the--CODEOFFSET=address option on the
command-line driver (see Section10.4.23).

7.5.3 Additional Linker Options

TheAdditional Linker Optionssection allows you to add additional Linker options.

121

Language options HI-TIDE Compiler Options

7.5.3.1 Enable additional linker options

By selecting theEnable additional linker options you will be able to edit the list of additional
linker options, that will be passed to the Linker.

7.5.4 Advanced Linker Options

TheAdvanced Linker Optionssection allows you to modify the default linker options. These options
are maintained by HI-TIDE and should only be modified by advanced users of HI-TECH Software’s
C compilers.

7.5.4.1 Enable advanced linker options

By selecting theEnable advanced linker optionscheckbox you will be able to edit the list of
advanced linker options, that will be passed to the Linker. By pressing theGet Default Options
button theAdvanced Linkeroptions list will be updated with the default linker options.

7.6 Language options

Figure7.6shows theLanguage Optionstab of theGlobal Compiler Options dialog. Each specific
option is explained below.

7.6.1 Default Char Type

Thechar type unsigned as defaultwill enable or disable all variables of type char to be unsigned
or signed. This option will specify the parameters for the--CHAR command-line driver option (see
Section10.4.20).

7.6.2 Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. This option will specify the parameters for the-N command-line
driver option (see Section10.4.10).

7.6.3 ANSI Conformance

7.6.3.1 Enable strict ANSI conformance

This option will enable or disable strict ANSI compliance of all special keywords. This option will
enable or disable the--STRICT command-line driver option (see Section10.4.44).

122

HI-TIDE Compiler Options Language options

Figure 7.6: Compiler options dialog — language options

123

Language options HI-TIDE Compiler Options

124

Chapter 8

HI-TIDE Compilation

HI-TIDE provides a graphical, user-friendly way of running HI-TECH Software’s C compilers. Op-
tions are set through dialog boxes which allow for ease-of-use, but still provide access to the ad-
vanced features of the compiler, such as specifying custom linker options. Dependency checking
is also handled by the IDE by only compiling the files that need to be recompiled, thus decreasing
compilation time. Errors or warnings in the source code are reported in an easy-to-read format which
also allows the location of the error to be highlighted in the built-in editor.

8.1 Compiling Project Files

Building a project is broken into two main steps: compilation and linking, which are both detailed
below. Each step is accompanied by a description of what is involved in each step and a simple
example. The project must have at least one source or object file in the project to be able to be
compiled.

8.1.1 Compiling Source Files

Step one is compiling the C and/or assembler source files in the project. Compiling a source file
is the act of running the compiler with either the C or assembler file as an input file to produce a
relocatable object file. For brevity, C and assembler files for the rest of this chapter will be referred
to assource files. The compiler is run by HI-TIDE for each source file in the project. The relocatable
object file produced will be placed into the project directory. Object and library files are not handled
in this step as they are both in a relocatable object file format, or a variation of this in the case of
library files.

125

Compiling Project Files HI-TIDE Compilation

Errors and warnings are issued by the compiler when the compiler detects an error or warning in
the files that are being compiled. If errors occur when compiling a source file, the compiler will stop
compiling the source file and, by default, compile the next source file. An option to stop compiling
source files if errors occur is available by deselecting theStop on Errors option on theProject tab
of theGeneral Preferencesdialog.

•

For example, a project calledexample1 contains the filesmain.c, math.as, common.obj
andlcd.lib. To compile the source files the compiler will be run to compilemain.c
to the relocatable object filemain.obj. The compiler will be run again to compile
math.as to the relocatable object filemath.obj. The filescommon.obj andlcd.lib
are not used in this step.

8.1.2 Linking

Step two is linking. Linking is the act of running the compiler, with one or more relocatable object
and/or library files as input files, to produce one or more output files (for example, Intel HEX file).
The input files are the relocatable object files produced in the first step of compiling and any of the
object and/or library files specified in the project. The output file produced will be placed into the
project directory. The link step is run at most once when compiling.

•

Following on from the example in the previous step, to link, the compiler will be run
with main.obj, math.obj, common.obj andlcd.lib as input files and will produce
the output fileexample1.hex.

8.1.3 Make

Make will compile the project files performing dependency checking, so that only source files that
are out-of-date are recompiled and linking is only performed when necessary. A list of conditions
which cause files to be recompiled and/or a link to be performed are show in8.1. To invoke make,
selectMake from theBuild menu or theMake toolbar button.

Before a make begins the project source files that are being edited will be checked to see if they
have been modified. The action that is performed when a source file has been modified is specified
by theSave Modified File Before Buildingoption on theEditor tab of theGeneral Preferences

126

HI-TIDE Compilation Compiling Project Files

Table 8.1: Recompile Conditions

Cause Effect
global compiler options changed all source files will be recompiled and the

program relinked
the file-specific compiler options
changed for one or more files

source file(s) whose options have changed
will be recompiled and the program

relinked
one or more source files have
changed or have been added to the
project

the changed or new source file(s) will be
recompiled and the program relinked

a source file’s dependency has
changed

the source file will be recompiled and the
program relinked

object file or library file has
changed

the program will be relinked

one or more files have been
removed from the project

the program will be relinked

dialog. There are three options available,Always save modified file,Never save modified file and
Prompt to save modified file. By default this option is set to always save modified file.

The always save modified file option automatically saves the file before building. There isn’t
a prompt shown and the file is saved to disk. This means that when compilation begins, the most
up-to-date version of the file will be compiled.

The never save modified file option will not save the modified file. This means that when com-
pilation begins, the contents of the file saved to disk — not the modified file in the editor — is used
during compilation.

The prompt to save modified file option will show a dialog before make begins for each modified
project source file in the editor. The dialog will prompt to save the modified file. Selecting Yes will
save the file to disk. Selecting No will leave the file on disk unmodified.

If no errors are issued during a make it is considered a successful make. This also means that
the compiler was able to produce an updated HEX file. Warnings do not effect if the compilation
was successful but they may be important when debugging the application in development. After a
successful compilation, by default, HI-TIDE will automatically load the HEX file produced. This
functionality can be disabled by deselecting theLoad HEX File on Successful Buildoption on the
Project tab of theGeneral Preferencesdialog.

127

Compiler Options HI-TIDE Compilation

8.1.4 Make All

Make all, as the name suggests, will compile and link all files in the project. To perform this oper-
ation, selectMake All from theBuild menu. A check to ensure that each project source file open
in the editor is unmodified is preformed as per the Make operation, described above. The resultant
HEX file is loaded into the debugger after a successful make as described in the Make operation
above.

8.1.5 Individual Files

Each source file is able to be compiled to a number of intermediate files. Intermediate files are
various file types that can be produced from the compiler when compiling an individual file. The
intermediate files that can be produced for a C source file is assembler files, function prototype files,
object files and preprocessed files. The intermediate files that can be produced for an assembler
source file are preprocessed files and object files. The intermediate files produced will be placed into
the project directory.

To compile a source file to an intermediate file right click on a source file icon in the Project view
and select theCompile To sub menu. From the sub menu select the intermediate file to compile to.
If a project source file is open in the editor it can be compiled to an object file by selectingCompile
To Object File from theBuild menu.

8.2 Compiler Options

Compiler options specify settings that will be passed to the compiler when the compiler is run. The
Global Compiler Options dialog is a common place where the options used for compiling and
linking are specified. By default all source files use the options specified in theGlobal Compiler
Options dialog when they are compiled. If the options for an individual file are required to be
different to that of the other files then a set offile-specificoptions may be specified for each file.

8.2.1 Global Compiler Options

Global options that apply to all files that do not have file-specific options set. These options are
always used in the link step. To open theGlobal Compiler Options dialog selectGlobal Compiler
Options... menu from theProject menu or double click on the output file icon in the Project view.

8.2.2 File-Specific Compiler Options

To enable file-specific compiler options for a particular file, right click on the source file icon in the
Project view and selectFile Specific Compiler Options... from the popup menu. This will open a

128

HI-TIDE Compilation Build Results

dialog that is similar to theGlobal Compiler Options dialog. When this dialog is initially opened,
the state of the options will be the same as the current global options, however once they have been
enabled they will hold their state.

This contains the same options found in the global options dialog, only some options will be
disabled. These are options that do not apply to the file, for example, preprocess assembler file
options is disabled when setting file-specific options for a C file. Initially all of the available options
are disabled. To specify and use the file-specific options they need to be enabled by selectingUse
File-specific Optionscheckbox which is present at the top of the dialog. This check box is always
visible regardless of which tab is selected and applies to all the tabs in the dialog.

Those options required may be selected in the usual way, however if an option is changed from
the corresponding option specified in the global compiler options, then the widget will change colour
to red. This allows the options that differ to the global compiler options to be easily identified.

All options under all tabs may be returned to those specified by theGlobal Compiler Options
dialog by selecting theRevert to Global Compiler Options button.

8.3 Build Results

Build results displays messages issued by the compiler after compilation is finished. Finished com-
pilation is defined as the end of a make, make all or an individual file is compiled. The messages are
organised by the Build view, discussed in Section4.2. These messages are broken up into four cate-
gories, errors and warnings, memory usage, psect usage and build log. The categories are discussed
below.

8.3.1 Error and Warnings

Errors and warnings are issued by the compiler when the compiler detects an error or warning in
the files that are being compiled. The error or warning contains information on where the problem
occurred and a short description of what the error or warning means. The errors and/or warnings, if
any, are detected by HI-TIDE and displayed in theError Log tab of the Build view. Double-clicking
on an error or warning in the error log will, for most cases, open the file that caused the error in the
editor and place the caret on the line the error occurred. See Section4.2.1for more details on how
there errors are displayed and how the view is accessed.

8.3.2 Memory Usage

Memory usage displays memory information of the application being developed. This information
is only updated after successful completion of aMake or Make All . It is not updated after an
individual file is compiled. It is displayed in theMemory Usagetab of the Build view.

129

Build Results HI-TIDE Compilation

8.3.3 Psect Usage

Psect usage displays memory usage of program sections of the application being developed. This
information is only updated after successful completion of aMake or Make All . It is not updated
after an individual file is compiled. It is displayed in thePsect Usagetab of the Build view.

8.3.4 Build Log

The build log displays detailed information on the commands used to run the compiler, messages
returned from the compiler, details on dependency checking, the type of options that are being used
and build times. The build log displayed in theBuild Log tab of the Build view. See Section4.2.4
for more details on how the view is accessed.

Each time the compiler is run, the command line that is used to run the compiler is displayed in
the build log. The command line will then be followed by a verbose output of the compiler.

Errors and warnings are displayed in the build log as well as the error log. The errors in the build
log are displayed in the format output by the compiler and are indicated by the text(error) at the
end of a line. A warning will be indicated by the text(warning) at the end of a line. The errors and
warnings will appear after the verbose output of the compiler.

When performing aMake, dependency checking is performed and a description of the checking
process is shown in the build log. The description indicates if the file is up-to-date or, if it is not
up-to-date, why it is not up-to-date. The description appears before the compiler command line.

Just before the compiler command line a text description of the whether file-specific or global
compiler options are used to compile the file is displayed. The messageUsing global options...
indicates global options are being used to compile the source file. The messageUsing file specific
options... indicates file-specific options are being used to compile the file.

When aMake is performed the log is titled with the textMaking Projectthat indicates a make
with dependency checking is performed. For aMake All the log is titled with the textMaking All
Project Files. Following the title for both theMake and theMake All is a message that indicates
the date and the time that the build was started.

130

Chapter 9

HI-TIDE Debugging

HI-TIDE provides a generic debugger interface which allows integration of a wide range of simula-
tors and emulators available for a particular chipset. At present HI-TIDE can be used to load HEX
files, manage breakpoints, perform C and assembly stepping, as well as animate (multi step) code
execution while watching program variables, registers, and memory.

9.1 Debugger Functions

The following sections provide an overview of the debugger’s functions available in HI-TIDE. More
specific information on debugger views and related user interface aspects may be found in4.4.
Related toolbar actions and buttons are described in3.2.8.

9.1.1 Debugger Initialization

Before debugging can be performed, a HEX file has to be loaded into the device, whether the de-
vice is a simulator, emulator or an actual microcontroller. In order to allow high-level debugging
features, such as source-level breakpoints and variable display, the compiler must have produced the
appropriate symbolic debug information. Typically this happens by default, but compiler options
can control this aspect of the compiler. See10.4.5for more information.

Once the HEX file is successfully loaded, the debug menus and buttons are enabled and further
debugging may be undertaken.

131

Debugger Functions HI-TIDE Debugging

9.1.2 Breakpoints

A breakpoint is a point in a program that, when reached, triggers some special behaviour. Generally,
breakpoints are used to pause program execution and allow the values of some or all of the program
variables to be inspected. Breakpoints may consist of instructions that form part of the program or
they may be temporarily set by the programmer through HI-TIDE.

In HI-TIDE a breakpoint can be set anywhere within the executable memory range. Breakpoints
can be set from a Disassembly view, see Section4.4.1.4, or from a source file open in the Editor
view, see Section4.3.9. A red breakpoint dot in the view gutter indicates that the breakpoint is set.
Once set, breakpoints can either be removed completely or disabled so that execution will no longer
stop at that location. Disabled breakpoints are indicated by a grey breakpoint dot in the view’s gutter.

Whilst running, animating or single stepping, if the program execution point reaches an enabled
breakpoint, the debugger will stop immediately without executing the C statement, or assembler
instruction, at which the breakpoint is set. That is, the next assembler of C statement to be executed
will be that marked with the red breakpoint dot.

A single C statement may correspond to several assembly instructions. When a breakpoint is set
on a C statement, the breakpoint is essentially set on the first assembly instruction that corresponds
to that statement. As well as the breakpoint indicator in the Editor view, another red breakpoint dot
will appear in the Disassembly view at the first assembly instruction that corresponds to the line
of C code on which the breakpoint was set. These two indicators represent the same breakpoint.
Disabling one will disable the other, and similarly removing one will remove both. The reverse is
also true: setting a breakpoint on the first assembly instruction associated with a C statement will
also set a breakpoint indicator in the Editor view.

9.1.2.1 Breakpoint Restoration

Not all breakpoints are preserved by HI-TIDE. After compilation some breakpoints are removed,
and when restoring a project file, some breakpoints that may have been set when the project was
saved will no longer be set. The breakpoints affected are those set on assembly instructions that are
not the first instruction associated with a C statement and those set on assembly instructions which
do not immediate follow a global assembly label.

These breakpoints are removed as there is no means available to track the position of these
instructions as the program is changed. All breakpoints set in the Editor view will be fully preserved.

Even if a breakpoint is preserved, its position in the program may change. As a program is edited,
the position of breakpoints will remain at the assembly address at which they were set. Breakpoints
set in the Editor view will also remain positioned at the assembly address which corresponds to the C
statement at which the breakpoint was set. If the contents of the Editor view change, the breakpoint
may map back to a different C statement to which it was originally assigned.

132

HI-TIDE Debugging Debugger Functions

9.1.3 Program execution

HI-TIDE provides several modes of program execution that are useful during the debugging process.
The important differences between modes are listed below.

9.1.3.1 Run

When Run mode is selected, the debugger executes code in real time (or near real time in case
of simulator). This mode is resource intensive for the microcontroller which prevents real-time
access to microcontroller registers and memory. Execution continues until stopped by the user or a
breakpoint is encountered.

No views are updated during Run mode, but will update as soon as the program is stopped.

9.1.3.2 Animate

When Animate mode is selected, the debugger executes one assembly instruction and then updates
any debugger view visible in the Workspace area. If the Editor view is visible, it is also updated to
indicate the current program position. Execution continues until stopped by the user or a breakpoint
is encountered.

Unlike Run mode, Animate does not allow for a real-time execution and so may be unsuitable
for time-critical programs, such as USART communication routines. This mode might be somewhat
slow when used with hardware emulators due to the amount of time required to acquire memory
and register information from the device, however Animate mode is faster and more convenient that
repeatedly single stepping through assembly code.

9.1.3.3 Assembly Step

Assembly Step mode causes debugger to execute a single assembly instruction then stop. All views
are updated after the step.

9.1.3.4 C Step

C step mode causes the debugger to execute a series of assembly steps that correspond to a single
line of C code. This mode is similar to Animate mode, but no views are updated after each step,
and execution will stop when the first assembly instruction corresponding to the next C statement is
encountered. C step mode does not perform real-time execution.

A compound C statement, e.g. afor() or while() loop, is executed as one C statement. C
stepping a compound statement will run all iterations of the loop or the sub statements of theif()
etc.

133

8051 Debuggers HI-TIDE Debugging

C stepping a C function call will step into the function and execution will stop at the first C
statement in the function being called. If the function is a library function, or any function for which
there is no symbolic debug information, the entire C function called is run and execution will stop at
the C statement immediately following the function call. The same is also true if the function called
is written in assembly code.

9.1.3.5 Reset

Selecting reset either causes a hardware reset in the emulator or development board or a simulated
reset if the selected debugger is the simulator. The exact nature of a hardware reset depends on the
attached hardware. As a general rule, the program counter is set to starting location as specified by
the reset vector.

9.2 8051 Debuggers

HI-TIDE supports debugging of 8051 family microcontrollers through use of a 8051 simulator.

9.2.1 Simulator

The 8051 simulator is a software debugger that can be used with all chips supported in the HI-
TECH C for 8051 package. Code for chips which support memory banking cannot be simulated
when compiled with the huge (banked) memory model, but can be used when compiled with other
memory models.

The simulator provides the microcontroller, memory and SFR simulation.
The 8051 simulator poses no limitations, excluding those implicit to all simulators. The user

has to keep in mind that the simulator is only an approximation of the physical device and that a
hardware testing is generally required to ensure correctness of the implemented solution.

134

Chapter 10

C51 Command-line Driver

C51 is the driver invoked from the command line to compile and/or link C programs.C51 has the
following basic command format:

C51 [options] files [libraries]

It is conventional to supply the options (identified by a leadingdash“-” or double dash“–”) before
the filenames.

The options are discussed below. The files may be a mixture of source files (C or assembler) and
object files. The order of the files is not important, except that it will affect the order in which code
or data appears in memory.Libraries are a list of library names, or-L options. See Section10.4.7.
Source files, object files and library files are distinguished byC51 solely by thefile typeor extension.
Recognized file types are listed in Table10.1. This means, for example, that an assembler file must
always have a "." as extension (alphabetic case is not important).

C51 will check each file argument and perform appropriate actions. C files will be compiled;
assembler files will be assembled. At the end, unless suppressed by one of the options discussed later,

Table 10.1: C51 file types

File Type Meaning
.c C source file
.as Assembler source file
.obj Relocatable object code file
.lib Relocatable object library file

135

Long Command Lines C51 Command-line Driver

all object files resulting from compilation or assembly, or those listed explicitly on the command line,
will be linked together with the standard runtime code and libraries and any user-specified libraries.
Functions in libraries will be linked into the resulting output file only if referenced in the source
code.

InvokingC51 with only object files specified as the file arguments (i.e. no source files) will mean
only the link stage is performed. It is typical in Makefiles to useC51 with a -C option to compile
several source files to object files, then to create the final program by invokingC51 again with only
the generated object files and appropriate libraries (and appropriate options).

10.1 Long Command Lines

TheC51 driver is capable of processing command lines exceeding any operating system limitation.
To do this, the driver may be passed options via a command file. The command file is read by using
the@ symbol. For example:

C51 @xyz.cmd

10.2 Default Libraries

C51 will search the appropriate standard C library by default for symbol definitions. This will always
be done last, after any user-specified libraries. The particular library used will be dependent on the
processor selected.

10.3 Standard Runtime Code

C51 will also automatically generate standard runtime start-up code appropriate for the processor
and options selected unless you have specified the to disable this via the--RUNTIME option. If you
require any special powerup initialization, you should use thepoweruproutine feature (see Section
11.1.5).

10.4 C51 Compiler Options

Most aspects of the compilation can be controlled using the command-line driver,C51. The driver
will configure and execute all required applications, such as the code generator, assembler and linker.

C51 recognizes the compiler options listed in Table10.2. The case of the options is not important,
however UNIX shells are case sensitive when it comes to names of files.

136

C51 Command-line Driver C51 Compiler Options

Table 10.2C51 command-line options
Option Meaning

-Bmodel Specify memory model
-C Compile to object file only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify-option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--BANK=argument Specify banking options
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--CODEOFFSET=address Specify a code offset
--CR=file Generate cross-reference listing
--ERRFORMAT<=format> Format error message strings to the given style
--GETOPTION=app,file Get the command line options for the named application
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--INTRAM=address Specify internal RAM address
--MEMMAP=file Display memory summary information for the map file
--NOEXEC Go through the motions of compiling without actually com-

piling
--NOPS Insert debug NOPs
--NVRAM=address Specify non-volatile RAM address
continued. . .

137

C51 Compiler Options C51 Command-line Driver

Option Meaning
--OPT<=type> Enable compiler optimizations
--OUTDIR=directory Specify output directory
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...>|tag Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SETOPTION=app,file Set the command line options for the named application
--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level

All single letter options are identified by a leadingdashcharacter,-, e.g.-C. Some single letter
options specify an additional data field which follows the option name immediately and without any
whitespace, e.g.-Ddebug.

Multi-letter, or word, options have two leadingdashcharacters, e.g.--ASMLIST. (Because of the
doubledash, you can determine that the option--ASMLIST, for example, is not a-A option followed
by the argumentSMLIST.) Some of these options define suboptions which typically appear as a
comma-separated list following anequalcharacter,=, e.g.--OUTPUT=hex,omf. The exact format of
the options varies and are described in detail in the following sections.

Some commonly used suboptions includedefault, which represent the default specification
that would be used if this option was absent altogether;all, which indicates that all the available
suboptions should be enabled as if they had each been listed; andnone, which indicates that all
suboptions should be disabled. Some suboptions may be prefixed with a plus character,+, to indicate
that they are in addition to the other suboptions present, or a minus character,-, to indicate that they
should be excluded. In the following sections,angle brackets,< >, are used to indicate optional parts
of the command.

10.4.1 -B : Specify Memory Model

The-B option is used to select the type of code generation desired according to the requirements of
your program. The available memory models are shown in Table10.3. See section11.6for more
details about the various memory models available, and section11.15for further tips on choosing a
memory model which suits your program.

138

C51 Command-line Driver C51 Compiler Options

Table 10.3: Memory model options

Option Memory Model
-Bs Small
-Bm Medium
-Bl Large
-Bh Huge

See Section7.1.4for more information on how to specify the memory model from within HI-
TIDE.

10.4.2 -C : Compile to Object File

The-C option is used to halt compilation after generating a relocatable object file. This option is
frequently used when compiling multiple source files using a “make” utility. If multiple source files
are specified to the compiler each will be compiled to a separate.obj file. The object files will
be placed in the directory in whichC51 was invoked, to handle situations where source files are
located in read-only directories. To compile three source filesmain.c, module1.c andasmcode.as
to object files you could use a command similar to:

C51 --CHIP=8051AH -C main.c module1.c asmcode.as

The compiler will produce three object filesmain.obj, module1.obj and asmcode.obj which
could then be linked to produce anIntel HEX file using the command:

C51 --CHIP=8051AH main.obj module1.obj asmcode.obj

See Sections4.1.1.3and4.1.1.5for more information on how to compile to object files from within
HI-TIDE.

10.4.3 -D macro : Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had
been defined using a#define directive in the source code. This option may take one of two forms,
-Dmacro which is equivalent to:

#define macro 1

139

C51 Compiler Options C51 Command-line Driver

placed at the top of each module compiled using this option, or-Dmacro=text which is equivalent
to:

#define macro text

wheretext is the textual substitution required. Thus, the command:

C51 --CHIP=8051AH -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1
#define buffers 10

See Section7.2.3for information on how to define macros when compiling within HI-TIDE.

10.4.4 -E file : Redirect Compiler Errors to a File

Some editors do not allow the standard command line redirection facilities to be used when invoking
the compiler. To work with these editors,C51 allows an error listing filename to be specified as part
of the-E option. Error files generated using this option will always be in-E format. For example, to
compilex.c and redirect all errors tox.err, use the command:

C51 --CHIP=8051AH -Ex.err x.c

The-E option also allows errors to be appended to an existing file by specifying anadditioncharac-
ter,+, at the start of the error filename, for example:

C51 --CHIP=8051AH -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use
the-E option to create the file then use-E+ when compiling all the other source files. For example,
to compile a number of files with all errors combined into a file calledproject.err, you could use
the-E option as follows:

C51 --CHIP=8051AH -Eproject.err -O -Zg -C main.c
C51 --CHIP=8051AH -E+project.err -O -Zg -C part1.c
C51 --CHIP=8051AH -E+project.err -C asmcode.as

The fileproject.err will contain any errors frommain.c, followed by the errors frompart1.c
and thenasmcode.as, for example:

140

C51 Command-line Driver C51 Compiler Options

main.c 11 22:) expected
main.c 63 0: ; expected
part1.c 5 0: type redeclared
part1.c 5 0: argument list conflicts with prototype
asmcode.as 14 0: Syntax error
asmcode.as 355 0: Undefined symbol _putint

10.4.5 -G file : Generate source-level Symbol File

The-G option generates asource-level symbol file(i.e. a file which allows tools to determine which
line of source code is associated with machine code instructions, and determine which source-level
variable names correspond with areas of memory, etc.) for use with HI-TECH Software debuggers
and simulators such asHI-TIDE. If no filename is given, the symbol file will have the same base
name as the first source or object file specified on the command line, and an extension of.sym. For
example the option-GTEST.SYM generates a symbol file calledtest.sym. Symbol files generated
using the-G option include source-level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with
the -G option. The option is also required at the link stage, if this is performed separately. For
example:

C51 --CHIP=8051AH -G -C test.c
C51 --CHIP=8051AH -C module1.c
C51 --CHIP=8051AH -Gtest.sym test.obj module1.obj

will include source-level debugging information fortest.c only becausemodule1.c was not com-
piled with the-G option.

The--IDE option will typically enable the-G option.
This option will also enable source-level debug information for assembler source files, see Sec-

tion 12.2 for the assembler’s-v option. Source-level debug information for the runtime startup
module will also be enabled if the startup module is not deleted. See Section11.1.4for information
on how to preserve the startup module.

10.4.6 -I path : Include Search Path

Use-I to specify an additional directory to use when searching for header files which have been
included using the#include directive. The-I option can be used more than once if multiple
directories are to be searched. The default include directory containing all standard header files
are always searched even if no-I option is present. The default search path is searched after any
user-specified directories have been searched. For example:

141

C51 Compiler Options C51 Command-line Driver

C51 --CHIP=8051AH -C -Ic:\include -Id:\myapp\include test.c

will search the directoriesc:\include andd:\myapp\include for any header files included
into the source code, then search the default compiler include directory which is typically located at
c:\htsoft\8051-c_<version> \include.

See Section7.2.1for information on how to specify include paths when compiling within HI-
TIDE.

10.4.7 -L library : Scan Library

The-L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using the-L option are scanned before the standard C library, allowing additional versions
of standard library functions to be accessed.

The argument to -L is a library keyword to which the prefix51 and the suffix.lib are added.
Thus the option-Lmylib will, for example, scan the library51mylib.lib and the option-Lxx will
scan a library called51xx.lib. All libraries must be located in the LIB subdirectory of the compiler
installation directory. As indicated, the argument to the-L option isnot a complete library filename.

If you wish the linker to scan libraries whose names do not follow the above naming convention
or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the com-
mand line along with your source files. Alternatively, the linker may be invoked directly allowing
the user to manually specify all the libraries to be scanned.

10.4.8 -L -option : Adjust Linker Options Directly

The-L option can also be used to specify an extra “-” option which will be passed directly to the
linker by C51. If -L is followed immediately by any text starting with adashcharacter “-”, the text
will be passed directly to the linker without being interpreted byC51. For example, if the option
-L-FOO is specified, the-FOO option will be passed on to the linker when it is invoked.

The -L option is especially useful when linking code which contains extra program sections
(or psects), as may be the case if the program contains C code which makes use of the#pragma
psect directive or assembler code which contains user-defined psects. See Section11.12.3for more
information. If this-L option did not exist, it would be necessary to invoke the linker manually to
link code which uses the extra psects.

One commonly used linker option is-N, which sorts the symbol table in the map file by address,
rather than by name. This would be passed toC51 as the option-L-N.

The-L option can also be used to replace default linker options. If the string starting from the
first character after the -L up to the = character matches a default option, then the default option is
replaced by the option specified. For example,-L-pstack=2000h will inform the linker to replace
the default option that places thestack psect to be one that places the psect at the address 2000h.
The default option that you are replacing must contain anequalcharacter.

142

C51 Command-line Driver C51 Compiler Options

See Sections7.5.3and7.5.4for information on how to define additional, and modify existing,
linker options when compiling within HI-TIDE.

10.4.9 -Mfile : Generate Map File

The-M option is used to request the generation of a map file. The map is generated by the linker an
includes information about where objects are located in memory. If no filename is specified, then
the name of the map file will have the same name as the first file listed on the command line, with
the extension.map.

See Section7.4.2.2for information on how to create map files when compiling within HI-TIDE.

10.4.10 -N size : Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. The option has no effect for all other values.

See Section7.6.2 for information on how to specify identifier length when compiling within
HI-TIDE.

10.4.11 -O file : Specify Output File

This option allows the name of the output file(s) to be specified. If no-O option is given, the output
file(s) will be named after the first source or object file on the command line. The files controlled are
any produced by the linker or applications run subsequent to that, e.g.CROMWELL. So for instance
the HEX file, map file and SYM file are all controlled by the-O option.

The -O option can also change the directory in which the output file is located by include the
required path before the filename, e.g.-Oc:\project\output\first.hex. This will then also
specify the output directory for any files produced by the linker or subsequently run applications.

10.4.12 -P : Preprocess Assembly Files

The-P option causes the assembler files to be preprocessed before they are assembled thus allowing
the use of preprocessor directives, such as#include, with assembler code. By default, assembler
files are not preprocessed.

See Section7.2.2.1for information on how to preprocess assembler files when compiling within
HI-TIDE.

143

C51 Compiler Options C51 Command-line Driver

10.4.13 -Q : Quiet Mode

This option places the compiler in aquiet modewhich suppresses the HI-TECH Software copyright
notice from being displayed.

10.4.14 -S : Compile to Assembler Code

The-S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

C51 --CHIP=8051AH -S test.c

will produce an assembler file calledtest.as which contains the code generated fromtest.c.
This option is particularly useful for checking function calling conventions and signature values
when attempting to write external assembly language routines. The file produced by this option
differs to that produced by the--ASMLIST option in that it does not contain op-codes or addresses
and it may be used as a source file and subsequently passed to the assembler to be assembled.

See Section4.1.1.3for information on how to compile to assembler files when compiling within
HI-TIDE.

10.4.15 -U macro : Undefine a Macro

The-U option, the inverse of the-D option, is used toundefinepredefined macros. This option takes
the form-Umacro. The option,-Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.
See Section7.2.4for information on how to undefine macros when compiling within HI-TIDE.

10.4.16 -V : Verbose Compile

The-V is theverboseoption. The compiler will display the full command lines used to invoke each
of the compiler applications or compiler passes. This option may be useful for determining the exact
linker options if you need to directly invoke theHLINK command.

10.4.17 -X : Strip Local Symbols

The option-X strips local symbols from any files compiled, assembled or linked. Only global sym-
bols will remain in any object files or symbol files produced.

See Section7.1.1.2for information on how to strip local symbols when compiling within HI-
TIDE.

144

C51 Command-line Driver C51 Compiler Options

10.4.18 --ASMLIST : Generate Assembler .LST Files

The--ASMLIST option tellsC51 to generate anassembler listing filefor each module being compiled.
The list file shows both the original C code, and the generated assembler code and the corresponding
binary op-codes. The listing file will have the same name as the source file, and a file type (extension)
of .lst. The listing file will be relative — instructions will be shown at an address offset within
their psect.

See Section7.4.2.1for information on how to create assembler listing files when compiling
within HI-TIDE.

10.4.19 --BANK : Specify Banking Options

The--BANK option tells C51 the banking information to use when using huge model. Attempting
to use this with a memory model other than huge will generate an error. Using--BANK is optional and
overrides the defaults specified in the8051-c.ini file. It takes the form-- BANK=base ,size ,start ,num
where:

• base is the logical starting address of the banked area. This and the next value,size , define
a window which is mapped into ROM at various physical addresses.

• size is the size of the banked area which is mapped into ROM at various physical addresses.

• start is the bank number in which to commence placement of banked code. This parameter
is an ordinary decimal number, and will in most cases be zero.

• num is the number of banks. This parameter is an ordinary decimal number.

• For example, to specify a bank window starting at 8000, ending at FFFF, with 16 banks:

--BANK=8000,8000,0,16

See Section7.1.5 for information on how to specify identifier length when compiling within HI-
TIDE.

10.4.20 --CHAR= type : Make Char Type Signed or Unsigned

Unless this option is used, the default behaviour of the compiler is to make all character values and
variables of typeunsigned char unless explicitly declared or cast tosigned char. This option
will make the default char typesigned char. When using this option, any unsigned character object
will have to be explicitly declaredunsigned char.

The range of asigned character type is -128 to +127 and the range of similarunsigned objects
is 0 to 255.

145

C51 Compiler Options C51 Command-line Driver

See Section7.6.1for information on how to specify the defaultchar type when compiling within
HI-TIDE.

10.4.21 --CHIP= processor : Define Processor

This option defines the processor which is being used. To see a list of supported processors that can
be used with this option, use the--CHIPINFO option.

See Section5.6.2for information on how to specify a processor when compiling within HI-TIDE.

10.4.22 --CHIPINFO : Display a List of Supported Processors

The--CHIPINFO option simply displays a list of processors the compiler supports. The names listed
are those chips defined in the chipinfo file and which may be used with the--chip option. All
devices are listed in SectionC in the Appendix.

10.4.23 --CODEOFFSET=address : Specify an Offset For Program Code

The--CODEOFFSET option is used to shift program entry from the default location by the specified
address. Any code, or data associated with this code, that is explicitly linked at a particular address
— this will be the reset vector and associate constants — will be shifted up by the address specified
with this option.

Psects that are placed anywhere within a linker class are linked as normal. The--ROM option
can be used in conjunction with the--CODEOFFSET to move all compiler output. These two options
allow generation of code that is to be downloaded by a bootloader and needs to be executed from an
address other than zero.

See Section7.5.2for information on how to specify an entry offset when compiling within HI-
TIDE.

10.4.24 --CR= file : Generate Cross Reference Listing

The --CR option will produce across reference listing. If the file argument is omitted, the “raw”
cross reference information will be left in a temporary file, leaving the user to run theCREF util-
ity. If a filename is supplied, for example--CR=test.crf, C51 will invoke CREF to process the
cross reference information into the listing file, in this casetest.crf. If multiple source files are
to be included in the cross reference listing, all must be compiled and linked with the oneC51 com-
mand. For example, to generate a cross reference listing which includes the source modulesmain.c,
module1.c andnvram.c, compile and link using the command:

C51 --CHIP=8051AH --CR=main.crf main.c module1.c nvram.c

146

C51 Command-line Driver C51 Compiler Options

10.4.25 --ERRFORMATand --WARNFORMAT: Format For Compiler Mes-
sages

If the --ERRFORMAT option is not used, the default behaviour of the compiler is to display any errors
in a “human readable” format line with acaret “^” and error message pointing out the offending
characters in the source line, for example:

x.c: main()
4: PORT_A = xFF;

^ undefined identifier: xFF

This standard format is perfectly acceptable to a person reading the error output, but is not usable
with environments which support compiler error handling. The following sections indicate how this
option may be used in such situations.

10.4.25.1 Using the--ERRFORMATand --WARNFORMATOption

Using the these option instructs the compiler to generate error and warning messages in a format
which is acceptable to some text editors and development environments.

If the same source code as used in the example above were compiled using the--ERRFORMAT
option, the error output would be:

x.c 4 9: undefined identifier: xFF

indicating that the error occurred in filex.c at line 4, offset 9 characters into the statement. The
second numeric value - the column number - is relative to the left-most non-space character on the
source line. If an extraspaceor tabcharacter were inserted at the start of the source line, the compiler
would still report an error at line 4, column 9.

10.4.25.2 Modifying the Standard Format

If the default error and warning message format does not meet your editor’s requirement, you can
redefine its format by either using the ERRFORMAT and WARNFORMAT option or by setting two
environment variables:HTC_ERR_FORMAT andHTC_WARN_FORMAT. These options are in the form of
a printf-style string in which you can use the specifiers shown in Table10.4. For example:

--ERRFORMAT=”file %f; line %l; column %c; %s”

The column number is relative to the left-most non-space character on the source line.
The environment variables can be set in a similar way, for example setting the environment

variables from within DOS can be done with the following DOS commands:

147

C51 Compiler Options C51 Command-line Driver

Table 10.4: Error format specifiers

Specifier Expands To
%f Filename
%l Line number
%c Column number
%s Error string

set HTC_WARN_FORMAT=WARNING: file %f; line %l; column %c; %s
set HTC_ERR_FORMAT=ERROR: file %f; line %l; column %c; %s

Using the previous source code, the output from the compiler when using the above environment
variables would be:

ERROR: file x.c; line 4; column 9; undefined identifier: xFF

Remember that if these environment variables are set in a batch file, you must prepend the specifiers
with an additionalpercentcharacter to stop the specifiers being interpreted immediately by DOS,
e.g. the filename specifier would become%f.

10.4.26 --GETOPTION=app,file : Get Command Line Options

This option is used to retrieve the command line options which are used for named compiler appli-
cation. The options are then saved into the given file. This option is not required for most projects.

10.4.27 --HELP<= option >: Display Help

The --HELP option displays information on theC51 compiler options. To find out more about a
particular option, use the option’s name as a parameter. For example:

C51 --help=warn

This will display more detailed information about the--WARN option.

10.4.28 --IDE= type : Specify the IDE Being Used

This option is used to automatically configure the compiler for use by the named Integrated Devel-
opment Environment (IDE). The supported IDE’s are shown in Table10.5.

148

C51 Command-line Driver C51 Compiler Options

Table 10.5: Supported IDEs

Suboption IDE
hitide HI-TECH Software’s HI-TIDE

10.4.29 --INTRAM= address : Specify Internal RAM Address

This option defines the address in internal RAM whereauto variables, function arguments,idata
andnearvariables, collectively known asinternal storage, will be located. Theintram value should
normally be set to address 20, starting user variables just above anybit variables. If this value is
supplied as 0 or 20, the linker options will be configured to concatenate all internal storage onto the
bit variables which always start at 20H. If a value of 21 or higher is used,internalstorage will start at
that address butbit variables will still start at 20H. Care should be taken to avoid overlaying internal
storage over thebit variables. For example, there will be a clash if internal storage is linked at 21H
and there are more than 8bit variables.

See Section7.3.3for information on how to specify the internal RAM when compiling within
HI-TIDE.

10.4.30 --MEMMAP=file : Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,
but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through
the driver. This command would display the memory summary which is normally produced at the
end of compilation by the driver.

10.4.31 --NOEXEC: Do Not Execute Compiler

The--NOEXEC option causes the compiler to go through all the compilation steps, but without ac-
tually performing any compilation or producing any output. This is often useful when used in con-
junction with the-V (verbose) option in order to see all of the command lines the compiler uses to
drive the compiler applications.

10.4.32 --NOPS : Insert Debug NOPs

This option is intended for debuggers which use theLCALL instruction to implement a breakpoint. It
will causeNOP instructions to be strategically inserted into the object code, the purpose of which is
to reserve space for anLCALL to be inserted at a label. Because this causes differences in the object

149

C51 Compiler Options C51 Command-line Driver

code generated, this option is separate from, and should be supplied in addition to, the-G option, if
desired.

See Section7.1.6for information on how to specify an entry offset when compiling within HI-
TIDE.

10.4.33 --NVRAM=address : Specify Non-volatile RAM Address

This option defines the address in external RAM of a non-volatile RAM area used to storepersistent
variables. If this feature is not used or if all RAM is non-volatile then this option should not be
specified. See Section11.3.9.1for more information onpersistentvariables, and Section7.3.4for
information on specifying the non-volatile RAM location when compiling from HI-TIDE.

10.4.34 --OPT<= type> : Invoke Compiler Optimizations

The--OPT option allows control of all the compiler optimizers. By default, without this option, all
optimizations are enabled. The options--OPT or --OPT=all also enable all optimizations. Opti-
mizations may be disabled by using--OPT=none, or individual optimizers may be controlled, e.g.
--OPT=as_allwill only enable the assembler optimizer. The options--OPT=speed or--OPT=space
can also be used to control optimizations for speed or space accordingly.

See Section7.1.2and7.1.3for information on how to use the optimizers when compiling within
HI-TIDE.

10.4.35 --OUTDIR= directory : Specify Output Directory

This option allows control over the directory which output files from the compiler are placed. If
no --OUTDIR option is specified, the current working directory is used. Note that the directory
specified by the--OUTDIR option may be superseded by that specified by the-O option for any files
produced by the linker or subsequently run applications.

10.4.36 --OUTPUT=type : Specify Output File Type

This option allows the type of the output file to be specified. If no--OUTPUT option is specified, the
output file’s name will be derived from the first source or object file specified on the command line.
The available output file format are shown in Table10.6.

See Section7.4.1for information on how to specify the output file type when compiling within
HI-TIDE.

150

C51 Command-line Driver C51 Compiler Options

Table 10.6: Output file formats

option name File format
intel Intel HEX
tek Tektronic
aahex American Automationsymbolic HEX file
mot MotorolaS19 HEX file
ubrof UBROF format
bin Binary file
cof Common Object File Format
elf ELF/DWARF file format
omf51 OMF-51 format
eomf51 Extended OMF-51 format

10.4.37 --PRE : Produce Preprocessed Source Code

The--PRE option is used to generate preprocessed C source files with an extension.pre. This may
be useful to ensure that preprocessor macros have expanded to what you think they should. Use
of this option can also create C source files which do not require any separate header files. This is
useful when sending files for technical support.

See Section4.1.1.3for information on how to produce preprocessed files when compiling within
HI-TIDE.

10.4.38 --PROTO: Generate Prototypes

The--PROTO option is used to generate.pro files containing both ANSI and K&R style function
declarations for all functions within the specified source files. Each.pro file produced will have
the same base name as the corresponding source file. Prototype files contain both ANSI C-style
prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each.pro file should be edited into a global header file which is
included in all the source files comprising a project. The.pro files may also contain static decla-
rations for functions which are local to a source file. These static declarations should be edited into
the start of the source file. To demonstrate the operation of the--PROTO option, enter the following
source code as filetest.c:

#include <stdio.h>
add(arg1, arg2)

151

C51 Compiler Options C51 Command-line Driver

int * arg1;
int * arg2;
{

return *arg1 + *arg2;
}

void printlist(int * list, int count)
{

while (count--)
printf("%d ", *list++);

putchar(’\n’);
}

If compiled with the command:

C51 --CHIP=8051AH --PROTO test.c

C51 will producetest.pro containing the following declarations which may then be edited as
necessary:

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
extern int add(int *, int *);
extern void printlist(int *, int);
#else/* PROTOTYPES */
extern int add();
extern void printlist();
#endif/* PROTOTYPES */

10.4.39 --RAM= lo-hi,<lo-hi,...> : Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which
should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory
which contain physical RAM. The output that will be placed in the ranges specified by this option
are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory
space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made
available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

152

C51 Command-line Driver C51 Compiler Options

--RAM=default,+1000-2fff

for example. To only use an external range and ignore any on-chip memory, use:

--RAM=1000-2fff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with aminuscharacter,-, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h
for allocation of RAM objects.

See Section7.3.2for information on how to specify data memory ranges when compiling within
HI-TIDE.

10.4.40 --ROM=lo-hi,<lo-hi,...>|tag : Specify Additional ROM Ranges

This option is used to specify memory, in addition to any ROM specified in the chipinfo file, which
should be treated as available ROM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by read-only (ROM-based) objects, and not necessarily those areas of memory
which contain physical ROM. The output that will be placed in the ranges specified by this option
are typically executable code and any data variables that are qualified asconst.

When producing code that may be downloaded into a system via a bootloader the destination
memory may indeed by some sort of (volatile) RAM. To only use on-chip ROM memory, this option
is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+1000-2fff

for example. To only use an external range and ignore any on-chip memory, use:

--ROM=1000-2fff

For those chips that have an area of RAM that can be remapped in terms of its location in the
memory space, the tagremapram may be used to indicate that the destination is the remapable area,
for example:

--ROM=remapram

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with aminuscharacter,-, for example:

153

C51 Compiler Options C51 Command-line Driver

Table 10.7: Runtime environment suboptions

Suboption Controls On (+) implies
init The code present in the

startup module that copies
thedata psect’s
ROM-image to RAM.

Thedata psect’s ROM
image is copied into RAM.

clib The inclusion of library files
into the output code by the
linker.

Library files are linked into
the output.

clear The code present in the
startup module that clears
thebss psects.

Thebss psect is cleared.

stack The code present in the
startup module that
initializes the stack pointer.

The stack pointer is
initialized.

keep Whether the startup module
source file is deleted after
compilation.

The startup module is not
deleted.

no_startup Whether a startup module is
produced and linked into
the output.

The startup module is not
generated or linked into the
output.

--ROM=default,-1000-1fff

will use all the defined on-chip memory, but not use the addresses in the range from 1000h to 1fffh
for allocation of ROM objects.

See Section7.3.1for information on how to specify program memory ranges when compiling
within HI-TIDE.

10.4.41 --RUNTIME= type : Specify Runtime Environment

The--RUNTIME option is used to control what is included as part of the runtime environment. The
runtime environment encapsulates any code that is present at runtime which has not been defined by
the user, instead supplied by the compiler, typically as library code.

All runtime features are enabled by default and this option is not required for normal compilation.
The usable suboptions include those shown in Table10.7.

154

C51 Command-line Driver C51 Compiler Options

See Section7.5.1for information on how to specify runtime environment options when compil-
ing within HI-TIDE.

10.4.42 --SCANDEP: Scan For Dependencies

When this option is used, a.dep (dependency) file is generated. The dependency file lists those files
on which the source file is dependant. Dependencies result when one file is#included into another.

10.4.43 --SETOPTION= app,file : Set the Command Line Options For
Application

This option is used to supply alternative command line options for the named application when
compiling. This option is not required for most projects.

10.4.44 --STRICT : Strict ANSI Conformance

The--STRICT option is used to enable strict ANSI conformance of all special keywords. HI-TECH
C supports various special keywords (for example thepersistent type qualifier). If the--STRICT
option is used, these keywords are changed to include twounderscorecharacters at the beginning of
the keyword (e.g.__persistent) so as to strictly conform to the ANSI standard. Be warned that
use of this option may cause problems with some standard header files (e.g. <intrpt.h>).

See Section7.6.3for information on ANSI conformance when compiling within HI-TIDE.

10.4.45 --SUMMARY=type : Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,
or if themem suboption is selected, a memory summary is shown. This shows the memory usage for
all available linker classes.

A psect summary may be shown by enabling thepsect suboption. This shows individual psects,
after they have been grouped by the linker, and the memory ranges they cover.

See Section8.3.4for information on compile summaries produced when compiling within HI-
TIDE.

10.4.46 --VER : Display the Compiler’s Version Information

The--VER option will display what version of the compiler is running.

155

C51 Compiler Options C51 Command-line Driver

10.4.47 --WARN=level : Set Warning Level

The--WARN option is used to set the compiler warning level. Allowable warning levels range from
-9 to 9. The warning level determines how pedantic the compiler is about dubious type conver-
sions and constructs. The default warning level--WARN=lvl0 will allow all normal warning mes-
sages. Warning level--WARN=lvl1 will suppress the messageFunc() declared implicit int.
--WARN=lvl3 is recommended for compiling code originally written with other, less strict, com-
pilers. --WARN=lvl9 will suppress all warning messages. Negative warning levels--WARN=lvl-1,
--WARN=lvl-2 and--WARN=lvl-3 enable special warning messages including compile-time check-
ing of arguments toprintf() against the format string specified.

Use this option with care as some warning messages indicate code that is likely to fail during
execution, or compromise portability.

See Section7.1.1.1for information on how to specify the warning level when compiling within
HI-TIDE.

156

Chapter 11

C Language Features

HI-TECH C supports a number of special features and extensions to the C language which are
designed ease the task of producing ROM based applications. This chapter documents the compiler
options and special features which are available.

11.1 Files

11.1.1 Source Files

The extension used with source files is important as it is used by the compiler drivers to determine
their content. Source files containing C code should have the extension.c, assembler files should
have extensions of.as, relocatable object files require the.obj extension, and library files should
be named with a.lib extension.

11.1.2 Symbol files

The C51 -G and -H options tell the compiler to produce a symbol file which can be used by debuggers
and simulators to perform symbolic and source level debugging. The -H option produces symbol
files which contain only assembler level information, whereas the -G option also includes C source
level information. If no symbol file name is specified, by default a file calledl.symwill be produced.
For example, to produce a symbol file called test.sym which includes C source level information
use:

c51 -8051 -Gtest.sym test.c

157

Files C Language Features

The UBROF output file format which can be produced by the compiler contains both object code
and symbolic debug information and should be used in preference to separate symbol files if you
have an in-circuit emulator which supports it.

11.1.3 Standard Libraries

C51 includes a number of standard libraries, each with the range of functions described in Chapter
A. The naming convention used for the standard libraries is in the form51pbml .lib. The meaning
of each field is described here, where:

p Represents the processor Architecture which is- for the generic 8051,7 for the 80C517 and
derivatives, anda for the 80C751 based processors which lack theLJMP andLCALL instructions
(small model available only).

b Represents the banking Scheme and is a letter representing the type of banking (bcall.as mod-
ule, see Section11.5.3) used in huge model. For all other memory models, and for the generic
8051 huge model library, this will be the reserved letterN. This letter corresponds to the
BANKTYPE entry in the chipinfo file. For more information, see the following Section11.2.1.

m Represents the memory model is one ofs, m, l, or h, which represent the small, medium, large,
and huge models, respectively.

l Represents the library yype and isc for standard library,l for the library which contains only
printf-related functions with additional support for longs, andf for the library which contains
only printf-related functions with additional support for longs and floats.

11.1.4 Run-time Startup Module

A C program requires certain objects to be initialised and the processor to be in a particular state
before it can begin execution of its functionmain(). It is the job of theruntime startupcode to
perform these tasks.

Traditionally, runtime startup code is a generic, precompiled routine which is always linked into
a user’s program. Even if a user’s program does not need all aspects of the runtime startup code,
redundant code is linked in which, albeit not harmful, takes up memory and slows execution. For
example, if a program does not use any uninitialized variables, then no routine is required to clear
thebss psects.

HI-TECH C differs from other compilers by using a novel method to determine exactly what
runtime startup code is required and links this into the program automatically. It does this by per-
forming an additional link step which does not produce any usable output, but which can be used
to determine the requirements of the program. From this information HI-TECH C then “writes” the

158

C Language Features Files

assembler code which will perform the runtime startup. This code is stored into a file which can then
be assembled and linked into the remainder of the program in the usual way.

Since the runtime startup code is generated automatically on every compilation, the generated
files associated with this process are deleted after they have been used. If required, the assembler
file which contains the runtime startup code can be kept after compilation and linking by using the
driver option--RUNTIME=keep. The residual file will be calledstartup.as and will be located
in the current working directory. If you are using an IDE to perform the compilation the destination
directory is dictated by the IDE itself, however you may use the--OUTDIR option to specify an
explicit output directory to the compiler. If the runtime startup module is not deleted and source-
level debug information is enabled, then source-level debug information is produced for the runtime
startup module. This allows the user to step through this module within an IDE.

This is an automatic process which does not require any user interaction, however some aspects
of the runtime code can be controlled, if required, using the--RUNTIME option. These are described
in the sections below.

11.1.4.1 Stack Initialization

The stack suboption to the--RUNTIME option allows control over the initialization of the stack
pointer. By default, the stack pointer is initialized by the runtime startup code. The stack pointer is
set to an address equal to the lower bound of a psect calledstack. This psect is normally empty, but
is used as a placeholder to mark the starting position of the stack pointer.

To disable initialization of the stack pointer, disable thestack suboption, e.g.--RUNTIME=default,-stack,
which specifies the default runtime startup code functionality, excluding the stack initialization.

Changing the address at which the stack pointer is initialized isnot handled by this option, but
can be altered by linking thestack psect at the required location in memory. This allows much
better control over placement of the stack with respect to other RAM-based objects, which may
appear at different locations as the program changes. By default, thestack psect is placed at the
top of RAM, which allows maximum growth of the stack downwards in memory. Adjustment of
the linker options can be made by using the-L command-line driver option, see10.4.8or using the
HI-TIDE memory options described in the7.3.2.

11.1.4.2 Initialization of Data Psects

Another job of the runtime startup code is ensure that any initialized variables contain their initial
value before the program begins execution. Initialized variables are those which are notauto ob-
jects and which are assigned an initial value in their definition, for exampleinput in the following
example.

int input = 88;
void main(void) { ...

159

Files C Language Features

Such initialized objects are placed within thedata psect. These psects have two components. The
first is an area which contains the initial values. This is positioned in non-volatile memory at an
address known as theload address. The other component is where the variables will reside, and be
accessed, once the program is executing. This area is positioned in RAM at an address known as the
link address. The runtime startup code performs a block copy of the values from the load address to
the link address.

The block copy of thedata psect may be omitted by disabling theinit suboption of--RUNTIME.
For example:

--RUNTIME=default,-init

With this part of the runtime startup code absent, the contents of initialized variables will be unpre-
dictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent. Such variables are linked at a different area of memory and are not altered by the
runtime startup code in any way.

11.1.4.3 Clearing the Bss Psects

The ANSI standard dictates that those non-auto objects which are not initialized must be cleared
before execution of the program begins. The compiler does this by grouping all such uninitialized
objects into thebss psect. This psect is then cleared as a block by the runtime startup code.

The block clear of thebss psect may be omitted by disabling theclear suboption of--RUNTIME.
For example:

--RUNTIME=default,-clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be
unpredictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent. Such variables are linked at a different area of memory and are not altered by the
runtime startup code in anyway.

11.1.4.4 Linking in the C Libraries

By default, a set of libraries are automatically passed to the linker to be linked in with user’s program.
The libraries can be omitted by disabling theclib suboption of--RUNTIME. For example:

--RUNTIME=default,-clib

160

C Language Features Processor-related Features

With this part of the runtime startup code absent, the user must provide alternative library or source
files to allow calls to library routines. This suboption may be useful if alternative library or source
files are available and you wish to ensure that no HI-TECH C library routines are present in the final
output.

11.1.4.5 Executing the Main Function

The last code executed as part of the runtime startup code is that to call themain() function — the
first user-defined C function in a program.

11.1.5 ThepowerupRoutine

Some hardware configurations require special initialization, often within the first few cycles of ex-
ecution after reset. To achieve this there is a hook to the reset vector provided via thepowerup
routine. This is a user-supplied assembler module that will be executed immediately on reset. A
“dummy” powerup routine is included in the filepowerup.as. This file can be copied, modified
and included into your project to replace the default (empty) powerup routine that is present in the
standard libraries.

If you use a powerup routine, you will need to add a jump to thestart1 label after your initial-
izations. Refer to comments in the powerup source file for further details.

If the powerup routine is included into a project — specifically if thepowerup psect is of non-
zero length — the runtime startup module will define a reset vector that points to this powerup
routine.

11.2 Processor-related Features

11.2.1 Processor Support

C51 currently supports many hundreds of 8051 derivatives. Additional code-compatible processors
may be added by editing the8051-c.ini file in the LIB directory. User-defined processors should
be placed at the end of the file. The header of the file explains how to specify a processor. Newly
added processors will be available the next time you compile by selecting the name of the new
processor on the command line in the usual way.

11.3 Supported Data Types

The 8051 compiler supports basic data types of 1, 2 and 4 byte size. All multi-byte types follow
mostsignificant byte first format, also known asbig endian. Word size values thus have the most

161

Supported Data Types C Language Features

Table 11.1: Basic data types

Type Size (in bits) Arithmetic Type
bit 1 boolean
char 8 signed or unsigned integer1

unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 32 real
double 32 real

significant byte at the lower address, and double word size values have the most significant byte
and most significant word at the lowest address. The 8051 is a byte oriented machine, there are no
alignment restrictions on word or long sized objects. Structures and structure elements are also free
of alignment restrictions, thus structures will never contain “holes”.

Note that when right-shifting an integer data type, a zero is places in the most significant bit,
whether the integer is signed or unsigned.

Table11.1shows the data types and their corresponding size and arithmetic type.

11.3.1 Radix Specifiers and Constants

The format of integral constants specifies their radix.C51 supports the ANSI standard radix speci-
fiers as well as one which enables binary constants to specified in C code. The format used to specify
the radices are given in Table11.2. The letters used to specify binary or hexadecimal radices are case
insensitive, as are the letters used to specify the hexadecimal digits.

Any integral constant will have a type which is the smallest type that can hold the value without
overflow. The suffixl or L may be used with the constant to indicate that it must be assigned either
a signed long or unsigned long type, and the suffixu or U may be used with the constant to
indicate that it must be assigned an unsigned type, and bothl or L andu or U may be used to indicate
unsigned long int type.

Floating-point constants havedouble type unless suffixed byf or F, in which case it is afloat
constant. The suffixesl or L specify along double type which is considered an identical type to
double by C51.

162

C Language Features Supported Data Types

Table 11.2: Radix formats

Radix Format Example
binary 0bnumberor 0Bnumber 0b10011010
octal 0number 0763
decimal number 129
hexadecimal 0xnumberor 0Xnumber 0x2F

Character constants are enclosed by single quote characters “’ ”, for example’a’. A character
constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters “” “, for example
”hello world”. The type of string constants isconst char * and the strings are stored in ROM.
Assigning a string constant to a non-const char pointer will generate a warning from the compiler.
For example:

char * cp = ”one”; // ”one” in ROM, produces warning
const char * ccp = ”two”; // ”two” in ROM
char ca[] = ”two”; // ”two” different to the above

A non-const array initialised with a string, for example the last statement in the above example,
produces an array in RAM which is initialised at startup time with the string”two” (copied from
ROM), whereas a constant string used in other contexts represents an unnamedconst-qualified
array, accessed directly in ROM.

C51 will use the same storage location and label for strings that have identical character se-
quences, except where the strings are used to initialise an array residing in RAM as indicated in the
last statement in the above example.

Two adjacent string constants (i.e. two strings separatedonly by white space) are concatenated
by the compiler. Thus:

const char * cp = ”hello ” ”world”;

assigned the pointer with the string” hello world”.

11.3.2 Bit Data Types

HI-TECH C allows single bit variables to be declared using the keywordbit. A variable declaredbit,
for example:

static bit init_flag;

163

Supported Data Types C Language Features

will be allocated in the bit addressable psectrbit, and will be visible only in that module or function.
When the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible.
Therbit psect is linked into the 8051 bit addressable area from 20H to 2FH, limiting the number

of bit variables in a single program to 128.
Bit variables are manipulated using the efficient 8051 bit addressing modes. These variables

behave in all respects like normal unsigned char variables, except that they may only contain the
values 0 and 1, therefore they provide a convenient and efficient method of storing boolean flags
without consuming large amounts of internal RAM. Due to the lack of suitable addressing modes on
the 8051 it is not possible to declare pointers tobit variables or to statically initialisebit variables. If
the C51 flag -STRICT is used, thebit keyword becomes__bit.

11.3.2.1 Using Bit-Addressable Registers

Thebit variable facility may be combined with absolute variable declarations to access the bit ad-
dressable special function registers at bit addresses 80H to FFH. The 128 bit addresses from 80H to
FFH map onto the 16 special function registers with addresses divisible by 8. Thus individual bits
in function registers at addresses 80H, 88H ... F8H may be accessed. For each bit addressable SFR,
address of bit 0 of the special function register is the same as its byte address. Thus, bit 0 of the SFR
at address A8H is bit address A8H, bit 1 is A9H, up to bit 7 which is AFH. For example, to access
bit 3 of port P2 at A0H, declare abit variable at absolute address A3H:

static bit P2_3 @ 0xA3;

Similarly, bits 0 to 7 of port P0 at address 80H would be declared as:

static bit P0_0 @ 0x80;
static bit P0_1 @ 0x81;
static bit P0_2 @ 0x82;
static bit P0_3 @ 0x83;
static bit P0_4 @ 0x84;
static bit P0_5 @ 0x85;
static bit P0_6 @ 0x86;
static bit P0_7 @ 0x87;

164

C Language Features Supported Data Types

11.3.3 8-Bit Data Types

HI-TECH C supports bothsigned charandunsigned char8 bit integral types. The defaultchar
type issigned charunless the C51 option –char=unsigned is used, in which case it isunsigned char.
Signed charis an 8 bit two’s complement signed integer type, representing integral values from -128
to +127 inclusive.Unsigned charis an 8 bit unsigned integer type, representing integral values from
0 to 255 inclusive.

It is a common misconception that the Cchar types are intended purely for ASCII character
manipulation. This is not true, indeed the C language makes no guarantee that the default character
representation is even ASCII. Thechar types are simply the smallest of up to four possible integer
sizes, and behave in all respects like integers. The reason for the namechar is historical and does
not mean thatchar can only be used to represent characters. It is possible to freely mixchar values
with short, int andlong in C expressions.

On the 8051 thechar types will commonly be used for a number of purposes, as 8 bit integers,
as storage for ASCII characters, and for access to I/O locations.Unsigned charis the C type which
logically maps onto the format of most 8051 special function registers. Theunsigned chartype is the
most efficient data type on the 8051 and maps directly onto the 8 bit bytes which are most efficiently
manipulated by 8051 instructions. It is suggested thatchar types be used wherever possible so as to
maximize performance and minimize code size.

11.3.4 16-Bit Data Types

HI-TECH C supports four 16 bit integer types.Int andshort are 16 bit two’s complement signed
integer types, representing integral values from -32768 to +32767 inclusive;Unsigned intandun-
signed shortare 16 bit unsigned integer types, representing integral values from 0 to 65535 inclusive.
16 bit integer values are represented inbig endianformat with the most significant byte at the lower
address.

Both int and short are 16 bits wide as this is the smallest integer size allowed by the ANSI
standard for C. 16 bit integers were chosen so as not to violate the ANSI standard. Allowing a
smaller integer size, such as 8 bits would lead to a serious incompatibility with the C standard. 8 bit
integers are already fully supported by thechar types and should be used in place ofint wherever
possible.

11.3.5 32-Bit Data Types

HI-TECH C supports two 32 bit integer types.Longis a 32 bit two’s complement signed integer type,
representing integral values from -2147483648 to +2147483647 inclusive.Unsigned longis a 32 bit
unsigned integer type, representing integral values from 0 to 4294967295 inclusive. 32 bit integer
values are represented inbig endianformat with the most significant word and most significant byte

165

Supported Data Types C Language Features

Table 11.3: Floating-point formats

Format Sign biased exponent mantissa
IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

Table 11.4: Floating-point format example IEEE 754

Number biased expo-
nent

1.mantissa decimal

7DA6B69Bh 11111011b 1.01001101011011010011011b2.77000e+37
(251) (1.302447676659)

at the lowest address. 32 bits are used forlongandunsigned longas this is the smallest long integer
size allowed by the ANSI standard for C. It is suggested that 32 bit integers be used sparingly due to
the code size and speed penalty imposed by 32 bit integer manipulation on a simple 8 bit architecture
like the 8051.

11.3.6 Floating Point Types and Variables

Floating point is implemented using the IEEE 754 32-bit format.
The 32-bit format is used for allfloat anddouble values.
This format is described in Table11.3, where:

• sign is the sign bit

• The exponent is 8-bits which is stored asexcess 127(i.e. an exponent of 0 is stored as 127).

• mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent−127) x 1.mantissa.
Here are some examples of the IEEE 754 32-bit formats:
Note that the most significant bit of the mantissa column in Table11.4(that is the bit to the left

of the radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

The 32-bit example in Table11.4can be calculated manually as follows.

166

C Language Features Supported Data Types

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary
number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this
fraction. The floating-point number is then given by:

−10×2124×1.302447676659= 1×2.126764793256e+37×1.302447676659≈ 2.77000e+37
Variables may be declared using thefloat anddouble keywords, respectively, to hold values

of these types. Floating point types are always signed and theunsigned keyword is illegal when
specifying a floating point type. Types declared aslong double will use the same format as types
declared asdouble.

11.3.7 Structures and Unions

HI-TECH C supportsstruct andunion types of any size from one byte upwards. Structures and
unions may be passed freely as function arguments and return values. Pointers to structures and
unions are fully supported. The 8051 is a byte oriented machine, so there are no alignment restric-
tions on structure and union members.

11.3.7.1 Bit Fields in Structures

HI-TECH C fully supportsbit fields in structures. Version 7 and later of the compiler allocate bit
fields starting with the most significant bit. Bit fields are allocated within 16 bit words, the first bit
allocated will be the most significant bit of the most significant byte of the word, corresponding to
the sign bit in a signed 16 bit word. Bit fields are always allocated in 16 bit units, starting from the
most significant bit. When a bit field is declared, it is allocated within the current 16 bit unit if it will
fit. Otherwise a new 16 bit word is allocated within the structure. Bit fields never cross the boundary
between 16 bit words, but may span the byte boundary within a given 16 bit allocation unit.

For example, the declaration:

struct {
unsigned hi : 1;
unsigned dummy : 14;
unsigned lo : 1;

} foo @ 0x10;

will produce a structure occupying 2 bytes from address 10h. The fieldhi will be bit 15 of address
10h, lo will be bit 0 of address 11h. The most significant bit ofdummywill be bit 14 of address
10h and the least significant bit ofdummywill be bit 1 of address 11h. Unnamed bit fields may be
declared to pad out unused space between active bits in control registers. For example, ifdummyis
never used the structure above could have been declared as:

167

Supported Data Types C Language Features

struct {
unsigned hi : 1;
unsigned : 14;
unsigned lo : 1;

} foo @ 0x10;

11.3.8 Standard Type Qualifiers

11.3.8.1 Const and Volatile Type Qualifiers

HI-TECH C supports the use of the ANSI type qualifierconstandvolatile. Theconsttype qualifier
is used to tell the compiler that an object has a constant value and will not be modified. If any attempt
is made to modify an object declaredconst, the compiler will issue a warning. User defined objects
declared const are placed in a specialpsectcalledconst. For example:

const int version = 3;

Thevolatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain
its value between successive accesses. This prevents the optimizer from eliminating apparently
redundant references to objects declaredvolatile because it may alter the behaviour of the program
to do so. All I/O ports and any variables which may be modified by interrupt routines should be
declaredvolatile, for example:

volatile unsigned char P1 @ 0x90;

11.3.9 Special Type Qualifiers

HI-TECH C supports special type qualifiers,persistent, near, far, codeand idata to allow the user
to control placement ofstaticandexternclass variables into particular address spaces.

If the C51 –STRICT option is used, these type qualifiers are changed to__persistent, __near,
__far, __codeand__idata. These type qualifiers may also be applied to pointers,near and idata
allow the declaration of 8 bit pointers which use the register indirect addressing mode to access
internal RAM.

These type qualifiers may not be used on variables of classauto. If used on variables local to a
function they must be combined with thestatickeyword. You may not write:

void func(void)
{
near int intvar; /* WRONG! */
.. other code ..
}

168

C Language Features Supported Data Types

This is becauseintvar is of classauto. To declareintvar as anear variable local to functiontest(),
write:

static near int intvar;.

11.3.9.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialized are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired
for some data to be preserved across resets or even power cycles (on-off-on). Thepersistenttype
qualifier is used to qualify variables that should not be cleared on startup. In addition, anypersistent
variables will be stored in a different area of memory to other variables, and this area of memory
may be assigned to a specific address (with the--NVRAM option to C51). Thus if a small amount
of non-volatile RAM is provided thenpersistentvariables may be assigned to that memory. On
the other hand if all memory is non-volatile, you may choose to have persistent variables allocated
to addresses by the compiler along with other variables (but they will still not be cleared). One
advantage of assigning an explicit address for persistent variables is that this can remain fixed even
if you change the program, and other variables get allocated to different addresses. This would
allow configuration information etc. to be preserved across a firmware upgrade. Note that persistent
variables are always allocated in external data memory, so in small model they will be treated asfar.

There are some library routines provided to check and initialize persistent data - see the functions
persist_check() and persist_validate() in the library functions cahpterA for more information.

11.3.9.2 Near Type Qualifier

The near type qualifier is used to place variables in internal RAM, where they may be more effi-
ciently manipulated using 8051 instructions. This type qualifier is of most use in the medium, large,
and huge models which place static variables in external RAM by default. In the small model all
staticandexternvariables are placed in internal RAM sonearneed not be used. Variables declared
to benearare placed in the psectrbss, which is linked into internal RAM in all memory models.

Use ofnearcan provide substantial improvements to code quality, as access to external RAM is
very inefficient due to the nature of the 8051 instruction set. Ifintvar is anint in external RAM, the
statement intvar = 10; will generate code:

MOV DPTR,#_intvar
MOV A,#0
MOVX @DPTR,A
INC DPTR
MOV A,#10
MOVX @DPTR,a

169

Supported Data Types C Language Features

If intvar is declared asnear int, the same statement will generate:

MOV _intvar,#high(10)
MOV _intvar+1,#low(10)

Near variables may be statically initialized, for example:

static near int bufsize = 128;

Initializednearvariables such asbufsizewill be placed in a psect calledrdataand copied from ROM
to internal RAM by the run-time startup module.Nearcan also be applied to pointers. A pointer of
classnear, for example:

near char * nptr;

is a single byte pointer which can only address objects in the range 00H to FFH.
Near pointers are much more efficient than the 16 bit pointer classes and should be used wherever

possible to maximize code efficiency. The compiler treats accesses via constantnear pointers in a
special manner, generating instructions which directly address the internal addresses. For example,
the statement:

var = *(near char *)0x90;

will generate this code:

MOV _var,90H.

This behaviour means that de-referencing a constantnear pointer in the range 80H to FFH will
access the SFR address space, not the indirect RAM area. If anearpointer variable containing 90H
is de-referenced, the register indirect addressing mode will be used and internal RAM location 90H
will be accessed, not SFR 90H.

11.3.9.3 Idata Type Qualifier

Idata is similar tonear, except it declares variables which will always be accessed using the register
indirect addressing mode of the 8051.Nearvariables must always reside at addresses below 80H, as
direct addressing above 7FH accesses special function registers.Idatavariables, which do not suffer
from this limitation, can be used to access the indirectly addressable internal RAM area from 80H
to FFH. For example, the declaration:

idata int intvar;

170

C Language Features Supported Data Types

creates a variable calledintvar which is always accessed indirectly.
The statement:

intvar = 0x1234;

will generate this code:

MOV R0,#_intvar
MOV @R0,#12H
INC R0
MOV @R0,#34H

Statically initializedidatavariables may be declared, such as:

idata int count = 10;

Initialized idatavariables are allocated in a psect calledirdata which is copied from ROM to internal
RAM by the startup code. Pointers toidatamay be declared, for example:

idata char * iptr;

Pointers toidatasuch asiptr occupy only a single byte of storage and are capable of addressing any
object in internal RAM from 00H to FFH using the register indirect addressing mode.

The statementch = *iptr; would generate this code:

MOV R0,_iptr
MOV _ch,@R0

If a constantidata pointer is de-referenced, the compiler will load the constant address into R0 or
R1 and use the indirect addressing mode. Unlike a constantnear pointer,idata pointers can never
be used to access special function registers. For example, the statement:

var = *(idata char *)0x90;

will generate this code:

MOV R0,#90H
MOV _var,@R0

171

Supported Data Types C Language Features

11.3.9.4 Far Type Qualifier

The type qualifierfar is used to place objects in external RAM (the XDATA address space). This
type qualifier is of the most use in thesmallmemory model where all variables are placed in internal
RAM unless declaredfar. Themedium, large, andhugemodels already use external RAM for all
staticandexternvariables, if using these models you will not need to usefar. Thefar type qualifier
is used to declare static variables as follows:

far int f_int;

All accesses tof_int will use the MOVX instruction to access the XDATA address space. For exam-
ple, the statement:

intvar = f_int;

will generate the code:

MOV DPTR,#_f_int
MOVX A,@DPTR
MOV _intvar,A
INC DPTR
MOVX A,@DPTR
MOV _intvar+1,A

Far may also be used to declare variables at absolute locations in the external address space, for
example:

far unsigned char sio_a_cmd @ 0xFF00;
far unsigned char sio_a_data @ 0xFF01;

This will declare two externally mapped I/O ports at external addresses FF00H and FF01H. Pointers
to objects of classfar may be declared:

far char * fptr;

Far pointers can access a “combined” address space which is the concatenation of internal RAM
from 00H to FFH and external RAM from 100H to FFFFH. Accesses viafar pointers generate code
(or library calls) which check the high byte of the pointer and access internal RAM or external RAM
as appropriate. For example, the statement*fptr = 0; will write 0 to internal ram address 6EH
if fptr contains 006EH. Iffptr contains 016EH, the same statement will write 0 to external RAM
address 016EH.

172

C Language Features Supported Data Types

11.3.9.5 Code Type Qualifier

Thecodetype qualifier is used to place initialized static objects into the CODE address space of the
8051. Objects declared to becodemust be statically initialized, for example:

code int count = 0x1234;

The compiler will placecount in the codepsect, which is linked into program ROM immediately
after thetextpsect.Codeobjects can not be modified, indeed the 8051 instruction set does not even
allow the CODE address space to be written. The statementicount = count; will generate this
code:

MOV DPTR,#_count
CLR A
MOVC A,@A+DPTR
MOV _icount,A
INC DPTR
CLR A
MOVC A,@A+DPTR
MOV _icount+1,A

All access tocodeobjects takes place via theMOVC A,@A+DPTR instruction. Objects of classcode
occupy a completely separate address space to normal variables and constants. Standard pointers
andfar pointers cannot even address objects of classcodein the medium and large models. In order
to access data of classcode, the 8051 compiler supports pointers tocode.

The most common application ofcodeobjects is to store strings in ROM. Clearly, such strings
cannot be accessed by routines likeprintf() andputs()which accept normalchar * arguments. A
routine to write acodestring in the same manner asputs()could be encoded as:

void
code_puts(code char * codeptr)
{

char ch;
while (ch = *codeptr++)

putch(ch);
putch(’\n’);

}

Code_puts() could then be used to display strings directly from ROM as follows:

extern void code_puts(code char *);

173

Supported Data Types C Language Features

code char hello[] = "Hello, world\n";
main()
{

code_puts(hello);
}

Care must be taken to avoid passing pointers tocode to any routine which expects a default or
far pointer. Likewise, normal andfar pointers should not be passed to routines likecode_puts().
Naturally the compiler will assist with appropriate warning messages if it detects casts between
incompatible pointer classes.

11.3.10 Pointer Types

HI-TECH C supports several different classes of pointer, of both 8 and 16 bit size. 8 bit pointers
may only access data objects which reside in internal RAM. 16 bit pointers may access be used to
access objects in internal RAM, external RAM and the CODE address space depending on the usage
and the class of the pointer. The default pointer class, unmodified by any class keywords such as
code, is a 16 bit pointer which addresses a 64K address space which is the concatenation of internal
RAM (00H to FFH) and either the CODE space (in small model), or the external RAM space (in the
medium and large models).

11.3.10.1 Pointers in small model

It is important to remember that in small model, pointers to addresses above FFH do not address
any RAM. When using small model, if you wish to access external RAM you will need to use the
far or xdatatype qualifier both to declare external RAM variables and to declare pointers which can
address external RAM. To illustrate the behaviour of pointers in small model, the code:

char ch1, ch2;
main()
{

char * ptr;
ptr = (char *) 0x60;
ch1 = *ptr;
ptr = (char *) 0x1060;
ch2 = *ptr;

}

will read internal RAM location 60H into ch1 and ROM location 1060H into ch2. To access external
RAM location 1060H a pointer of classfar would need to be used, for example:

174

C Language Features Supported Data Types

Table 11.5: Pointer classes — small model

Pointer class Address space Size Example
default IRAM+CODE 16 bit char *ptr
near IRAM 8 bit near char *ptr
idata IRAM 8 bit idata char *ptr
const IRAM+CODE 16 bit const char *ptr
far XDATA 16 bit far char *ptr
xdata XDATA 16 bit xdata char *ptr
pdata XDATA 8 bit pdata char *ptr

char ch2;
main()
{

far char * ptr;
ptr = (far char *) 0x1060;
ch2 = *ptr;

}

Attempts to write to memory via pointers with values above FFH cause undefined results as the 8051
does not have instructions to write to CODE memory. Once again, if you want to write to external
RAM in small model, you must use variables and pointers of classfar or xdata. If only 8 bits of the
external data bus are decoded then you can also use thepdatapointer, which will usemovx a,@r1
type instructions.Pdatapointers are 8 bits wide.

The available pointer classes in small model are listed in Table11.5. All of the pointer classes
listed may also be combined with the ANSI Cconstandvolatile type qualifiers. Theconst type
qualifier has the effect of prohibiting indirect writes via pointers, thevolatile type qualifier disables
optimization of apparently redundant accesses and should be used when declaring pointers to mem-
ory mapped I/O devices.

11.3.10.2 Pointers in the medium, large and huge models

In the medium, large and huge memory models, the default pointer classes address internal RAM
when pointing to addresses 00H to FFH and external RAM when pointing to addresses 0100H to
FFFFH. In these models, the default pointer classes suffer from none of the limitations of pointers
in small model.

To use the same example shown for small model:

175

Supported Data Types C Language Features

Table 11.6: Pointer classes — medium, large and huge models

Pointer class Address space Size Example
default IRAM+XDATA 16 bit char *ptr
near IRAM 8 bit near char *ptr
idata IRAM 8 bit idata char *ptr
const IRAM+XDATA 16 bit const char *ptr
code CODE 16 bit code char *ptr
far IRAM+XDATA 16 bit far char *ptr
xdata XDATA 16 bit xdata char *ptr

char ch1, ch2;
main()
{

char * ptr;
ptr = (char *) 0x60;
ch1 = *ptr;
ptr = (char *) 0x1060;
ch2 = *ptr;

}

If compiled as either medium, large or huge model code, this example will read the contents of
internal RAM location 60H into ch1 and the contents of external RAM location 1060H into ch2.
Attempts to write to memory locations above FFH will behave as expected, writing to external
RAM. In the medium and large models it is necessary to use thecodequalifier to access data stored
in ROM.

The available pointer classes in the medium, large and huge models are listed in Table11.6. All
of the pointer classes listed may also be combined with the ANSI Cconstandvolatile type qualifiers.
The consttype qualifier has the effect of prohibiting indirect writes via pointers, thevolatile type
qualifier disables optimization of apparently redundant accesses and should be used when declaring
pointers to memory mapped I/O devices.

To access external data memory unconditionally in medium, large, and huge model, use thexdata
qualifier.

176

C Language Features Supported Data Types

11.3.10.3 Function Pointers

Function pointers can be defined to indirectly call functions or routines in the program space. The
size of these pointers are 16 bits wide, with the exception of far functions in huge model which are
32 bits wide. Note that 16 bit function pointers tonear andbasenearfunctions in huge model are
currently unsupported. The addresses for all code labels are always shown in the map file as an
untruncated byte address regardless of the options used.

11.3.10.4 Combining type modifiers and pointers

Theconst, volatile, idata, near, far andcodemodifiers may also be applied to pointers, controlling
the behaviour of the object which the pointer addresses. For example, you may declare a pointer to
near, which is an 8 bit pointer addressing only objects in internal RAM.

When using these modifiers with pointer declarations, care must be taken to avoid confusion as
to whether the modifier applies to the pointer, or the object addressed by the pointer. The rule is
as follows: if the modifier is to the left of the “*” in the pointer declaration, it applies to the object
which the pointer addresses. If the modifier is to the right of the “*”, it applies to the pointer variable
itself. Using thenear type qualifier to illustrate, the declaration:

near char * nptr;

declares a pointer to anear character, i.e. a character which is located within internal RAM. The
nearmodifier applies to the object which the pointer addresses because it is to the left of the “*” in
the pointer declaration.

In small model, the C statement*nptr = 1; will generate this code:

MOV R0,_nptr
MOV @R0,#1

The declaration:char * near ptr; behaves quite differently however. Thenearqualifier is to the
right of the “* ” and thus applies to the actual pointer variableptr, not the object which the pointer
addresses. This declaration produces a pointer variable which resides in thenearaddress space.

Finally, the declaration:near char * near nnptr; will generate a pointer variable which
resides in internal RAM and which can only address objects in the first 256 bytes of memory. This
is the most efficient possible pointer type on the 8051. Note that if you are using small model, all
variables are placed in internal RAM unless specifically declared to befar. The type qualifiersidata,
far, code, constandvolatilemay also be applied to pointers.

11.3.10.5 Near and Idata pointers

Pointers to classesnearandidata may be declared by prefixing the “*” in the declaration withnear
or idata. For example:

177

Supported Data Types C Language Features

near char * near_ptr;
idata char * idata_ptr;

declare pointers to classnearandidata respectively.
The positioning of the qualifier to the left of the “*” is not important, thus:

near char * near_ptr;

and

char near * near_ptr;

are equivalent declarations. Pointers tonear and idata are both 8 bit pointers which can address
the 256 internal RAM area. Note that pointers to addresses 80H to FFH access the indirect internal
RAM area, NOT the special function registers at the same addresses.Nearandidata may be mixed
with the ANSI standard modifiersconstandvolatile to declare variables and pointers which are both
nearor idataandconstor volatile.

Variables of classpointer to nearandpointer to idatabehave identically in all cases. However,
there is one case wherenear and idata are not equivalent, that is, the de-referencing of constant
pointers.

The C language allows a constant value to be cast to a pointer and then de-referenced. HI-TECH
C extends this type casting capability to include all special pointer classes includingnearandidata.
It is possible to de-reference a constant pointer with a statement like:ch = *(near char *)0x90;
.

A constant de-reference of anear pointer such as the above example will generate code which
accesses SFR location 90H, NOT internal RAM location 90H.

On the other hand, the statement:ch = *(data char *)0x90; will generate code which ac-
cesses internal RAM location 90H, not SFR location 90H.

Put another way, de-referencing a constantnear pointer generates code using the DIRECT ad-
dressing mode of the 8051, such as:MOV _ch,90H whereas de-referencing a constantidata pointer
will generate code which uses the INDIRECT address mode, such as:

MOV R0,#90H
MOV _ch,@R0

Use of constant pointers to access internal RAM or SFR space is strongly discouraged. Direct access
to special function registers should be achieved using the absolute variable facility.

178

C Language Features Supported Data Types

11.3.10.6 Far pointers

HI-TECH C allows pointers to classfar to be declared. Pointers tofar are 16 bit pointers which can
be used to access the 64K external RAM (XDATA) area on the 8051.Far pointers are of most use in
the small memory model and probably will not be required in medium, large, or huge model code,
since afar pointer in these models is the same as a default pointer - it accesses internal memory
below 100h.

A variable of classpointer to farcan be declared as follows:

far char * far_ptr;

The above declaration produces a 16 bit pointerfar_ptr which can be used to access external RAM.
All accesses to*far_ptr are performed via theMOVX A,@DPTR andMOVX @DPTR,A instructions of
the 8051.

11.3.10.7 Xdata pointers

An xdatapointer will always access external data memory, in all models. It will produce movx
instructions.

11.3.10.8 Pdata pointers

If small model is used, and only 8 bits of external data address are decode, then thepdataqualifier
may be useful. A pointer topdatawill occupy only 8 bits, and when the pointer is dereferenced a
movx a,@r1 instruction or similar will be generated.

11.3.10.9 Code pointers

Thecodetype qualifier is used to declare constants which are placed in ROM and accessed using the
MOVC A,@A+DPTR instruction. HI-TECH C allows variables of classpointer to codeto be declared.
Pointers tocodeare of most use in the medium, large, and huge models where the default pointer
class addresses external RAM. Small model code will not need to use thecodequalifier. A common
use ofcodeconstants and variables of classpointer to codeis to access string constants such as
menus and prompts which have been placed in ROM.

The following code illustrates this technique:

#include <conio.h>
static code char hello[] = "Hello, world\n";
static void
code_puts(code char * cptr)
{

179

Storage Class and Object Placement C Language Features

char ch;
while (ch = *cptr++)

putch(ch);
}
main()
{

code_puts(hello);
}

Use ofcodeconstants and pointers can reduce external RAM usage, particularly in the medium,
large, and huge memory models, which copy initialized variables to external RAM.

11.3.10.10 Const pointers

Pointers toconstshould be used when indirectly accessing objects which have been declared using
the constqualifier. Constpointers behave in nearly the same manner as the default pointer class
in each memory model, the only difference being that the compiler forbids attempts to write via a
pointer toconst.

Thus, given the declaration:

const char * cptr;

the statement:ch = *cptr; is legal, but the statement:*cptr = ch; is not.
In the small model, const pointers always access program ROM, because const declared objects

are stored in ROM. In the other models const pointers behave like normal pointers, except that you
may not write to memory via a const pointer. The const class may be combined with the classes near
and far to produce variables and pointers to constant objects in either of these address spaces.

Thus the declaration:

near const * ncptr;

produces a variablencptr which is an 8 bit pointer toconstcharacters in internal RAM. It is possible
to read internal RAM by de-referencingncptr, but the statement:*ncptr = 0; will be rejected by
the compiler.

11.4 Storage Class and Object Placement

11.4.1 Local variables

C supports two classes of local variables in functions:autovariables which are normally allocated
on some sort of stack andstaticvariables which are always given a fixed memory location.

180

C Language Features Storage Class and Object Placement

11.4.1.1 Auto Variables

Auto variables are the default type of local variable. Unless explicitly declared to bestatica local
variable will be madeauto.

Due to architectural limitations on the 8051, in the small and medium modelsautovariables are
not allocated on the stack and are instead given fixed addresses within therbsspsect. The name of
theautovariable block for a function will be the name of the function with?a_prepended.

For example, the following function:

void test(void)
{

int i;
char c, k;
i = 10;
c = 20;
k = 30;

}

has 4 bytes ofautovariables in a block called?a_test, as is illustrated by the code generated for the
three assignments:

;x.c: 6: i = 1;
MOV ?a_test,#0
MOV ?a_test+1,#10

;x.c: 7: c = 2;
MOV ?a_test+2,#20

;x.c: 8: k = 3;
MOV ?a_test+3,#30

Auto variables may be overlaid by storage allocated for other functions. The 8051 does have an
addressable stack, but the linker will allocate the same local variable addresses to functions which
can never be active at the same time.Autovariables are not guaranteed to retain their value between
successive calls to a function.

A function in small or medium model may be declared to bereentrantin which case arguments
and auto variables will be stored on the 8051 stack. This allows a function to be called re-entrantly
or recursively.

In the large and huge models,autovariables are allocated on the external stack and accessed via
the MOVX instruction. These models permit fully re-entrant and recursive code; any function may
be invoked more than once without corruption of function arguments andautovariables. If global
optimization is used, someautovariables may be placed in registers.

181

Storage Class and Object Placement C Language Features

11.4.1.2 Static Variables

Static variables are allocated in thebsspsect and occupy fixed memory locations which will not be
overlapped by storage for other functions.Staticvariables are local in the function which they are
declared in, but may be accessed by other functions via pointers.Staticvariables are guaranteed to
retain their value between calls to a function, unless explicitly modified via a pointer.Staticvariables
are not subject to any architectural limitations on the 8051.

11.4.2 Absolute Variables

A global or static variable can be located at an absolute address by following its declaration with the
construct@ address,for example:

volatile unsigned char P1 @ 0x90;

will declare a variable called P1 located at 90H in the special function register area of the 8051
address space.

Note that the compiler does not reserve any storage, but merely equates the variable to that
address, the compiler generated assembler will include a line of the form:

_P1 equ 90h

Absolute variables provide a convenient method of accessing the built in special function registers
of the 8051. Absolute variable declarations may be combined with thefar type qualifier to access
memory mapped I/O devices in the external address space.

For example:

volatile far unsigned char SIO_A_DATA @ 0x1FF0;

will declare a variable calledSIO_A_DATAlocated at 1FF0H in the XDATA address space. This
location will be accessed using the 8051MOVX instruction.

For example the C statement

SIO_A_DATA = ’A’;

will produce these 8051 instructions:

MOV DPTR,#1FF0H
MOV A,#65
MOVX @DPTR,A

182

C Language Features Functions

11.5 Functions

11.5.1 Function Argument passing

Although the 8051 processor does have an addressable stack, the small and medium memory models
only use the stack to store function return addresses. A combination of register based argument
passing and static memory allocation is used for function arguments.

Auto variables are allocated to static locations or registers in the small and medium models. If
global optimization is used, registers may be used to hold someautovariables and arguments. The
large and huge memory models use an external stack forautovariables and some argument passing.

The large and huge models will also use registers to pass arguments, in the same manner as the
small and medium models. If global optimization is used, registers may be used to hold someauto
variables and arguments.

11.5.1.1 Small and medium model argument passing

The small and medium models use the same scheme for function arguments, a combination of reg-
ister and static memory based argument passing. Generally function arguments are passed in static
memory locations in internal RAM (except inreentrantfunctions), with the left most argument at
the lowest address. The name of the argument block for a function is the name of the function with
the character?_prepended. Thus the arguments for a function calledtest()will be passed in a block
of internal memory called?_test. The function argument block will be allocated in therbsspsects
and such arguments will be accessed in the same manner as any other internal memory variable.

In addition to the static argument scheme detailed above, HI-TECH C will pass up to 4 bytes of
function arguments in registers R2, R3, R4 and R5. Register based argument passing only occurs
with functions which have an ANSI C style function prototype. Functions which use old style C
declarations will receive all arguments in static memory locations. For functions which have an
ANSI style prototype, some arguments will be passed in registers R2, R3, R4 and R5.

The rules for register based argument passing are as follows:

• Only the left most two arguments to a function will be passed in registers. All other arguments
will be passed in static memory locations.

• Only 8 bit and 16 bit arguments will be passed in registers. 32 bit arguments and structures of
size 24 bits and larger will be passed in static memory locations.

• Any argument followed by a variable argument list (...) will be passed in static memory
locations.

• If the first argument to a function is an 8 bit quantity, it will be passed in register R5.

183

Functions C Language Features

• If the first argument to a function is a 16 bit quantity, it will be passed in registers R4 and R5
with the high order byte in R4 and the low order byte in R5. Structures and unions of size 16
bits will also be passed in R4 and R5.

• If the second argument to a function is an 8 bit quantity, it will be passed in register R3.

• If the second argument to a function is a 16 bit quantity, it will be passed in registers R2 and
R3 with the high order byte in R2 and the low order byte in R3. Structures and unions of size
16 bits will also be passed in R2 and R3.

The following examples demonstrate the argument passing mechanisms used by the small and
medium memory models:

void char_func(char ch);
will receive argumentch in register R5. For example, the call char_func(10) will generate the

code:

MOV R5,#10
LCALL _char_func

void int_func(int i);
will receive argumenti in register R4 and R5. The C statement:

int_func(0x1234);

will call int_func()with 12H in R4 and 34H in R5.

void long_func(long l);

will receive argumentl in a 4 byte block of internal RAM called?_long_func. The call:

long_func(0x12345678);

will generate this code:

MOV ?_long_func,#12H
MOV ?_long_func+1,#34H
MOV ?_long_func+2,#56H
MOV ?_long_func+3,#78H
LCALL _long_func

The call:

void var_args(char * str, ...);

184

C Language Features Functions

will receive argument str in locations?_var_argsand?_var_args+1becausestr is followed by a
variable argument list. See the manual Section11.5.1.5for a discussion of variable argument list
passing in the small and medium models.

void multi_args(long l, int i1, int i2);

will receive argumentsl andi2 in static memory locations andi1 in R2 and R3. The call:

multi_args(1, 2, 3);

will generate this code:

MOV ?_multi_args+4,#0
MOV ?_multi_args+5,#3
MOV R2,#0
MOV R3,#2
MOV ?_multi_args,#0
MOV ?_multi_args+1,#0
MOV ?_multi_args+2,#0
MOV ?_multi_args+3,#1
LCALL _multi_args

11.5.1.2 Reentrant functions

In small and medium model it is possible to declare a function to bereentrant, which will have the
effect of allocating auto variables and parameters on the 8051 stack, instead of statically in memory.
This will mean the function can be called re-entrantly or recursively. The keyword is simply inserted
before the function name e.g.

char * reentrant a_func(int arg)
{
/* function body here */
}

11.5.1.3 Large and huge model argument passing

The large and huge memory models use a combination of register and external stack based argument
passing. The rules for register based argument passing are the same as in the small and medium
memory models, as are the registers used. External stack based arguments are pushed onto a down-
ward growing stack using library routines. The calling function is responsible for both pushing and

185

Functions C Language Features

removing the arguments. In order to minimize stack usage in these models, the function return ad-
dress is saved on the external stack on entry, and restored on exit. This allows functions to be called
in a fully re-entrant and recursive manner, limited only by the amount of external RAM available for
the stack.

11.5.1.4 Variable argument lists

Thesmallandmediummodels pass variable argument lists by storing any unnamed arguments into a
local variable block, belonging to the caller and passing the address of the variable argument block in
the accumulator. This scheme allows variable argument lists to be passed with the same efficiency as
normal arguments. Variable argument lists work in the normal manner in the large and huge memory
models, each argument is pushed onto the stack in right to left order resulting in the argument list
appearing in the correct order in memory.

11.5.1.5 Small and medium model variable argument lists

Each function which calls another function using a variable argument list will use extra local variable
space equal in size to the largest variable argument list passed within that function.

For example, ifmain() calls printf() twice, with 4 bytes of variable arguments for the first call
and 10 bytes of variable arguments for the second call, the local variable area?_mainwill include
10 bytes for the variable argument block. If a call to a different function using 8 bytes of variable
arguments were added, the variable argument area would not be enlarged.

To illustrate the behaviour of variable argument lists, the following code:

extern void printf(char *, ...);
int var;
char * name;
char * format = "%s = %d\n";
main()
{

printf(format, name, var);
}

produces this code when compiled:

MOV ?a_main+2,_var
MOV ?a_main+3,_var+1
MOV ?a_main,_name
MOV ?a_main+1,_name+1
MOV ?_printf,#high _format

186

C Language Features Functions

MOV ?_printf+1,#low _format
MOV A,#?a_main
LCALL _printf

11.5.1.6 Indirect function calls

HI-TECH C fully supports the use of function pointers to indirectly call functions. In the large and
huge models, indirect functions occur in the normal C manner with arguments passed in registers
and on the stack.

11.5.1.7 Small and medium model indirect function calls

In order for indirect calls to functions which take memory based arguments to work in these models,
the compiled code needs to be able to locate where the static argument block for a particular function
resides. Two functions which have the same prototype but different argument addresses may both be
called via the same function pointer. This problem is overcome by embedding the argument block
address in the code, one byte before the start of the function. When performing an indirect function
call the code will be able to find the argument block address by looking one byte before the address
specified by the pointer.

For example, the function:

long
add_10(long arg1)
{

return arg1 + 10;
}

will generate this code:

DB ?_add_10
_add_10:

MOV A,?_add_10+3
ADD A,#10
MOV R5,A
MOV A,?_add_10+2
ADDC A,#0
MOV R4,A
MOV A,?_add_10+1
ADDC A,#0
MOV R3,A

187

Functions C Language Features

MOV A,?_add_10
ADDC A,#0
MOV R2,A
RET

The byte just before label_add_10points at the argument block for the function?_add_10. Add_10()
could be indirectly accessed by a function pointer such as:

long (*funcptr)(long);

The C statement:

res = (*funcptr)(value);

will generate this code:

MOV A,_funcptr+1
ADD A,#255
MOV DPL,A
MOV A,_funcptr
ADDC A,#255
MOV DPH,A
CLR A
MOVC A,@A+DPTR
MOV R1,A
MOV @R1,_value
INC R1
MOV @R1,_value+1
INC R1
MOV @R1,_value+2
INC R1
MOV @R1,_value+3
MOV R0,_funcptr
MOV R1,_funcptr+1
LCALL indir
MOV _res,R2
MOV _res+1,R3
MOV _res+2,R4
MOV _res+3,R5

Note the use of the library routineindir to call the function indirectly. The code above loads the
argument block address into R1 and then uses indirect addressing to store the arguments into the
correct area in memory for the function which is to be called.

188

C Language Features Functions

11.5.2 Function return values

Function return values are passed to the calling function as follows:

11.5.2.1 8 Bit return values

8 bit values (Char, near pointerandidata pointer) are returned in register R3. For example, the C
function:

char
return_zero(void)
{

return 0;
}

will exit with the following code:

MOV R3,#0
RET

11.5.2.2 16 Bit return values

16 bit values (Int, shortandpointer) are returned in the R2 and R3 registers with the least significant
byte in R3 and the most significant byte in R2. Thus the following function:

int test(void)
{
return 0x1234;
}

will return with 0x34 in R3 and 0x12 in R2.

11.5.2.3 32 Bit return values

32 bit values (long andfloat) are returned in registers R2, R3, R4 and R5 with the most significant
byte in R2 and the least significant byte in R5. This is illustrated by the following code:

long return_long(void)
{

return 0x01020304;
}

189

Functions C Language Features

which will exit using the sequence of instructions:

MOV R2,#1
MOV R3,#2
MOV R4,#3
MOV R5,#4
RET

11.5.2.4 Structure return values

Composite return values (structandunion) are returned by various means depending on size. 8 bit
structures are returned in register R3, 16 bit structures in R2 and R3 and 32 bit structures in R2, R3,
R4 and R5. Large structures are returned by reference and copied by calling a library routine called
str_copy.

11.5.3 Function Calling Conventions for Huge Model

When using the huge (bankswitched) model, the calling conventions are similar to large model
except for the actual call. Rather than calling the function directly, register B is loaded with the bank
number of the function to be called, DPTR is loaded with its address within that bank, and then a
call is made to thebcall routine in common memory which performs the necessary bank switching
before jumping to the function. The current bank is saved on the internal stack. On return from
the function, a jump to thebret routine is performed which retrieves the old bank number from the
stack before a return is made to the calling function. This implies a maximum restriction on nested
banked subroutine calls, depending on internal stack usage for interrupts, temporary usage and so
forth. Functions qualified asnearor basenearare not affected by this restriction.

To implement a custom banking scheme, a replacementbcall module must be implemented. See
thebcall.asfile in the SOURCES directory of the compiler for code used in the standard libraries.
This file includes cases when a bank select register mapped into both internal and external memory.
Care must be taken when implementing a custombcall module to preserve all registers apart from
DPTR, B, and the accumulator.

11.5.3.1 Near and Basenear Functions in Huge Model

When using thehuge(i.e. banked) model, functions are called using the mechanism described above
by default. It is, however, possible to define functions that are called via a simplelcall/ret sequence,
thus speeding up the code. The two ways to do this are withnear functions and withbasenear
functions.

A nearfunction can be called only from within the same bank, while abasenearfunction resides
in the common area and can be called from any bank. Near functions should be declared static and

190

C Language Features Functions

called and called only from within the same module. The following code shows an example of these
kind of functions.

static near int
read(void)
{

while(!RI)
;

return SBUF;
}

basenear void
reset(void)
{

RI = 0;
}

11.5.4 The call graph

In order to preserve memory, the linker performs stack like allocation of function arguments and
local variables using a technique called “call graphing”. Call graph analysis allows the linker to
determine which functions call and are called by other functions and build a graph of dependencies.
The linker will analyse the call graph and determine which functions can never be active at the same
time, making it safe to overlap their local variable and argument areas.

For example, consider the following C code:

void func_a(int arg1)
{

int var1, var2;
.
.
.
}
void func_b(int arg)
{

long l_var;
.
.
.
}

191

Memory Models and Usage C Language Features

main()
{

func_a(1, 2);
func_b(0x1000);

}

main() calls bothfunc_a()and func_b(), so the variable block formain() cannot occupy the same
memory as the variable blocks for either function.Func_a() is never called at the same time as
func_b(), so it is safe for the local variables and arguments belonging to both functions to occupy the
same memory, exactly as would occur if a stack were used for variable storage. The call graphing
technique makes it possible to write code containing a large number of functions and local variables
without worrying too much about using all of the available internal RAM on the 8051. Even if there
are 100 functions with 10 bytes of local variables each, if none of the functions are ever active at the
same time only 10 bytes of local variable space will be used.

11.6 Memory Models and Usage

The compiler makes few assumptions about memory. With the exception of variables declared using
the @addressconstruct, absolute addresses are not allocated until link time. Certain classes of
variable are assumed to reside within particular address ranges and address spaces, as limited by the
8051 architecture.

The memory used is based upon information in the chipinfo file (which defaults to8051.ini in
the LIB directory). The linker will automatically locate code andconst-qualified data into all the
available memory pages and ensure that psects do not straddle any memory boundary.

There are four memory models available for C51: small, medium, large, and huge, the default of
which is small. The memory model is selected via the-Bx command line option. See Section10.4.1.

Small model is a fully static model which does not support re-entrant or recursive code.Extern,
staticandautovariables, and function arguments, are allocated statically in internal RAM.Extern
andstaticvariables may be allocated in external RAM using thefar qualifier.

Medium model is also a fully static model which does not support re-entrant or recursive code.
However,externand static variables are allocated in external RAM,auto variables and function
arguments are allocated statically in internal RAM.Externandstaticvariables may be allocated in
internal RAM using thenearandidataqualifiers.

In both small and medium models, call graphing is used by the linker to overlayautovariables
and arguments of functions which can never be active at the same time.

Large model is a fully re-entrant code generation model which uses a downward growing stack in
external RAM to bypass the 8 bit stack pointer limit imposed by the 8051, the top address of which
is calculated from the highest usable address in external RAM.Extern, staticandautovariables are

192

C Language Features Register usage

all allocated in external RAM,autovariables and function arguments are allocated on the external
stack.Externandstaticvariables may be placed in internal RAM using thenearandidataqualifiers.

Huge model is equivalent to large model, with the added functionality of utilising a banked code
configuration. When using huge model, functions are by default qualifiedfar. This places them into
the banked region in theltextpsect (See Section11.8) filling additional banks as required. Functions
may be placed in the common region by using thebasenearqualifier. See Section11.5.3.

Function addresses in huge model are 24 bits, but 32 bits is actually allocated where a function
pointer is stored in memory. A limitation on the levels of nested banked calls exists due to the storage
of the segment number (bits 16-24 of the function address) on the internal stack.

11.7 Register usage

With two exceptions, compiled code always assumes that register bank 0 is selected. The exceptions
are code withinbank2 interruptfunctions which assume that register bank 2 is selected, andbank3
interrupt functions which assume that register bank 3 is selected.

Some library routines use register bank 1, but restore register select bits on return to re-select
bank 0.

Registers R0 and R1 are used as temporary values and for indirectly addressing data in internal
RAM. All accesses to variables of classidatawill make use of either R0 or R1, as will de-references
of nearpointers and standard points with values less than 100H.

Registers R2, R3, R4 and R5 are used for register based argument passing and for function return
values. These registers will also be used to hold temporary values within functions and may also be
used to contain arguments or local variables if code is compiled with global optimization.

Registers R6 and R7 are used to hold register variables in the small and medium models, and for
the external stack pointer in the large and huge memory models. R6 and R7 should be preserved by
any assembly language routines which are called.

The accumulator (ACC) and B register are used for arithmetic operations and as a scratch pad. B
is used as an operand to the MUL and DIV, and in huge model, is used to load the segment selector
for a banked subroutine call.

The PSW register varies depending on the operation of user code, however the register bank
select bits should be preserved by assembly language routines.

The DPTR register (DPL and DPH) is used as a scratch pad, and for pointer operations which
access external RAM or program ROM.

11.8 Compiler generated psects

The compiler splits code and data objects into a number of standard program sections, referred to
as psects. The HI-TECH assembler allows an arbitrary number of named psects to be included in

193

Compiler generated psects C Language Features

assembler code. The linker groups all data for a particular psect into a single segment.
If you are using C51 to invoke the linker, you don’t need to worry about the information docu-

mented here, except as background knowledge.
If you want to run the linker manually, or write your own assembly language subroutines you

should read this section carefully.
The psects used by compiler generated code are:

vectors The vectorspsect contains the reset vector followed by all initialized interrupt vectors.
Vectorsis normally linked for address 0 in ROM so that the LJMP start instruction at the
beginning of the psect aligns with the 8051 reset vector.

text is used for all executable code. By default the C compiler places all executable code in thetext
psect (with the exception of huge model, seeltext below). User written assembly language
subroutines should also be placed in thetextpsect.

ltext In huge model only, theltext psect contains all executable code to be placed in the banked
region. The linker will automatically fill additional banks as required. This is the default psect
for executable code in huge model unless functions are qualifiedbasenear.

code is used for any statically initialized constants of classcode. For example:code int maxdata
= 10; declares a constantmaxdatawith value 10 which resides in thecodepsect. Codeis
linked into program ROM after thetextpsect, objects in thecodepsect are accessed using the
MOVC instruction.

const is used for all initialized constants of classconst, for example:const char masks[] = {
1,2,4,8,16,32,64,128} ;

strings Thestringspsect is used for all unnamed string constants, such as string constants passed
as arguments to routines likeprintf() andputs().

data The data psect is used to contain all statically initialized data except those in classesnear,
codeandconst. For the small memory model, thedata psect is linked into ROM, statically
initialized data items are not modifiable and are accessed using the MOVC instruction.

For the medium, large and huge memory models, thedatapsect is linked into external RAM,
with a copy in ROM (placed in thezdatapsect) which is transferred to external RAM by the
run-time startup code. Statically initialized data items may be modified like any other variable
in these models.

zconst In the medium, large, and huge models, thezconstpsect contains the ROM image of any
initialized constants which are copied into theconstpsect at startup.

194

C Language Features Compiler generated psects

zstrings In the medium, large, and huge models, thezstringspsect contains the ROM image of any
unnamed string constants which are copied into thestringspsect at startup.

zdata In the medium, large, and huge models, thezdatapsect contains the ROM image of any
statically initialized data (except those in classesnear, codeandconst), which are copied into
thedatapsect at startup.

rdata contains all statically initialized variables of classnear, for example:static near int size
= 256;
The rdata psect behaves in the same manner for all memory models. Initialized data will only
be placed in rdata if declared to be near, otherwise it will be placed in the data psect.
A copy of the rdata psect is stored in ROM and transferred to internal RAM by the run-time
startup code beforemain() is invoked.

irdata contains all statically initialized variables of classidata, for example:idata int isize =
128;

The irdata psect behaves in the same manner for all memory models. Initialized data will only
be placed inirdata if declared to beidata. A copy of the irdata psect is stored in ROM and
transferred to internal RAM by the startup code beforemain() is invoked.Irdata objects may
reside at internal addresses above 7FH and are always accessed via register indirect addressing.

bss The bsspsect is used for all uninitialized static and extern variables which reside in external
RAM. Bssis cleared to all zeros by the run-time startup code beforemain() is invoked.
For the small memory model,bssonly contains variables which have been declared asfar.
For the medium, large and huge models thebsspsect contains all uninitialized static and extern
variables except those which have been declared to be of class near or idata.

rbss contains any uninitialized variables of classnear. Therbsspsect is linked into internal RAM
at addresses below 7FH, and is accessed using the direct addressing mode of the 8051. This
psect is cleared to all zeros by the run-time startup code beforemain() is invoked.
The actual classes of variable which go inrbssdepend on which memory model is being used.
In the small memory model,rbsswill be used for allnearvariables,autovariables, function
arguments and any static and extern variables which are not declared to be in any other class.
In the medium memory model,rbsswill be used only fornear variables,autovariables and
function arguments.
In the large and huge memory models,rbsswill only be used for variables declared asnear.

idata contains any variables of classidata, for example:static idata unsigned char counter;
declarescounterto be of classidata. Variables in theidatapsect are always accessed using the
register indirect addressing mode of the 8051. Thus, the C statement ++counter will generate
this code:MOV R0,#_counter

195

Using memory mapped I/O and SFRs C Language Features

INC @R0
Idata class variables may reside at addresses in the range 80H to FFH, allowing the “hidden”
internal RAM on the 8052, 80C552 and 80C517 to be accessed.

rbit contains allbit variables except those declared at absolute locations. The declaration:static
bit unsigned char flag;
will allocated flag as a single bit in therbit psect. Therbit psect is always linked for bit
addresses in the range 0 to 7FH. Bit addresses 80H to FFH are in the 8051 special function
register area and should not be used for therbit psect.

11.9 Using memory mapped I/O and SFRs

The 8051 processor uses memory mapped I/O for all devices. In order to declare memory mapped
I/O ports you should use theabsolutevariable facility to map identifiers onto the appropriate special
function register locations. Thevolatile type qualifier should be used for most I/O locations to
prevent the optimizer from removing apparently redundant reads and writes to ports. When written
to, read only I/O ports which do not perform any sensible function, should be declaredconstso that
the compiler will detect any attempt to write to them.

Almost all I/O locations on the 8051 family are 8 bits wide, so you should use theunsigned char
type in your port declarations. Theunsigned chartype is guaranteed to be an 8 bit wide unsigned
integer regardless of the compiler options used. The default behaviour of thechar type is signed, but
will behave like an 8 bit unsigned integer if the C51 option –char=unsigned is used.

To give a practical example, the on-board serial port on the 8051 could be declared as follows:

static unsigned char SCON @ 0x98;
static unsigned char SBUF @ 0x99;

Any of the I/O ports declared above could then be used freely in C code, exactly like any other C
variable. For example, to write the character ’X’ to the serial port buffer SBUF use the C statement:

SBUF = ’X’;

Declarations for all of the standard 8051 ports may be found in the standard header file <8051.h>.
See the appropriate processor handbook for documentation of the special function registers on your
hardware.

11.10 Interrupt handling in C

The compiler incorporates features allowing interrupts to be handled without writing any assembler
code. The type qualifierinterrupt may be applied to a function to allow it to be called directly from

196

C Language Features Interrupt handling in C

a hardware or software interrupt. The compiler will processinterrupt functions differently to normal
functions, generating code to save and restore any registers used and exit using aRETI instead
of a RET at the end of the function. If the C51 option -STRICT is used, this keyword becomes
__interrupt. Wherever this manual refers to theinterrupt keyword, assume__interrupt if you are
using –STRICT.

An interrupt function must be declared as typeinterrupt void and may not have parameters.
It may not be called directly from C code, but it may call other functions itself, subject to certain
limitations.

In the small and medium memory models, static locations are used forautovariables and func-
tion argument passing. As a result of the static allocation scheme,interrupt functions may not make
a function call to any function which uses static memory variables, and which is also called from
the main program or by a differentinterrupt function. This limitation is imposed because such a
call may result in corruption of variables and arguments if another instance of the function is already
active. Interrupt functions may call any function, with any number of arguments of local variables,
if the function called is not used by any other part of the program. In the large model, interrupt
functions reserve 256 bytes of memory for their own stack space. At present, the size of this stack
space is fixed.

If the linker detects a function call which breaks these rules, it will issue the warning“Function
nameoccurs in multiple call graphs, rooted at NAME1 and NAME2” where NAME1 and NAME2
are the name of theinterrupt function and the name of yourmain() function or anotherinterrupt
function. Functions which use no static storage may be freely called by any number ofinterrupt and
standard functions.

An example aninterrupt function which services the standard on-board serial port of the 8051
follows:

char rxbuf[16];
volatile char head, tail;
interrupt void
serial_intr(void)
{

rxbuf[head] = SBUF;
head = (head + 1) % sizeof(rxbuf);
if (head == tail)

tail = (tail + 1) % sizeof(rxbuf);
RI = 0;

}

197

Interrupt handling in C C Language Features

11.10.1 Bank2 andBank3 interrupts

HI-TECH C supports two special classes ofinterrupt function which switch to register bank 2 or
3 before executing any user code. This saves some processing time compared to standard interrupt
functions which push any registers used onto the stack. The keywordsbank2andbank3are used to
access this facility. You may declare an interrupt function which uses register bank 2 as follows:

bank2 interrupt void func(void);

Similarly, an interrupt function using register bank 3 could be declared as:

bank3 interrupt void func(void);

If the C51 option –STRICT is used, these keywords are changed to__bank2and__bank3. Interrupt
functions using bank 2 or 3 do not generate code to save the registers used, thus reducing the interrupt
overhead substantially. Due to the register bank dependant nature of most compiler generated code,
banked interrupt functions may not call any other C function. You should not allow more than one
interrupt function using the same alternate register bank to be active at a time. You can have as many
standard interrupt functions as you like, limited only by the available stack space.

In general, interrupt functions using banks 2 or 3 should be used only to handle interrupts where
a very fast response, requiring minimal processing, is desired. For example, an interrupt handler
for a timer generating interrupts at a fast rate may be better handled by a bank2 interrupt or bank3
interrupt function.

It is possible to write interrupt handlers which are actually slower when compiled as a banked
interrupt function. If the code generated for an interrupt function does not use any of the registers R0
to R7, the code generated to save and restore the register bank will actually make a banked interrupt
function larger and slower than a standard interrupt function. If in doubt, compile your C code to an
assembly language source file and examine the code which has been generated by the compiler.

11.10.2 Interrupt Levels in small and medium model

Normally it is assumed by the compiler that any interrupt may occur at any time, and an error will
be issued by the linker if a function appears to be called by aninterrupt function and by main-line
code, or another interrupt. Since it is often possible for the user to guarantee this will not happen for
a specific routine, the compiler supports an interrupt level feature to suppress the errors generated.

This is achieved with the#pragma interrupt_level directive. There are two interrupt levels
available, and anyinterrupt functions at the same level will be assumed by the compiler to be
mutually exclusive. This exclusion must be guaranteed by the user, i.e. the compiler is not able to
control interrupt priorities. Eachinterrupt function may be assigned a single level, either 0 or 1.

In addition, any non-interrupt functions that are called from aninterrupt function and also
from main-line code may also use the#pragma interrupt_level directive to specify that they

198

C Language Features Interrupt handling in C

will never be called by interrupts of one or more levels. This will prevent linker from issuing an
error message because the function was included in more than one call graph. Note that it is entirely
up to the user to ensure that the function isnot called by both main-line and interrupt code at the
same time. This will normally be ensured by disabling interrupts before calling the function. It is
not sufficient to disable interrupts inside the function after it has been called.

An example of using the interrupt levels is given below. Note that the#pragma directive applies
to only the immediately following function. Multiple#pragma interrupt_level directives may
precede a non-interrupt function to specify that it will be protected from multiple interrupt levels.

/* non-interrupt function called by interrupt and main-line code */
#pragma interrupt_level 1
void bill(){
inti;
i = 23;
}

/* two interrupt functions calling the same non-interrupt function */
#pragma interrupt_level 1

void interrupt fred(void)
{
bill();
}

#pragma interrupt_level 1
void interrupt joh()
{
bill();
}

main()
{
bill();
}

Both the low- and high-priorityinterrupt functions may use the interrupt level feature.

199

Interrupt handling in C C Language Features

Table 11.7: Interrupt handling macros

Macro Purpose
di() Disable interrupts
ei() enable interrupts

ROM_VECTOR Set up “hard” interrupt vector
set_vector Setup “hard” interrupt vector
RAM_VECTOR Setup “soft” interrupt vector

CHANGE_VECTOR Modify “soft” interrupt vector
READ_RAM_VECTOR Read a “soft” interrupt vector

11.10.3 Interrupt handling macros

The standard header file<intrpt.h> contains several macros which are useful when handling inter-
rupts using C code. These are listed in Table11.7.

11.10.4 The ei() and di() macros

The di() andei() macros may be used to disable and enable maskable interrupts. It may useful to
disable interrupts while initializing or servicing I/O devices.

Di() disables interrupts by clearing the EA flag in the ICON special function register using the
instruction CLR EA. Similarly,ei() enables interrupts by setting EA with the instruction SETB EA.

The 8051 global interrupt enable flag is bit addressable and may accessed from C code using the
following bit variable declaration:

static bit unsigned char EA @ 0xAF;

The declaration above makes it possible to test the interrupt enable state, enable and disable inter-
rupts using C statements. For example, to enable interrupts:

EA = 1;

11.10.5 ROM_VECTOR and set_vector

ROM_VECTOR is used to set up a “hard coded” vector in ROM which points an 8051 LJMP in-
struction directly to an interrupt handler. It takes the form:

ROM_VECTOR(itt vector, itt handler)

200

C Language Features Interrupt handling in C

wherevectoris the address of the interrupt vector andhandleris the name of the interrupt function
which will be used.

For example, to set the serial interrupt vector at address 23h to point to an interrupt function
calledserial_intr()you could write:

ROM_VECTOR(0x23, serial_intr)

ROM_VECTOR does not generate any code which is executed at run-time, so it can be placed
anywhere in your code. To continue the example above, ROM_VECTOR would have generated the
following code:

GLOBAL _serial_intr
PSECT vectors,ovrld
ORG 0x23
LJMP _serial_intr
PSECT text

This results in the instructionLJMP _serial_intr being placed at offset 23H in thevectorspsect.
ROM_VECTOR generates in-line assembler code, so the vector address passed to it may be

in any format acceptable to the assembler. Hexadecimal interrupt vector addresses may be passed
either as C style hex (0x23) or as assembler style hex (23H).

Set_vector is equivalent toROM_VECTORand is present only for compatibility with version 5
and 6 HI-TECH compilers. It is suggested thatROM_VECTORbe used in place ofset_vectorfor
maximum compatibility with future versions of HI-TECH C.

11.10.6 RAM based interrupt vectors

HI-TECH C supports internal RAM based interrupt vectors which can be dynamically modified by
user code, so as to point to different interrupt handlers at different points during program execution.

RAM based interrupt vectors work by setting the ROM based interrupt vector to point to code
which transfers control to the actual interrupt handler via an internal RAM based pointer. The
transfer of control to the user specified interrupt handler can be achieved with minimal overhead by
PUSHing the handler address onto the stack and then executing a RET instruction.

The RAM_VECTOR, CHANGE_VECTORandREAD_RAM_VECTORmacros are used to ini-
tialize, modify and read interrupt vectors which are directed through internal RAM based inter-
rupt vectors in therdata psect. These macros should only be used for vectors which need to be
modifiable, so as to point at differentinterrupt functions at different points in the program. The
CHANGE_VECTOR and READ_RAM_VECTOR macros should only be used with interrupt vec-
tors which have been initialized using RAM_VECTOR, otherwise strange things will happen.

201

Interrupt handling in C C Language Features

11.10.7 RAM_VECTOR

The RAM_VECTOR macro sets up a “soft” interrupt vector which can be modified to point to a
different interrupt function if necessary. This is accomplished by setting up code at the vector in
ROM to perform an indirect jump to the interrupt function, via a vector address in internal RAM.
When the interrupt occurs, the code at the interrupt vector uses two PUSH instruction to place the
address of the handler on the stack, then executes a RET instruction to jump to the handler address
which has just been pushed. If the interrupt vector needs to be changed, the address operand of the
PUSH instruction at the vector points to the “soft” vector which is in internal RAM.

RAM_VECTOR takes the same arguments as ROM_VECTOR and can be used anywhere ROM_VECTOR
is used. Each use of RAM_VECTOR results in an extra two bytes of initialized data in therdata
psect. For example, the code:

RAM_VECTOR(0x23, serial_intr)

will place code at interrupt vector 23h which indirectly jumps to the actual interrupt handler.
The internal RAM locations used for the vector will be initialized to contain the address of the

interrupt functionserial_intr(). The code generated will be:

GLOBAL _serial_intr
PSECT vectors,ovrld
ORG 0x23
PUSH 999f+1
PUSH 999f
RET
PSECT rdata,class=DATA
999:DW _serial_intr
PSECT text

This results in the code at vector 23h pushing the address ofserial_intr() onto the stack and then
jumping to it via a RET instruction.

11.10.8 CHANGE_VECTOR

The CHANGE_VECTOR macro is used to modify a vector which has been set up by RAM_VECTOR.
This is accomplished by modifying the interrupt handler address in internal RAM. For example:

EA = 0;
CHANGE_VECTOR(23h, new_handler)
EA = 1;

202

C Language Features Interrupt handling in C

will change the handler address used by vector 23H to point to an interrupt function callednew_handler().
The address of the vector word in internal RAM is found by indirecting from the operand byte

of the second PUSH instruction at the vector; if the code at the vector is:

PUSH 45H
PUSH 44H
RET

CHANGE_VECTOR will place the new handler address at 44H and 45H in internal RAM, with the
high order byte of the address at 44H.

It is a good idea to disable interrupts before using the CHANGE_VECTOR macro, as it is possi-
ble for an interrupt to be generated while the RAM based interrupt vector is in an inconsistent state.
The 8051 is a byte oriented machine, so the two bytes of the handler address are updated by separate
instructions.

If a vector has been modified and you want to change it back to the original value, you will
need to use CHANGE_VECTOR to change it back. Re-executing the code which contains the
RAM_VECTOR macro will not reset the vector because RAM_VECTOR statically initializes the
vector without generating any executable code. CHANGE_VECTOR is the only vector initialization
macro which generates instructions which are actually executed at run-time, ROM_VECTOR and
RAM_VECTOR just force initial values into the vectors.

11.10.9 READ_RAM_VECTOR

The READ_RAM_VECTOR macro may be used to read the value of a RAM based interrupt vec-
tor which has been set up by RAM_VECTOR. It must never be used on vectors which have been
initialized using ROM_VECTOR as garbage will be returned. READ_RAM_VECTOR can be used
along with CHANGE_VECTOR to preserve an old interrupt handler address, set a new address and
then restore the original address. For example:

volatile unsigned char wait_flag;
interrupt void
wait_handler(void)
{

++wait_flag;
RI = 0;

}
void
wait_for_serial_intr(void)
{

interrupt void (*old_handler)(void);

203

Interrupt handling in C C Language Features

EA = 0;
old_handler = READ_RAM_VECTOR(23H);
wait_flag = 0;
CHANGE_VECTOR(23H, wait_handler);
EA = 1;
while (wait_flag == 0)

continue;
EA = 0;
CHANGE_VECTOR(23H, old_handler);
EA = 1;

}

11.10.10 Pre-defined interrupt vector names

The header file<8051.h> includes declarations for all of the standard 8051 interrupt vectors. These
vector names may be used as the vector address argument to the ROM_VECTOR, set_vector, RAM_VECTOR,
CHANGE_VECTOR and READ_RAM_VECTOR macros.

The interrupt vectors defined in<8051.h> are listed in Table11.8. Interrupt vectors other than
those in<8051.h> may be declared using pre-processor#define directives, or the vector address
may be directly used with the vector macros.

For example the extra interrupt vectors on the 80C552 microcontroller could be declared as
follows:

#define I2CINT 0x2B
#define CAP0INT 0x33
#define CAP1INT 0x3B
#define CAP2INT 0x43
#define CAP3INT 0x4B
#define ADCINT 0x53
#define CMP0INT 0x5B
#define CMP1INT 0x63
#define CMP2INT 0x6B
#define T2INT 0x73

An interrupt handler for the 80C552 timer 2 interrupt (T2INT) could be installed either by using the
declarations above and writing:

ROM_VECTOR(T2INT, t2int_handler);

or by directly using the vector address:

ROM_VECTOR(0x73, t2int_handler);

204

C Language Features Mixing C and 8051 assembler code

Table 11.8: Interrupt vector names

Name Vector Interrupting device
EXTI0 034 External Interrupt 0
TIMER0 0BH Timer 0
EXTI1 13H External Interrupt 1
TIMER1 1BH Timer 1
SINT 23H Onboard serial port
TIMER2 2BH Timer 2 (8052 only)

11.11 Mixing C and 8051 assembler code

8051 assembly language code can be mixed with C code using three different techniques.

11.11.1 External Assembly Language Functions

Entire functions may be coded in assembly language, assembled by AS51 as separate.assource files
and combined into the binary image using the linker. This technique allows arguments and return
values to be passed between C and assembler code.

To access an external function, first include an appropriate Cexterndeclaration in the calling C
code. For example, suppose you need an assembly language function to provide access to the rotate
left instruction on the 8051:

extern char rotate_left(char);

declares an external function calledrotate_left()which has a return value type ofchar and takes a
single argument of typechar. The actual code forrotate_left()will be supplied by an external.as
file which will be separately assembled with AS51.

The full 8051 assembler code forrotate_left()would be something like:

PSECT text,class=CODE
GLOBAL _rotate_left
SIGNAT _rotate_left,4201
PSECT text
_rotate_left:
MOV A,R5
RL A
MOV R3,A

205

Mixing C and 8051 assembler code C Language Features

RET

The name of the assembly language function is the name declared in C, with an underscore prepended.
TheGLOBALdirective is the assembler equivalent to the Cexternkeyword and theSIGNATdirec-
tive is used to enforce link time calling convention checking. Signature checking and theSIGNAT
directive are discussed in more detail later in this chapter.

Note that in order for assembly language functions to work properly they must look in the right
place for any arguments passed and must correctly set up any return values. In the example above,
the R5 register was used for the argument to the function, and the R3 register was used for the return
value. In small and medium model, the compiler uses a combination of register based argument
passing and static allocation of arguments and local variables. Local variable allocation, argument
and return value passing mechanisms are discussed in detail later in the manual. They should be
understood before attempting to write assembly language routines.

11.11.2 Accessing C objects from within assembler

Global C objects may be directly accessed from within assembly code using their name prepended
with anunderscorecharacter. For example, the objectfoo defined globally in a C module:

near char foo;

may be access from assembler as follows.

GLOBAL _foo
mov r0,_foo

If the assembler is contained in a different module, then the GLOBAL assembler directive should
be used in the assembler code to make the symbol name available, as above. If the object is being
accessed from in-line assembly in another module, then anextern declaration for the object can be
made in the C code, for example:

extern near char foo;

This declaration will only take effect in the module if the object is also accessed from within C code.
If this is not the case then, an in-line GLOBAL assembler directive should be used.

11.11.3 #asm, #endasm and asm()

8051 instructions may also be directly embedded in C code using the directives#asm, #endasmand
asm(). The#asmand#endasmdirectives are used to start and end a block of assembler instructions

206

C Language Features Preprocessing

which are to be embedded inside C code. Theasm()directive is used to embed a single assembler
instruction in the code generated by the C compiler.

To continue our example from above, you could directly code a rotate left on a memory byte
using either technique, as the following example shows:

#include <stdio.h>
unsigned char var;
main()
{

var = 1;
printf("var = 0x%2.2X\n", var);

#asm
MOV A,_var
RL A
MOV _var,A

#endasm
printf("var = 0x%2.2X\n", var);
asm("MOV A,_var");
asm("RL A");
asm("MOV _var,A");
printf("var = 0x%2.2X\n", var);

}

When using inline assembler code, great care must be taken to avoid interacting with compiler
generated code. If in doubt, compile your program with the C51-Soption and examine the assembler
code generated by the compiler.

IMPORTANT NOTE: the#asmand#endasmconstruct is not syntactically part of the C program,
and thus it does NOT obey normal C flow-of-control rules. For example, you cannot use a#asm
block with an if statement and expect it to work correctly. If you use in-line assembler around any
C constructs such as if, while, do etc. they you should use only theasm("") form, which is a C
statement and will correctly interact with all C flow-of-control structures.

11.12 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if
the-p command-line option is issued.

207

Preprocessing C Language Features

11.12.1 Preprocessor Directives

C51 accepts several specialised preprocessor directives in addition to the standard directives. These
are listed in Table11.9.

Table 11.9 Preprocessor directives
Directive Meaning Example
preprocessor null directive, do nothing#
#assert generate error if condition false #assert SIZE > 10
#asm signifies the beginning of in-line

assembly
#asm
inc dptr
#endasm

#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif short for#else #if see#ifdef
#else conditionally include source lines see#if
#endasm terminate in-line assembly see#asm
#endif terminate conditional source inclusion see#if
#error generate an error message #error Size too big
#if include source lines if constant

expression true
#if SIZE < 10
c = process(10)
#else
skip();
#endif

#ifdef include source lines if preprocessor
symbol defined

#ifdef FLAG
do_loop();
#elif SIZE == 5
skip_loop();
#endif

#ifndef include source lines if preprocessor
symbol not defined

#ifndef FLAG
jump();
#endif

#include include text file into source #include <stdio.h>
#include "project.h"

#line specify line number and filename for
listing

#line 3 final

#nn (wherenn is a number) short for
#line nn

#20

continued. . .

208

C Language Features Preprocessing

Directive Meaning Example
#pragma compiler specific options See Section11.12.3
#undef undefines preprocessor symbol #undef FLAG
#warning generate a warning message #warning Length not set

Macro expansion using arguments can use the# character to convert an argument to a string, and
the## sequence to concatenate tokens.

11.12.2 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional compi-
lation based on chip type and other parameters. The symbols listed in Table11.10show the more
common symbols defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise
stated.

11.12.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard #pragma facility. The format of a
pragma is:

#pragma keyword options

wherekeywordis one of a set of keywords, some of which are followed by certainoptions. A list of
the keywords is given in Table11.11. Those keywords not discussed elsewhere are detailed below.

11.12.3.1 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-
tional characters, the#pragma jis directive will enable proper handling of these characters, specif-
ically not interpreting abackslash“\” character when it appears as the second half of a two byte
character. Thenojis directive disables this special handling. JIS character handling is disabled by
default.

11.12.3.2 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner ofprintf(). Although the format string is interpreted at run-time, it can be compile-
time checked for consistency with the remaining arguments. This directive enables this checking
for the named function, e.g. the system header file<stdio.h> includes the directive#pragma

209

Preprocessing C Language Features

Table 11.10: Predefined CPP symbols

Symbol When set Usage
HI_TECH_C Always To indicate that the compiler in use

is HI-TECH C.
_HTC_VER_MAJOR_ Always To indicate the integer component

of the compiler’s version number.
_HTC_VER_MINOR_ Always To indicate the decimal component

of the compiler’s version number.
_HTC_VER_PATCH_ Always To indicate the patch level of the

compiler’s version number.
LARGE_DATA -Bm, -Bl, -Bh To indicate that extern and static

variables are by default allocated in
external RAM.

SMALL_DATA -Bs To indicate that extern and static
variables are by default allocated in
internal RAM.

HUGE_MODEL -Bh To indicate that code is compiled in
huge memory model.

LARGE_MODEL -Bl To indicate that code is compiled in
large memory model.

MEDIUM_MODEL -Bm To indicate that code is compiled in
medium memory model.

SMALL_MODEL -Bs To indicate that code is compiled in
small memory model.

i8051 Always To indicate that this is an 8051 de-
vice.

_XXXXX When chip selected To indicate the specific chip type se-
lected.

__FILE__ Always To indicate this source file being
preprocessed.

__LINE__ Always To indicate this source line number.
__DATE__ Always To indicate the current date, e.g.

May 21 2004
__TIME__ Always To indicate the current time, e.g.

08:06:31.

210

C Language Features Preprocessing

printf_check(printf) const to enable this checking forprintf(). You may also use this for any
user-defined function that accepts printf-style format strings. The qualifier following the function
name is to allow automatic conversion of pointers in variable argument lists. The above example
would cast any pointers to strings in RAM to be pointers of the type (const char *)

Note that the warning level must be set to -1 or below for this option to have effect.

11.12.3.3 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as already
documented. This is fine for most applications, but sometimes it is necessary to redirect variables
or code into different psects when a special memory configuration is desired. For example, if the
hardware includes an area of memory which is battery backed, it may be desirable to redirect certain
variables frombssinto a psect which is not cleared at startup. Code and data for any of the standard
C psects may be redirected using a#pragma psect directive. For example, if all executable code
generated by a particular C source file is to be placed into a psect calledaltcode,the following
directive should be used:

#pragma psect text=altcode

This directive tells the compiler that anything which would normally be placed in thetext psect
should now be placed in thealtcodepsect. Any given psect should only be redirected once in a
particular source file, and all psect redirections for a particular source file should be placed at the top
of the file, below any #includes and above any other declarations.

For example, to declare a group of uninitialized variables which are all placed in a psect called
nvram, the following technique should be used:

---File NVRAM.C

#pragma psect bss=nvram
char buffer[20];
int var1, var2, var3;

Any files which need to access the variables defined in NVRAM.C should#include the following
header file:

--File NVRAM.H

extern char buffer[20];
extern int var1, var2, var3;

211

Preprocessing C Language Features

Table 11.11: Pragma directives

Directive Meaning Example
interrupt_level Allow interrupt function

to be called from main-
line code. See Section
11.10.2

#pragma interrupt_level 1

jis Enable JIS character
handling in strings

#pragma jis

nojis Disable JIS character
handling (default)

#pragma nojis

printf_check Enable printf-style for-
mat string checking

#pragma
printf_check(printf) const

psect Rename compiler-
defined psect

#pragma psect text=mytext

regsused Specify registers which
are used in an interrupt

#pragma regsused r0

strings Define constant string
qualifiers

#pragma strings code

switch Specify code generation
for switch statements

#pragma switch direct

The#pragma psect directive allows code and data to be split into arbitrary memory areas. Defini-
tions of code or data for non-standard psects should be kept in separate source files as documented
above. When you link code which uses non-standard psect names, you will not be able to use the
C51 -A option to specify the link addresses for the new psects. Instead, you will need to use the C51
-L option to specify an extra linker option.

If you want a nearly standard configuration with the addition of only an extra psect likenvram,
you can use the C51 -L option to add an extra -P specification to the linker command.

For example:

c51 --chip=8051 -Bm -L-Pnvram=1000h/20000h --ram=2000-2fff test.obj nv.obj

will link test.objand nv.obj with a standard configuration of ROM at 0h, internal RAM at 20h,
external RAM at 2000h and the extranvrampsect at 1000h in RAM, but not overlapping any valid
ROM load address.

212

C Language Features Preprocessing

Table 11.12: Valid regsused register names

Register Name Description
r0..r7 bank 0 general purpose registers
8..15 address of bank 1 general purpose registers
a accumulator
b B register
dph, dpl, dptr data pointer: high, low, both

11.12.3.4 The #pragma regsused Directive

C51 will automatically save context when an interrupt occurs. The compiler will determine only
those registers and objects which need to be saved for the particular interrupt function defined. The
#pragma regsused directive allows the programmer to further limit the registers and objects that the
compiler might save and retrieve on interrupt.

Table11.12shows registers names that would commonly be used with this directive. The register
names are not case sensitive and a warning will be produced if the register name is not recognised.
Note that the names in bank 1 represent the memory address of the register.

This pragma affects the first interrupt function following in the source code. Code which contains
multiple interrupt functions should include one directive for each interrupt function.

For example, to limit the compiler to saving no registers for an interrupt function other than the
accumulator, B register, and the R0 and R1 registers in banks 0 and 1, use:

#pragma regsused a,b,r0,r1,8,9

Even if a register other than these has been used and that register would normally be saved, it willnot
be saved if this pragma is in effect. The registers will only be automatically saved by the compiler if
required.

11.12.3.5 The #pragma strings Directive

Any user-defined variables can be qualified by a number of type qualifiers (see Sections11.3.8and
11.3.9) but constant strings (i.e. anonymous strings embedded in expressions) are normally unqual-
ified. This means they will be put into the data segment. To control this behaviour, the#pragma
psect strings directive allows you to specify a set of qualifiers to be applied to all subsequent con-
stant strings. If a qualifier is specified, it will be added to any qualifiers specified previously. Using
the directive without a qualifier will remove all qualifiers from any subsequent strings, i.e. restore to
normal.

213

Linking programs C Language Features

For example., to qualify strings withcode you should use the example given in Table11.11. Note
that all constant strings will then have typecode char * and will not be usable where a simplechar
* type is expected.

11.12.3.6 The #pragma switch Directive

Normally the compiler decides the code generation method for switch statements which results in
the smallest possible code size. Specifying thedirect option to the#pragma switch directive
forces the compiler to generate the table look-up style switch method. This is mostly useful where
either timing or code size is an issue for switch statements (ie: state machines) and a jump table is
preferred over direct comparison or vice versa. This pragma affects all code generated onwards. The
auto option may be used to revert to the default behaviour.

11.13 Linking programs

The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (C51 -S option) or object code (C51 -C option).

C51 by default generatesIntel hexfiles. If you use the –OUTPUT=bin option or specify an
output file with a.bin file type using the C51 -O option, the compiler will generate a binary image
instead. The file will contain code starting from the lowest initialized address in the program. For
example:

c51 --chip=8051 -v -oxx.bin

will produce a binary file starting with the RESET vector at address 0H, followed by the other
interrupt vectors, user code, initialized data and library code.

When producing code which is to be downloaded using a debugger, thecodeoffsetvalue specified
should be the address of the area in RAM where the downloaded code will be located. Code which
is to be run using a simulator should be compiled using the normal addresses for one of the 8051
variants which the simulator supports.

After linking, the compiler will automatically generate a memory usage map which shows the
address and size of all memory areas which are used by the compiled code. For example:

Memory Usage Map:
Program space:

CODE used B3h (179) of 10000h bytes (0.3%)
Internal Data:

BITSEG used 0h (0) of 80h bits (0.8%)
DATA used 23h (35) of E0h bytes (15.6%)

214

C Language Features Linking programs

External Data:
XDATA used 2h (2) of FF00h bytes (0.0%)

Summary:
Program space used B3h (179) of 10000h bytes (0.3%)
Internal Data used 24h (36) of 100h bytes (14.1%)
External Data used 2h (2) of 10000h bytes (0.0%)

More detailed memory usage information, listed in ascending order of individual psects, may be
obtained by using the C51 –summary=all option.

11.13.1 Replacing Library Modules

Although C51 comes with a librarian (LIBR) which allows you to unpack a library files and replace
modules with your own modified versions, you can easily replace a module within a library without
having to do this. If you add the source file which contains the library routine you wish to replace on
the command-line list of source files then the routine will replace the routine in the library file with
the same name. For example, if you wished to make changes to the library functionmax() which
resides in the filemax.c in the SOURCES directory, you could make a copy of this source file, make
the appropriate changes and then compile and use it as follows.

c51 --chip=8051 main.c init.c max.c

The code formax() in max.c will be linked into the program rather than themax() function con-
tained in the standard libraries. Note, that if you replace an assembler module, you may need the
-P option to preprocess assembler files as the library assembler files often contain C preprocessor
directives.

11.13.2 Signature checking

The compiler automatically produces signatures for all functions. A signature is a 16 bit value
computed from a combination of the function’s return data type, the number of its parameters and
other information affecting the calling sequence for the function. This signature is output in the
object code of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. Thus if a function is declared in
one module in a different way (for example, aschar instead ofshort) then the linker will report an
error.

It is sometimes necessary to write assembly language routines which are called from C using an
externdeclaration. Such assembly language functions need to include a signature which is compati-
ble with the C prototype used to call them. The simplest method of determining the correct signature

215

Linking programs C Language Features

for a function is to write a dummy C function with the same prototype and compile it to assembly
language using the C51-S option.

For example, suppose you have an assembly language routine called_widgetwhich takes two
int arguments and returns achar value. The prototype used to call this function from C would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with twoint arguments
and achar return value would be generated. In order to match the correct signature the source code
for widget needs to contain an AS51SIGNATdirective which defines the same signature value. To
determine the correct value, you would write the following code:

char widget(int arg1, int arg2)
{
}

Now compile it to assembler code using:

c51 --chip=8051 -S x.c

The resultant assembler code includes the following line:

signat _widget,8249

The SIGNATdirective tells the assembler to include a record in the.obj file which associates the
value 8249 with symbol_widget. The value 8249 is the correct signature for a function with twoint
arguments and achar return value. If this line is copied into the.asfile where_widgetis defined, it
will associate the correct signature with the function and the linker will be able to check for correct
argument passing.

For example, if another.c file contains the declaration:

extern char widget(long);

a different signature will be generated and the linker will report a signature mismatch. This will alert
you to the possible existence of incompatible calling conventions.

11.13.3 Linker-Defined Symbols

The link address of a psect can be obtained from the value of a global symbol with name__Lname
wherenameis the name of the psect. For example,__Lbssis the low bound of thebsspsect. The
highest address of a psect (i.e. the link address plus the size) is symbol__Hname. If the psect has
different load and link addresses, as may be the case if thedatapsect is linked for RAM operation,
the load address is__Bname.

216

C Language Features Standard I/O Functions and Serial I/O

Table 11.13: Console I/O functions

Function Purpose
void init_uart(void); Initialise the console (Serial port)
void putch(char ch); Write character to the console
char getch(void); Get a character from the console
char getche(void); Get and echo a console character
int kbhit(void); Returns 1 if a character is available

11.14 Standard I/O Functions and Serial I/O

In order to use the standard I/O functions (printf(), puts(), scanf(), gets(), etc.), you will need to
implement library routines which implement low level console I/O on your target hardware. This
is usually achieved by communicating via a serial port. All standard I/O routines perform character
I/O by calling the<conio.h> routines listed in Table11.13.

The generic51xxNxC.liblibraries are supplied with standard versions of these routines installed.
If you attempt to run a program which uses console I/O before you have customised an appropriate
console I/O module in the library, it will probably not work. The SOURCES directory includes a
source filegetch.cwhich implements console I/O via standard 8051 serial port. These routines will
probably require modification to the baud rate initialization ininit_uart(). See Section11.13.1for
information on easily replacing library modules.

If you are using a HI-TECH Software debugger or simulator, use the console I/O routines sup-
plied with the debugger when creating code which is to be downloaded.

11.15 Optimizing Code for the 8051

Due to the limitations imposed by the 8051 instruction set, care needs to be taken to avoid writing
code which will be large or inefficient. To improve execution speed and reduce code size, some or
all of these suggestions can be used:

• Usechar, signed charor unsigned chartypes instead ofint wherever possible. The 8051 can
manipulate 8 bit quantities much more efficiently than 16 bit quantities.

• In the small and medium memory models, localautovariables always reside in internal RAM
and can be manipulated using the direct addressing mode. Since storage used by function
arguments andautovariables can be reused by other functions, try to useautovariables where

217

Optimizing Code for the 8051 C Language Features

possible to reduce internal RAM usage. Any variable which is declared within a function and
which is notstatic is anautovariable and will be placed in internal RAM.

• In the medium, large, and huge models, variables which are critical to performance should be
declarednear, which places them in internal RAM.

• Variables which are less critical to performance, but still frequently accessed, can be placed in
the indirectly accessible area from 80H to FFH using theidata qualifier. Idata variables are
slower to access than normal internal RAM variables, but are more efficient than variables in
external RAM.

• Choose a memory model which is applicable to the application. If you have no need for
recursive or re-entrant code then you should be using either small or medium model.

• Use small model for applications which require less than around 200 bytes of variables and
no large buffers. Small model applications which need only a small amount of external RAM
for buffers may be written using thefar qualifier to declare external RAM variables.

• Medium model should be used for applications which require a large number of static variables
and buffers. Performance critical variables should be placed in internal RAM by making them
local, or using thenearandidataqualifiers.

• Pointer manipulation can be improved substantially by using pointers of classpointer to near
or pointer to idatawherever possible.Near and idata pointers occupy only a single byte of
storage and can only address objects in internal RAM. Near pointers can be easily derefer-
enced using the register indirect mode of the 8051, while normal pointers frequently require
time consuming library calls.

• You can declare apointer to nearby including thenear qualifier anywhere to the left of the
“*” in the declaration, for example:near char * nptr; declares a pointer to anear char.
Similarly apointer to idatamay be declared as:idata char * iptr;

• If you require a pointer which you know will only ever address objects in internal RAM use
declarations such as the ones above to maximise the efficiency of your code.

• Use unsigned types likeunsigned charwherever possible as the 8051 handles unsigned quan-
tities more readily than signed quantities. Remember that the default behaviour ofchar is
signed.

Each of the techniques listed above should gain you some ROM space and improve execution speed.
If all of these techniques are used to their fullest, the compiler will produce very good code indeed.
The 8051 imposes some limitations but if used intelligently the HI-TECH compiler will give results
which frequently could not be improved with hand coding of assembly language.

218

Chapter 12

Macro Assembler

The HI-TECH Software 8051 Macro Assembler assembles source files for the Intel 8051 family of
microprocessors.

This chapter describes the usage of the assembler and the directives (assembler pseudo-ops)
accepted by the assembler. The 8051 instruction set, listing all mnemonics, opcodes and addressing
forms, is listed at the end of this chapter.

For a description of the available special function registers and any extra instructions refer to the
appropriate processor handbook.

The HI-TECH assembler package includes a linker, librarian, cross reference generator and an
object code converter.

12.1 Assembler Usage

The assembler is called AS51 and is available to run on PC and UNIX operating systems.
The usage of the assembler is similar under all of these operating systems. All command line

options are recognised in either upper or lower case. The basic command format is shown is:

as51 [options] files ...

Files is a space-separated list of one or more assembler source files. Where more than one source file
is specified the assembler treats them as a single module, i.e. a single assembly will be performed
on the concatenation of all the source files specified. The files must be specified in full, no default
extensions or suffixes are assumed.

Options is an optional space separated list of assembler options, each with a minus sign (-) as
the first character. A full list of possible options is given in Table12.1, and a full description of each
option follows.

219

Assembler options Macro Assembler

Table 12.1: AS51 command-line options

Option Meaning Default
-A 80C751 code (AJMP/ACALL) 8051 CODE
-Q Quick assembly Optimized assembly
-U No undef’d symbol messages
-S No size error messages
-X No local symbols in OBJ file
-Ooutfile Specify object name srcfile.OBJ
-Llistfile Produce listing No listing
-Wwidth Specify listing page width 80 or 132
-Flength Specify listing form length 66
-I List macro expansions Don’t list macros
-C Produce cross-reference No cross reference
-V Include assembler line numbers in

object file
No line numbers

12.2 Assembler options

The command line options recognised by AS51 are as follows:

-A The Philips/Signetics 80C751 series of processors do not support theLJMP andLCALL instruc-
tions. If the-A option is used, AS51 will assemble these instructions toAJMP and ACALL
respectively. This assembler option is used by the C compiler when generating 80C751 code.

-Q The default mode of operation of the assembler is to iterate over the source code until the smallest
possible code is produced, by optimizing jumps. If the-Q option is used then only two passes
over the source code will be made, thereby speeding up assembly. This may result inNOP
instructions being generated in the code where an optimization was performed on the second
pass but not the first.

-U Undefined symbols encountered during assembly are treated as external, however an error mes-
sage is issued for each undefined symbol unless the -U option is given. Use of this option
suppresses the error messages only, it does not change the generated code.

-S If a byte-size memory location is intialized with a value which is too large to fit in 8 bits, then
the assembler will generate a "Size error" message. Use of the-S option will suppress these
messages.

220

Macro Assembler 8051 Assembly language

-X The object file created by the assembler contains symbol information, including local symbols,
i.e. symbols that are neither public or external. The-X option will prevent the local symbols
from being included in the object file, thereby reducing the file size.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source file name and
appending.obj. The-O option allows the user to override the default and specify and explicit
filename for the object file.

-L listfile This option requests the generation of an assembly listing. If listfile is specified then the
listing will be written to that file, otherwise it will be written to the standard output.

-Wwidth This option allows specification of the listfile paper width, in characters. Width should be
a decimal number greater than 41. The default width is 80 characters if the listfile is a device
(terminal, printer etc.) or 132 if it is a file.

-Flength The default listing pagelength is 66 lines (11 inches at 6 lines per inch). The -F option
allows a different page length to be specified.

-I This option overrides anyNOLIST assembler controls and forces listing of macro expansions and
unassembled conditionals.

-C A cross reference file will be produced when this option is used. This file, calledsrcfile .crf
wheresrcfile is the base portion of the first source file name, will contain raw cross refer-
ence information. The cross reference utilityCREF must then be run to produce the formatted
cross reference listing.

-V Include assembler line numbers and file names in the object file, for debugging purposes.

12.3 8051 Assembly language

The source language accepted by the HI-TECH Software 8051 Macro Assembler is described below.
All opcode mnemonics and operand syntax are strictly as described in the Intel MCS-51 Program-
mer’s Guide.

12.3.1 Character set

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
opcodes and reserved words. Tabs are treated as equivalent to spaces.

221

8051 Assembly language Macro Assembler

Table 12.2: AS51 numbers and bases

Radix Format
Binary digits 0 and 1 followed byB
Octal digits 0 to 7 followed byO, Q, o or q
Decimal digits 0 to 9 followed byD, d or nothing
Hexadecimal digits 0 to 9, A to F preceded byOx or followed by H or h

12.3.2 Numbers

The assembler performs all arithmetic as signed 32 bit. Errors will be caused if a quantity is too large
to fit in a memory location. The default radix for all numbers is 10. Other radices may be specified
by a trailing base specifier as given in Table12.2.

Hexadecimal numbers must have a leading digit to differentiate them from identifiers. Hexadec-
imal constants are accepted in either upper or lower case.

Note that a binary constant must have an upper case B following it, as a lower case b is used for
temporary (numeric) label backward references.

Real numbers are accepted in the usual format for DF directives only. The exponent and mantissa
of a real number must be decimal. Real numbers are stored in IEEE 32 bit format.

12.3.3 Delimiters

All numbers and identifiers must be delimited by white space, non alphanumeric characters or the
end of a line.

12.3.4 Identifiers

Identifiers are user-defined symbols representing memory locations or numbers. A symbol may
contain any number of characters drawn from the alphabetics, numerics and the special characters
dollar ($), question mark (?) and underscore(_). The first character of an identifier may not be
numeric. The case of alphabetics is significant, e.g.Fred is not the same symbol asfred.

12.3.4.1 Assembler generated identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have
the form??nnnnwherennnnis a 4 digit number. The user should avoid defining symbols with the
same form.

222

Macro Assembler 8051 Assembly language

12.3.4.2 Location counter

The current location within the active program section is accessible via the symbol$.

12.3.4.3 Predefined Identifiers

Some identifies representing registers, bits within registers, and interrupt vector locations have been
predefined. These predefined identifiers are case-insensitive, therefore you cannot redefine one in a
different case.

12.3.5 Strings

A string is a sequence of characters not including carriage return or newline, enclosed within match-
ing quotes. Either single (’) or double (") quotes may be used, but the opening and closing quotes
must be the same. A string used as an operand to a DB directive may be any length, but a string used
as operand to an instruction must not exceed 1 or 2 characters, depending on the size of the operand
required.

12.3.6 Temporary labels

The assembler implements a system of temporary labels (as distinct from the local labels used in
macros) which relieves the programmer from creating new labels within a block of code. A tem-
porary label is defined as a numeric string, and may be referenced by the same numeric string with
either an ‘f’ or ‘b’ suffix. When used with an ‘f’ suffix, the label reference is the first label with the
same number found by lookingf orward from the current location, and conversely a ‘b’ will cause
the assembler to lookbackward for the label.

For example:

entry:
mov r0,ploc

1:
mov a,@r0
jz 1f ;end of string
inc r0
cjne a,r2,1b
sjmp 2f ;found it

1:
clr a ;return zero
ret

2:

223

8051 Assembly language Macro Assembler

dec r0
mov a,r0 ;return pointer
ret

Note that even though there are two 1: labels, no ambiguity occurs, since each is referred to uniquely.
The cjne 1brefers to a label further back in the source code, whilejz 1f refers to a label further
forward. In general, to avoid confusion, it is recommended that within a routine you do not duplicate
numeric labels.

12.3.7 Expressions

Expressions are made up of numbers, symbols, strings and operators. The available operators are
listed in Table12.3, in order of precedence. The usual rules governing the syntax of expressions
apply.

The operators above may all be freely combined in both constant and relocatable expressions.
The HI-TECH linker permits relocation of complex expressions, so the results of expressions in-
volving relocatable identifiers may not be resolved until link time.

12.3.8 Statement format

Legal statement formats are shown in table Table12.4. The second form is only legal with certain
directives, such as MACRO, SET and EQU. Thelabelfield is optional and if present should contain
one identifier. Thenamefield is mandatory and should also contain one identifier.

12.3.9 Addressing modes

The assembler recognises all standard 8051 addressing modes. All SFRs and bit addresses are
accepted by the assembler. Consult an Intel handbook for full information.

12.3.10 Program sections

Program sections, orpsects, are a way of grouping together parts of a program even though the
source code may not be physically adjacent in the source file, or even where spread over several
source files. A psect is identified by a name and has several attributes. The psect directive is used
to define psects. It takes as arguments a name and an optional comma-separated list of flags. See
the Section12.3.11.5for full information. The assembler associates no significance to the name of
a psect.

224

Macro Assembler 8051 Assembly language

Table 12.3: AS51 operators

Operator Purpose Precedence
NUL Test for null argument 8
^ Exponentation 7
,/, MOD multiply divide modulus 6
SHR, SHL shift right, shift left 6
ROR, ROL rotate right, rotate left 6
+, - plus, minus (unary or binary) 5
HIGHWORD high 16 bits of dword operand 5
HIGH high byte of word expression 5
LOW low byte of word expression 5
SEG segment part of address 5
EQ,NE,GT,GE,LT,LE Relational operators 4
=,<>,>,>=,<,<= Relational operators 4
NOT bitwise inversion 3
AND bitwise conjunction 2
OR bitwise disjunction 1
XOR exclusive OR 1

Table 12.4: AS51 statement formats

label: opcode operands ;comment
name pseudo-op operands ;comment
;comment only

225

8051 Assembly language Macro Assembler

12.3.11 Assembler directives

Assembler directives, orpseudo-ops, are used in a similar way to opcodes, but either, do not generate
code, or generate non-executable code, i.e. data bytes.The directives are listed in table Table12.5,
and detailed below.

12.3.11.1 PUBLIC

The PUBLIC directive takes a comma separated list of symbols defined in the current module and
which are to be accessible to other modules at link time. Example:

PUBLIC lab1,lab2,lab3

12.3.11.2 EXTRN

This is the complement of PUBLIC; it declares symbols which may then be referenced even though
they are defined in another module. Example:

EXTRN lab1,lab2,lab3

12.3.11.3 GLOBAL

GLOBAL is a combination of PUBLIC and EXTRN; it declares a list of symbols which, if defined
within the current module, are made public, otherwise are made external. Example:

GLOBAL lab1,lab2,lab3

12.3.11.4 END

END is optional, but if present should be at the very end of the program. It will terminate the
assembly. If an expression is supplied as an argument, that expression will be used to define the start
address of the program. Whether this is of any use will depend on the linker. For example:

END start_label

12.3.11.5 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and
optionally a comma separated list of flags. The allowed flags are detailed below. Once a psect has
been declared it may be resumed later by simply giving its name as an argument to another psect
directive; the flags need not be repeated. The psect flags are listed in Table12.6.

226

Macro Assembler 8051 Assembly language

Table 12.5: AS51 directives

Directive Purpose
PUBLIC Make symbols accessible to other modules
EXTRN Allow reference to other modules symbols
GLOBAL Public or extrn as appropriate
END End assembly
PSECT Declare or resume program selection
ORG Set location counter
EQU Define symbol value
SET Re-define symbol value
DB Define constant byte(s)
DW Define constant word(s)
DF Define constant real(s)
DS Reserve storage
FNADDR Inform linker that a function may be indirectly called
FNARG Inform linker that evaluation of arguments for one func-

tion requires calling another
FNBREAK Break call graph links
FNCALL Inform linker that one function calls another
FNCONF Supply call graph configuration info to linker
FNINDIR Inform linker that all functions with a particular signature

may be indirectly called
FNROOT Inform linker that a function is the “root” of a call graph
FNSIZE Inform linker of argument and local variable sizes for a

function
IF Conditional assembly
ELSE Alternate conditional assembly
ENDIF End conditional assembly
MACRO Macro definition
ENDM End macro definition
LOCAL Define local tabs
REPT Repeat a block of code n times
IRP Repeat a block of code with a list
IRPC Repeat a block of code with a character list
EXITM Terminate macro expansion
SIGNAT Define function signature

227

8051 Assembly language Macro Assembler

Table 12.6: Psect flags

Flag Meaning
ABS Psect is absolute
BIT Psect holds bit objects
GLOBAL Psect is global (default)
LOCAL Psect is not global
OVRLD Psect will overlap same psect in other modules
PURE Psect is to be read-only
RELOC Start psect on specified boundary
SIZE Maximum size of psect
SPACE Represents area in which psect will reside

BIT TheBIT flag defines the current psect as being bit addressable. Any storage allocated in aBIT
psect will be in bits, not bytes. For example,DS 4 in aBIT psect will reserve 4 bits of storage.

PURE ThePURE flag instructs the linker that this psect will not be modified at run time and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

ABS ABS defines the current psect as being absolute, i.e. it is to start at location 0. This does
not mean that this module’s contribution to the psect will start at 0, since other modules may
contribute to the same psect.

OVRLD A psect defined asOVRLD will have the contribution from each module overlaid, rather
than concatenated at run time.OVRLD in combination withABS defines a truly absolute psect,
i.e. a psect within which any symbols defined are absolute.

GLOBAL A psect defined as global will be combined with other global psects of the same name
from other modules at link time.GLOBAL is the default.

LOCAL A psect defined asLOCAL will not be combined with other local psects at link time, even if
there are others with the same name. A local psect may not have the same name as any global
psect, even one in another module.

SIZE TheSIZE flag allows a maximum size to be specified for the psect, e.g.SIZE=100h. This will
be checked by the linker after psects have been combined from all modules.

228

Macro Assembler 8051 Assembly language

RELOC TheRELOC flag allows specification of a requirement for alignment of the psect on a par-
ticular boundary, e.g.RELOC=100h would specify that this psect must start on an address that
is a multiple of 100h.

SPACE TheSPACE flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in ROM and RAM have a differentSPACE
value to indicate that ROM address zero, for example, is a different location to RAM address
zero.

Some examples of the use of the PSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld

12.3.11.6 ORG

ORG changes the value of the location counter within the current psect. This means that the ad-
dresses set with ORG are relative to the base of the psect, which is not determined until link time.

•

TheORG directive doesnotnecessarily move the location counter to the absolute address
you specify as the operand.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In
either case the current location counter is set to the value determined by the argument. For example:

ORG 100h

will move the location counter to the beginning of the current psect plus 100h. The actual location
will not be known until link time. It is not possible to move the location counter backward.

In order to use the ORG directive to set the location counter to an absolute value, the directive
must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld
ORG 50h

229

8051 Assembly language Macro Assembler

12.3.11.7 EQU and SET

This pseudo-op defines a symbol and equates its value to an expression. For example:

assembly EQU 123h

The identifierassemblywill be given the value 123h. EQU is legal only when the symbol has not
previously been defined.

SET is identical to EQU except that it may be used to re-define a symbol.

12.3.11.8 DB and DW

These directives initialize storage, as bytes or words respectively. The argument to each is a list of
expressions, each of which will be assembled into one byte or word. DB may also take a multi-
character string as an argument. Each character of the string will be assembled into one memory
location.

An error will occur if the value of an expression is too big to fit into the memory location, e.g. if
the value 1020 is given as an argument to DB. Examples:

lab: DB’X’,1,2,3,4,"A string",0
DW 23*10,alabel,0,’a’

12.3.11.9 DF

DF initializes memory double words as real numbers. Each number will occupy 32 bits (4 bytes)
and will be stored in IEEE 32 bit format, high byte first.

pi: DF 3.14159
DF 3.3,3e10,-23

12.3.11.10 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number
of bytes to be reserved. Examples:

alabel: DS23
xlabel: DS2+3

230

Macro Assembler 8051 Assembly language

12.3.11.11 FNADDR

This directive tells the linker that a function has its address taken, and thus could be called indirectly
through a function pointer. For example:

FNADDR _func1

tells the linker thatfunc1()has its address taken.

12.3.11.12 FNARG

The directive:

FNARG fun1,fun2

tells the linker that evaluation of the arguments to functionfun1 involves a call tofun2, thus the
memory argument memory allocated for the two functions should not overlap.

For example, the C function callfred(var1, bill(), 2);will generate the assembler directive:

FNARG_fred,_bill

thereby telling the linker thatbill() is called while evaluating the arguments for a call tofred().

12.3.11.13 FNBREAK

This directive is used to break links in the call graph information. The form of this directive is as
follows:

FNBREAK fun1,fun2

and is automatically generated when the interrupt_level pragma is used. It states that the link to
fun1() in the call graph rooted atfun2() should not be followed when checking for functions that
appear in multiple call graphs.Fun2() is typicallyintlevel0 or intlevel1 in compiler-generated
code when the interrupt level pragma is used.

12.3.11.14 FNCALL

This directive takes the form:

FNCALL fun1,fun2

231

8051 Assembly language Macro Assembler

FNCALL is usually used in compiler generated code. It tells the linker that functionfun1calls func-
tion fun2. This information is used by the linker when performing call graph analysis. If you write
assembler code which calls a C function, use the FNCALL directive to ensure that your assembler
function is taken into account.

For example, if you have an assembler routine called_fredwhich calls a C routine calledfoo(),
in your assembler code you should write:

FNCALL _fred,_foo

12.3.11.15 FNCONF

The FNCONF directive is used to supply the linker with configuration information for acall graph.
FNCONF is written as follows:

FNCONF psect,auto,args

wherepsectis the psect containing the call graph, auto is the prefix on allautovariable symbol names
andargs is the prefix on all function argument symbol names. This directive normally appears in
only one place, the runtime startoff code used by C compiler generated code.

For most memory models, the run-time startoff routines (rt51–nm.as, rt51-ns.asandrt51a-ns.as)
routines should include the directive:

FNCONF rbss,?a,?

telling the linker that the call graph is in therbsspsect, auto variable blocks start with?aand function
argument blocks start with?.

For large model, there is a stack, so call graphing is not necessary inrt–nl.as.

12.3.11.16 FNINDIR

This directive tells the linker that a function performs an indirect call to another function with a
particular signature (see the SIGNAT directive). The linker must assume worst case that the function
could call any other function which has the same signature and has had its address taken (see the
FNADDR directive). For example, if a function calledfred() performs an indirect call to a function
with signature 8249, the compiler will produce the directive:

FNINDIR _fred,8249

232

Macro Assembler 8051 Assembly language

12.3.11.17 FNSIZE

The FNSIZE directive informs the linker of the size of the local variable and argument area associ-
ated with a function. These values are used by the linker when building the call graph and assigning
addresses to the variable and argument areas. This directive takes the form:

FNSIZE func,local,args

The named function has a local variable area and argument area as specified, for example:

FNSIZE _fred, 10, 5

means the functionfred()has 10 bytes of local variables and 5 bytes of arguments.
The function name arguments to any of the call graph associated directives may be local or

global. Local functions are, of course, defined in the current module, but must be used in the call
graph construction in the same manner as global names.

12.3.11.18 FNROOT

This directive tells the assembler that a function is aroot functionand thus forms the root of a call
graph. It could either be the Cmain() function or an interrupt function. For example, the C main
module produce the directive:

FNROOT _main

12.3.11.19 IF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF should be an absolute expres-
sion. If it is non-zero, then the code following it up to the next matching ELSE or ENDIF will be
assembled. If the expression is zero then the code up to the next matching ELSE or ENDIF will be
skipped. At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will
terminate the conditional assembly block. Example:

IF some_symbol
MOV A,@R0
ELSE
MOVX A,@DPTR
ENDIF

In this example, ifsome_symbolis non-zero, the first MOV instruction will be assembled but not the
second. Conversely ifsome_symbolis zero, the MOVX will be assembled but not the first MOV will
not. Conditional assembly blocks may be nested.

233

8051 Assembly language Macro Assembler

12.3.11.20 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by
the macro name and followed by a comma separated list of formal parameters. When the macro is
used, the macro name should be used in the same manner as a machine opcode, followed by a list of
arguments to be substituted for the formal parameters. For example:

xch macro reg1, reg2;exchange registers
mov a,r®1& ;save reg1
mov r®1,reg2 ;reg2 ---> reg1
mov r®2,a ;restore reg2
ENDM

defines a macroxch. The macro invocationxch 3,4 would expand to:

mov a,r3
mov r3,4
mov r4,a

The& character may be used to delimit an argument used in the coding of the macro, thus permitting
the concatenation of macro parameters with other text, but is removed in the actual macro expansion.
The& character need not be used if commas or spaces are delimiting the argument, but should be
used at both ends if no other delimiters are available.

The NUL operator may be used within a macro to test a macro argument. A comment may be
suppressed within the expansion of a macro (thus saving space in the macro storage) by opening the
comment with a double semicolon (;;).

12.3.11.21 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted
for them when the macro is expanded. For example:

copy MACRO src,dst,cnt
LOCAL loop

mov r0,src
mov r1,dst
mov r2,#cnt

loop: mov a,@r0
mov @r1,a
inc r0

234

Macro Assembler 8051 Assembly language

inc r1
djnz r2,loop

ENDM

defines a macrocopywhich when invoked as:

copy #inbuf,#procbuf,32

expands to:

mov r0,#inbuf
mov r1,#procbuf
mov r2,#32

??0001: mov a,@r0
mov @r1,a
inc r0
inc r1
djnz r2,??0001

12.3.11.22 REPT

The REPT directive temporarily defines an unnamed macro then expands it a number of times as
determined by its argument. For example:

mov r0,#zbuf
clr a
REPT3
mov @r0,a
inc r0
ENDM

expands to:

mov r0,#zbuf
clr a
mov @r0,a
inc r0
mov @r0,a
inc r0
mov @r0,a
inc r0

235

8051 Assembly language Macro Assembler

12.3.11.23 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT. However, instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP the
list is a conventional macro argument list, in the case or IRPC it is each character in one argument.
For each repetition the argument is substituted for one formal parameter.

For example:

IRP arg,lab1,lab2,#23
mov @r0,arg
inc r0
ENDM

expands to:

mov @r0,lab1
inc r0
mov @r0,lab2
inc r0
mov @r0,#23
inc r0

The IRPC directive is similar, except it substitutes one character at a time from a string of non-space
characters. For example:

IRPC arg,ABC
LOCAL lab
cjne a,#’arg’,lab
ljmp case_&arg
lab:
ENDM

expands to:

cjne a,#’A’,??0000
ljmp case_A
??0000:
cjne a,#’B’,??0001
ljmp case_B
??0001:
cjne a,#’C’,??0002
ljmp case_C
??0002:

236

Macro Assembler 8051 Assembly language

12.3.11.24 SIGNAT

This directive is used to associate a 16 bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not.
The SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from
C. For example:

SIGNAT _fred,8194

will associate the signature value 8192 with symbol_fred. If a different signature value for_fred is
present in any object file, the linker will report an error.

12.3.12 Macro invocations

When invoking a macro, the argument list must be comma separated. If it is desired to include a
comma (or other delimiter such as a space) in an argument then angle brackets (< and >) may be
used to quote the argument. In addition the exclamation mark (!) may be used to quote a single
character. The character immediately following the exclamation mark will be passed into the macro
argument even if it is normally a comment indicator.

If an argument is preceded by a percent sign (%), that argument will be evaluated as an expression
and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument
inside the macro body would yield a different result.

12.3.13 Assembler controls

Control lines may be included in the assembler source to control such things as listing format. Each
control line starts with a dollar ($) character which is followed by a white-space separated list of
control keywords. These keywords have no significance anywhere else in the program. Some key-
words may have a parameter after them, which is always enclosed in parentheses. Most control
keywords have a positive and a negative form. All have two letter abbreviations, the negative form
is constructed by prefixing the keyword or the abbreviation with NO.

A list of keywords is given in Table12.7, and each is described further below.

12.3.13.1 PAGELENGTH(n)

This control keyword specifies the length of the listing form. The default is 66 (11 inches at 6 lines
per inch).

237

8051 Assembly language Macro Assembler

Table 12.7:AS51 assembler controls

Control name Abbreviation Default
PAGELENGTH(n) PL PL(66)
PAGEWIDTH(n) PW PW(120)
XREF/NOXREF XR/NOXR NOXR
COND/NOCOND CO/NOCO CO
EJECT EJ
GEN/NOGEN GE/NOGE NOGE
INCLUDE(pathname) IC
LIST/NOLIST LI/NOLI LI
SAVE/RESORE SA/RS
TITLE(string) TT

12.3.13.2 PAGEWIDTH(n)

PAGEWIDTH allows the listing line width to be set.

12.3.13.3 XREF

XREF is equivalent to the command line option-C, it causes the assembler to produce a raw cross
reference file. The utilityCREF should be used to actually generate the formatted cross-reference
listing.

12.3.13.4 COND

WhenCOND is in effect, lines of code not assembled because of conditional assembly will be listed.
If NOCOND is in effect only those lines actually assembled will appear in the listing.

12.3.13.5 EJECT

EJECT causes a new page to be started in the listing. A control-L (form feed) character will also
cause a new page when encountered in the source.

12.3.13.6 GEN

WhenGEN is in effect the code generated by macro expansions will be listed. IfNOGEN is in effect
only the macro call will appear in the listing.

238

Macro Assembler 8051 Assembly language

12.3.13.7 INCLUDE(pathname)

This control causes the file specified bypathnameto be textually included at that point in the listing.
TheINCLUDE control must be the last control keyword on the line.

12.3.13.8 LIST

LIST andNOLIST turn listing on and off respectively

12.3.13.9 SAVE and RESTORE

SAVE pushes the current state of theLIST, COND andGEN flags onto a stack.RESTORE pops the top of
the stack off into the flags. It may be used to selectively control listing inside macros.

12.3.13.10 TITLE(string)

This control keyword defines a title to appear at the top of every listing page. Thestring should be
enclosed in single or double quotes.

239

8051 Assembly language Macro Assembler

240

Chapter 13

Linker and Utilities

13.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each source file may be
compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most
instances it will not be necessary to use the linker directly, as the compiler drivers (HPD or command
line) will automatically invoke the linker with all necessary arguments. Using the linker directly is
not simple, and should be attempted only by those with a sound knowledge of the compiler and
linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker
arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that
the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for
several different processors. Not all features described in this chapter are applicable to all compilers.

13.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to berelocatablesince the files have sufficient information in them so that any
references to program or data addresses (e.g. the address of a function) within the file may be
adjusted according to where the file is ultimately located in memory after the linkage process. Thus

241

Program Sections Linker and Utilities

the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.
relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the
base address of a particular section of code, for example the section of code containing the actual
executable instructions.

13.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which
will be referred to aspsects. These psects represent logical groupings of certain types of code bytes in
the program. In general the compiler will produce code in three basic types of psects, although there
will be several different types of each. The three basic kinds are text psects, containing executable
code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved
data.

The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into
the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of
the program, thus the second variable will be initialised at run time to zero. The first will however
occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite
possible to modify the value of a variable in the data psect during execution, however it is better
practice not to do so, since this leads to more consistent use of variables, and allows for restartable
and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

13.4 Local Psects

Most psects areglobal, i.e. they are referred to by the same name in all modules, and any reference
in any module to aglobal psect will refer to the same psect as any other reference. Some psects
arelocal, which means that they are local to only one module, and will be considered as separate
from any other psect even of the same name in another module.Local psects can only be referred
to at link time by a class name, which is a name associated with one or more psects via thePSECT
directiveclass= in assembler code. See Section12.3.11.5for more information onPSECT options.

13.5 Global Symbols

The linker handles only symbols which have been declared asGLOBAL to the assembler. The code
generator generates these assembler directives whenever it encounters global C objects. At the C

242

Linker and Utilities Link and load addresses

source level, this means all names which have storage class external and which are not declared
asstatic. These symbols may be referred to by modules other than the one in which they are
defined. It is the linker’s job to match up the definition of a global symbol with the references to it.
Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise
processed by the linker.

13.6 Link and load addresses

The linker deals with two kinds of addresses;link andload addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which
may or may not be the same as the link address, is the address at which the psect will start within the
output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-
responds to the offset within a segment, while the load address corresponds to the physical address
of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is
copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that
is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

13.7 Operation

A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some
way. Files is one or more object files, and zero or more library names. The options recognised by
the linker are listed in Table13.1and discussed in the following paragraphs.

Table 13.1: Linker command-line options

Option Effect
-8 Use 8086 style segment:offset address form
-Aclass=low-high ,... Specify address ranges for a class
continued. . .

1In earlier versions of HI-TECH C the linker was calledLINK.EXE

243

Operation Linker and Utilities

Table 13.1: Linker command-line options

Option Effect
-Cx Call graph options
-Cpsect=class Specify a class name for a global psect
-Cbaseaddr Produce binary output file based atbaseaddr
-Dclass=delta Specify a class delta value
-Dsymfile Produce old-style symbol file
-Eerrfile Write error messages toerrfile
-F Produce.obj file with only symbol records
-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file
-H+symfile Generate enhanced symbol file
-I Ignore undefined symbols
-Jnum Set maximum number of errors before aborting
-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in.obj file
-LM Preserve segment relocation items in.obj file
-N Sort symbol table in map file by address order
-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file
-Ooutfile Specify name of output file
-Pspec Specify psect addresses and ordering
-Qprocessor Specify the processor type (for cosmetic reasons only)
-S Inhibit listing of symbols in symbol file
-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined
-Vavmap Use fileavmap to generate anAvocetformat symbol file
-Wwarnlev Set warning level (-9 to 9)
-Wwidth Set map file width (>=10)
-X Remove any local symbols from the symbol file
-Z Remove trivial local symbols from the symbol file

13.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a

244

Linker and Utilities Operation

hex number, a trailingH should be added, e.g.765FH will be treated as a hex number.

13.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a-P option (see below) but some-
times it is desired to have a class of psects linked into more than one non-contiguous address range.
This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the classCODE is to be linked into the given address ranges. Note that a contribution
to a psect from one module cannot be split, but the linker will attempt to pack each block from each
module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a
repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though
the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
characterx or * after a range, followed by a count.

13.7.3 -Cx

These options allow control over the call graph information which may be included in the map file
produced by the linker. The-CN option removes the call graph information from the map file. The
-CC option only include the critical paths of the call graph. A function call that is marked with a* in
a full call graph is on a critical path and only these calls are included when the-CC option is used.
A call graph is only produced for processors and memory models that use a compiled stack.

13.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on
the command line since classes are specified in object files.

13.7.5 -Dclass=delta

This option allows thedeltavalue for psects that are members of the specified class to be defined.
The delta value should be a number and represents the number of bytes per addressable unit of
objects within the psects. Most psects do not need this option as they are defined with adeltavalue.

245

Operation Linker and Utilities

13.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where
each line has the link address of the symbol followed by the symbol name.

13.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

13.7.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used
again in a subsequent linker run to supply symbol values. The-F option will suppress data and code
bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program
is contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the
files for the other device. The process can then be repeated for the other files and device.

13.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker
can assign segment addresses, orselectors, to each segment. Asegmentis defined as a contiguous
group of psects where each psect in sequence has both its link and load address concatenated with
the previous psect in the group. The segment address or selector for the segment is the value derived
when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-
ment by the relocation quantum of the segment, which is based on thereloc= flag value given to
psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode
or some bank-switched arrangements. In this instance the-G option is used to specify a method for
calculating the segment selector. The argument to-G is a string similar to:

A/10h-4h

whereA represents the load address of the segment and/ represents division. This means "Take the
load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-
tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.

246

Linker and Utilities Operation

The tokenN is replaced by the ordinal number of the segment, which is allocated by the linker. For
example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number
of segments defined. This would be appropriate when compiling for 80286 protected mode, where
these selectors would represent LDT entries.

13.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argumentsymfile
specifies a file to receive the symbol file. The default file name isl.sym.

13.7.11 -H+symfile

This option will instruct the linker to generate anenhancedsymbol file, which provides, in addition
to the standard symbol file, class names associated with each symbol and a segments section which
lists each class name and the range of memory it occupies. This format is recommended if the code
is to be run in conjunction with a debugger. The optional argumentsymfile specifies a file to
receive the symbol file. The default file name isl.sym.

13.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings).
The default number is 10, but the-J option allows this to be altered.

13.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter
areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature
can be disabled with this option.

13.7.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will
cause undefined symbols to be treated as warnings instead.

247

Operation Linker and Utilities

13.7.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at
load time, e.g. when running a .exe file under DOS or a.prg file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

13.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating.exe files to run under DOS.

13.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if
the file name is omitted. The format of the map file is illustrated in Section13.9.

13.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The-N option will cause it to
be sorted numerically, based on the value of the symbol. The-Ns and-Nc options work similarly
except that the symbols are grouped by either theirspacevalue, or class.

13.7.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is
l.obj. Use of this option will override the default.

13.7.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via-P
options. The argument to the-P option consists basically ofcomma-separated sequences thus:

-Ppsect =lnkaddr +min /ldaddr +min ,psect =lnkaddr /ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load ad-
dresses, and a minimum value. All values may be omitted, in which case a default will apply,
depending on previous values.

248

Linker and Utilities Operation

The minimum value,min , is preceded by a+ sign, if present. It sets a minimum value for the
link or load address. The address will be calculated as described below, but if it is less than the
minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects
or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse
order with the top of the psect appearing at the specified address minus one. Psects following a
negative address will be placed before the first psect in memory. If a link address is omitted, the
psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). Thedata
psect will be linked (and loaded) at an address which is 100 hex plus the length of thetext psect,
rounded up as necessary if the data psect has areloc= value associated with it. Similarly, thebss
psect will concatenate with thedata psect. Again:

-Ptext=-100h,data,bss

will link in ascending orderbss, data thentext with the top of text appearing at address 0ffh.
If the load address is omitted entirely, it defaults to the same as the link address. If theslash/

character is supplied, but no address is supplied after it, the load address will concatenate with the
previous psect, e.g.

-Ptext=0,data=0/,bss

will cause bothtext anddata to have a link address of zero, text will have a load address of 0, and
data will have a load address starting after the end oftext. The bss psect will concatenate withdata
for both link and load addresses.

The load address may be replaced with adot . character. This tells the linker to set the load
address of this psect to the same as its link address. The link or load address may also be the name of
another (already linked) psect. This will explicitly concatenate the current psect with the previously
specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

This example showstext at zero,data linked at 8000h but loaded aftertext, bss is linked and
loaded at 8000h plus the size ofdata, andnvram andheap are concatenated withbss. Note here
the use of two-P options. Multiple-P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be
used in place of a link or load address, and space will be found in one of the address ranges. For
example:

249

Operation Linker and Utilities

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated withCODE.
If no sufficiently large space is available, an error will result. Note that in this case thedata psect
will still be assembled into one contiguous block, whereas other psects in the classCODE will be
distributed into the address ranges wherever they will fit. This means that if there are two or more
psects in classCODE, they may be intermixed in the address ranges.

Any psects allocated by a-P option will have their load address range subtracted from any
address ranges specified with the-A option. This allows a range to be specified with the-A option
without knowing in advance how much of the lower part of the range, for example, will be required
for other psects.

13.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map
file. The argument to this option is a string describing the processor.

13.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced
by the linker. Segment information is still included.

13.7.23 -Sclass=limit[, bound]

A class of psects may have an upper addresslimit associated with it. The following example places
a limit on the maximum address of theCODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with alimit= flag on
aPSECT directive).

If the bound(boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places theFARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

-SFARCODE=6000h,1000h

250

Linker and Utilities Invoking the Linker

13.7.24 -Usymbol

This option will enter the specified symbol into the linker’s symbol table as an undefined symbol.
This is useful for linking entirely from libraries, or for linking a module from a library where the
ordering has been arranged so that by default a later module will be linked.

13.7.25 -Vavmap

To produce anAvocetformat symbol file, the linker needs to be given a map file to allow it to
map psect names toAvocetmemory identifiers. The avmap file will normally be supplied with the
compiler, or created automatically by the compiler driver as required.

13.7.26 -Wnum

The-W option can be used to set the warning level, in the range -9 to 9, or the width of the map file,
for values ofnum>= 10.

-W9 will suppress all warning messages.-W0 is the default. Setting the warning level to -9 (-W-9)
will give the most comprehensive warning messages.

13.7.27 -X

Local symbols can be suppressed from a symbol file with this option.Global symbols will always
appear in the symbol file.

13.7.28 -Z

Somelocal symbols are compiler generated and not of interest in debugging. This option will
suppress from the symbol file all local symbols that have the form of a single alphabetic character,
followed by a digit string. The set of letters that can start a trivial symbol is currently "klfLSu".
The-Z option will strip any local symbols starting with one of these letters, and followed by a digit
string.

13.8 Invoking the Linker

The linker is calledHLINK, and normally resides in theBIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is
generally useful if the number of arguments toHLINK is large. Even if the list of files is too long
to fit on one line, continuation lines may be included by leaving abackslash\ at the end of the

251

Map Files Linker and Utilities

preceding line. In this fashion,HLINK commands of almost unlimited length may be issued. For
example a link command file calledx.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

13.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned
to symbols within those psects. The sections in the map file are as follows; first is a copy of the
command line used to invoke the linker. This is followed by the version number of the object code
in the first file linked, and the machine type. This is optionally followed by call graph information,
depended on the processor and memory model selected. Then are listed all object files that were
linked, along with their psect information. Libraries are listed, with each module within the library.
The TOTALS section summarises the psects from the object files. The SEGMENTS section sum-
marises major memory groupings. This will typically show RAM and ROM usage. The segment
names are derived from the name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its
associated psect and link address.

Linker command line:
-z -Mmap -pvectors=00h,text,strings,const,im2vecs \
-pbaseram=00h -pramstart=08000h,data/im2vecs,bss/.,stack=09000h \
-pnvram=bss,heap \
-oC:\TEMP\l.obj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \
C:\HT-Z80\LIB\z80-sc.lib
Object code version is 2.4
Machine type is Z80

Name Link Load Length Selector
C:\HT-Z80\LIB\rtz80-s.obj

vectors 0 0 71
bss 8000 8000 24
const FB FB 1 0

252

Linker and Utilities Map Files

text 72 72 82
hello.obj text F4 F4 7
C:\HT-Z80\LIB\z80-sc.lib
powerup.obj vectors 71 71 1
TOTAL Name Link Load Length

CLASS CODE
vectors 0 0 72
const FB FB 1
text 72 72 89

CLASS DATA
bss 8000 8000 24

SEGMENTS Name Load Length Top Selector
vectors 000000 0000FC 0000FC 0
bss 008000 000024 008024 8000

13.9.1 Call Graph Information

A call graph is produced for chip types and memory models that use a compiled stack, rather than a
hardware stack, to facilitate parameter passing between functions and auto variables defined within
a function. When a compiled stack is used, functions are not re-entrant since the function will use a
fixed area of memory for its local objects (parameters/auto variables). A function calledfoo(), for
example, will use symbols like?_foo for parameters and?a_foo for auto variables. Compilers such
as the PIC, 6805 and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and
medium memory models. The call graph shows information relating to the placement of function
parameters and auto variables by the linker. A typical call graph may look something like:

Call graph:
*_main size 0,0 offset 0

_init size 2,3 offset 0
_ports size 2,2 offset 5

* _sprintf size 5,10 offset 0
* _putch

INDIRECT 4194
INDIRECT 4194

_function_2 size 2,2 offset 0
_function size 2,2 offset 5

*_isr->_incr size 2,0 offset 15

The graph shows the functions called and the memory usage (RAM) of the functions for their own
local objects. In the example above, the symbol_main is associated with the functionmain(). It is

253

Map Files Linker and Utilities

shown at the far left of the call graph. This indicates that it is the root of a call tree. The run-time
code has theFNROOT assembler directive that specifies this. The size field after the name indicates
the number of parameters andauto variables, respectively. Here,main() takes no parameters and
defines noauto variables. The offset field is the offset at which the function’s parameters and auto
variables have been placed from the beginning of the area of memory used for this purpose. The
run-time code contains aFNCONF directive which tells the compiler in which psect parameters and
auto variables should reside. This memory will be shown in the map file under the name COMMON.

Main() calls a function calledinit(). This function uses a total of two bytes of parameters
(it may be two objects of typechar or oneint; that is not important) and has three bytes ofauto
variables. These figures are the total of bytes ofmemoryconsumed by the function. If the function
was passed a two-byteint, but that was done via a register, then the two bytes would not be included
in this total. Sincemain() did not use any of the local object memory, the offset ofinit()’s memory
is still at 0.

The functioninit() itself calls another function calledports(). This function uses two bytes
of parameters and another two bytes of auto variables. Sinceports() is called byinit(), its
local variables cannot be overlapped with those ofinit()’s, so the offset is 5, which means that
ports()’s local objects were placed immediately after those ofinit()’s.

The function main also callssprintf(). Since the functionsprintf() is not active at the same
time asinit() or ports(), their local objects can be overlapped and the offset is hence set to 0.
Sprintf() calls a functionputch(), but this function uses no memory for parameters (thechar
passed as argument is apparently done so via a register) or locals, so the size and offset are zero and
are not printed.

Main() also calls another function indirectly using a function pointer. This is indicated by the
two INDIRECT entries in the graph. The number following is the signature value of functions that
could potentially be called by the indirect call. This number is calculated from the parameters and
return type of the functions the pointer can indirectly call. The names of any functions that have this
signature value are listed underneath theINDIRECT entries. Their inclusion does not mean that they
were called (there is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies
that this is the root of another call graph tree. This is an interrupt function which is not called by any
code, but which is automatically invoked when an enabled interrupt occurs. This interrupt routine
calls the functionincr(), which is shown shorthand in the graph by the-> symbol followed by the
called function’s name instead of having that function shown indented on the following line. This is
done whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred with* are those functions which are on a critical
path in terms of RAM usage. For example, in the above, (main() is a trivial example) consider
the functionsprintf(). This uses a large amount of local memory and if you could somehow
rewrite it so that it used less local memory, it would reduce the entire program’s RAM usage. The
functionsinit() andports() have had their local memory overlapped with that ofsprintf(), so

254

Linker and Utilities Librarian

reducing the size of these functions’ local memory will have no affect on the program’s RAM usage.
Their memory usage could be increased, as long as the total size of the memory used by these two
functions did not exceed that ofsprintf(), with no additional memory used by the program. So if
you have to reduce the amount of RAM used by the program, look at those functions that are starred.

If, when searching a call graph, you notice that a function’s parameter and auto areas have been
overlapped (i.e.?a_foo was placed at the same address as?_foo, for example), then check to
make sure that you have actually called the function in your program. If the linker has not seen a
function actually called, then it overlaps these areas of memory since that are not needed. This is
a consequence of the linker’s ability to overlap the local memory areas of functions which are not
active at the same time. Once the function is called, unique addresses will be assigned to both the
parameters and auto objects.

If you are writing a routine that calls C code from assembler, you will need to include the appro-
priate assembler directives to ensure that the linker sees the C function being called.

13.10 Librarian

The librarian program,LIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

• fewer files to link

• faster access

• uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more
symbols previously known, but not defined, to the linker. Thus modules in a library will be linked
only if required. Since the choice of modules to link is made on the first pass of the linker, and
the library is searched in a linear fashion, it is possible to order the modules in a library to produce
special effects when linking. More will be said about this later.

13.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is main-
tained a directory of the modules and symbols in the library. Since this directory is smaller than
the sum of the modules, the linker is speeded up when searching a library since it need read only
the directory and not all the modules on the first pass. On the second pass it need read only those
modules which are required, seeking over the others. This all minimises disk I/O when linking.

255

Librarian Linker and Utilities

Table 13.2: Librarian command-line options

Option Effect
-Pwidth specify page width
-W Suppress non-fatal errors

Table 13.3: Librarian key letter commands

Key Meaning
r Replace modules
d Delete modules
x Extract modules
m List modules
s Listmodiules with symbols

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

13.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

LIBR options k file.lib file.obj ...

Interpreting this,LIBR is the name of the program,options is zero or more librarian options which
affect the output of the program.k is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbols),file.lib is the name of
the library file to be operated on, andfile.obj is zero or more object file names.

The librarian options are listed in Table13.2.
The key letters are listed in Table13.3.
When replacing or extracting modules, thefile.obj arguments are the names of the modules

to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian
to replace it in the library. Since it is not present, the module will be appended to the library. If the
r key is used and the library does not exist, it will be created.

256

Linker and Utilities Librarian

Under thed key letter, the named object files will be deleted from the library. In this instance, it
is an error not to give any object file names.

Them ands key letters will list the named modules and, in the case of thes keyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As with ther andx
key letters, an empty list of modules means all the modules in the library.

13.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the
modulesa.obj, b.obj andc.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modulesa.obj, b.obj andc.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

13.10.4 Supplying Arguments

Since it is often necessary to supply many object file arguments toLIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS,LIBR will accept commands from standard input
if no command line arguments are given. If the standard input is attached to the console,LIBR will
prompt for input. Multiple line input may be given by using abackslashas a continuation character
on the end of a line. If standard input is redirected from a file,LIBR will take input from the file,
without prompting. For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed byLIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input fromlib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given toLIBR.

257

Objtohex Linker and Utilities

13.10.5 Listing Format

A request toLIBR to list module names will simply produce a list of names, one per line, on standard
output. Thes keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letterD or U, representing a definition or reference to the symbol
respectively. The-P option may be used to determine the width of the paper for this operation. For
example:

LIBR -P80 s file.lib

will list all modules infile.lib with their global symbols, with the output formatted for an 80
column printer or display.

13.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the com-
mand line. When updating a library the order of the modules is preserved. Any new modules added
to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module
which references a symbol defined in another module in the same library, the module defining the
symbol should come after the module referencing the symbol.

13.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the-W option was used. In this case
all warning messages will be suppressed.

13.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility programOBJTOHEX. This allows conversion
of object files as produced by the linker into a variety of different formats, including various hex
formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. Ifoutputfile is omitted it defaults tol.hex or l.bin depend-
ing on whether the-b option is used. Theinputfile defaults tol.obj.

The options forOBJTOHEX are listed in Table13.4. Where an address is required, the format is
the same as forHLINK.

258

Linker and Utilities Objtohex

Table 13.4:OBJTOHEX command-line options

Option Meaning
-8 Produce a CP/M-86 output file
-A Produce an ATDOS.atx output file
-Bbase Produce a binary file with offset ofbase . Default file name is

l.obj
-Cckfile Read a list of checksum specifications fromckfile or standard

input
-D Produce a COD file
-E Produce an MS-DOS.exe file
-Ffill Fill unused memory with words of valuefill - default value is

0FFh
-I Produce anIntel HEX file with linear addressed extended

records.
-L Pass relocation information into the output file (used with.exe

files)
-M Produce aMotorolaHEX file (S19, S28 or S37 format)
-N Produce an output file for Minix
-Pstk Produce an output file for anAtari ST, with optional stack size
-R Include relocation information in the output file
-Sfile Write a symbol file intofile
-T Produce aTektronixHEX file.
-TE Produce an extended TekHEX file.
-U Produce a COFF output file
-UB Produce a UBROF format file
-V Reverse the order of words and long words in the output file
-n,m Format either Motorola or Intel HEX file, wheren is the maxi-

mum number of bytes per record andmspecifies the record size
rounding. Non-rounded records are zero padded to a multiple of
m. mitself must be a multiple of 2.

259

Cref Linker and Utilities

13.11.1 Checksum Specifications

If you are generating a HEX file output, please refer to the hexmate section13.14for calculating
checksums. ForOBJTOHEX, the checksum specification allows automated checksum calculation and
takes the form of several lines, each line describing one checksum. The syntax of a checksum line
is:

addr1-addr2 where1-where2 +offset

All of addr1 , addr2 , where1 , where2 andoffset are hex numbers, without the usualH suffix.
Such a specification says that the bytes ataddr1 through toaddr2 inclusive should be summed
and the sum placed in the locationswhere1 throughwhere2 inclusive. For an 8 bit checksum
these two addresses should be the same. For a checksum stored low byte first, where1 should be less
than where2, and vice versa. The+offset is optional, but if supplied, the value offset will be used
to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH
to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of
this checksum would add the last address of the ROM being checksummed into the checksum. For
the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any
desired fashion.

13.12 Cref

The cross reference list utilityCREF is used to format raw cross-reference information produced by
the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the
--CR option to the compiler. The assembler will generate a raw cross-reference file with a-C option
(most assemblers) or by using anOPT CRE directive (6800 series assemblers) or aXREF control line
(PIC assembler). The general form of theCREF command is:

cref options files

whereoptions is zero or more options as described below andfiles is one or more raw cross-
reference files.CREF takes the options listed in Table13.5.

Each option is described in more detail in the following paragraphs.

260

Linker and Utilities Cref

Table 13.5:CREF command-line options

Option Meaning
-Fprefix Exclude symbols from files with a pathname or

filename starting withprefix
-Hheading Specify a heading for the listing file
-Llen Specify the page length for the listing file
-Ooutfile Specify the name of the listing file
-Pwidth Set the listing width
-Sstoplist Read file stoplist and ignore any symbols

listed.
-Xprefix Exclude and symbols starting withprefix

13.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The-F option allows specification of a path name prefix that will be used to
exclude any symbols defined in a file whose path name begins with that prefix. For example,-F\
will exclude any symbols from all files with a path name starting with\.

13.12.2 -Hheading

The-H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

13.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be
printed on 55 line paper you would use a-L55 option. The default is 66 lines.

13.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard
output and may be redirected in the usual manner. Alternativelyoutfile may be specified as the
output file name.

261

Cromwell Linker and Utilities

13.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g.-P132
will format the listing for a 132 column printer. The default is 80 columns.

13.12.6 -Sstoplist

The-S option should have as its argument the name of a file containing a list of symbols not to be
listed in the cross-reference. Multiple stoplists may be supplied with multiple-S options.

13.12.7 -Xprefix

The-X option allows the exclusion of symbols from the listing, based on a prefix given as argument
to -X. For example if it was desired to exclude all symbols starting with the character sequencexyz
then the option-Xxyz would be used. If a digit appears in the character sequence then this will match
any digit in the symbol, e.g.-XX0 would exclude any symbols starting with the letterX followed by
a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied
by invokingCREF with no arguments and typing the command line in response to thecref> prompt.
A backslashat the end of the line will be interpreted to mean that more command lines follow.

13.13 Cromwell

TheCROMWELL utility converts code and symbol files into different formats. The formats available
are shown in Table13.6.

The general form of theCROMWELL command is:

CROMWELL options input_files -okey output_file

whereoptions can be any of the options shown in Table13.7. Output_file (optional) is
the name of the output file. Theinput_files are typically the HEX and SYM file.CROMWELL
automatically searches for the SDB files and reads those if they are found. The options are further
described in the following paragraphs.

13.13.1 -Pname

The-P options takes a string which is the name of the processor used.CROMWELL may use this in the
generation of the output format selected.

262

Linker and Utilities Cromwell

Table 13.6:CROMWELL format types

Key Format
cod BytecraftCOD file
coff COFF file format
elf ELF/DWARF file
eomf51 Extended OMF-51 format
hitech HI-TECH Software format
icoff ICOFF file format
ihex Intel HEX file format
omf51 OMF-51 file format
pe P&E file format
s19 MotorolaHEX file format

Table 13.7:CROMWELL command-line options

Option Description
-Pname Processor name
-D Dump input file
-C Identify input files only
-F Fake local symbols as global
-Okey Set the output format
-Ikey Set the input format
-L List the available formats
-E Strip file extensions
-B Specify big-endian byte ordering
-M Strip underscore character
-V Verbose mode

263

Cromwell Linker and Utilities

13.13.2 -D

The-D option is used to display to the screen details about the named input file in a readable format.
The input file can be one of the file types as shown in Table13.6.

13.13.3 -C

This option will attempt to identify if the specified input files are one of the formats as shown in
Table13.6. If the file is recognised, a confirmation of its type will be displayed.

13.13.4 -F

When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from
the COD file.

13.13.5 -Okey

This option specifies the format of the output file. Thekey can be any of the types listed in Table
13.6.

13.13.6 -Ikey

This option can be used to specify the default input file format. Thekey can be any of the types
listed in Table13.6.

13.13.7 -L

Use this option to show what file format types are supported. A list similar to that given in Table
13.6will be shown.

13.13.8 -E

Use this option to tellCROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

13.13.9 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

264

Linker and Utilities Hexmate

13.13.10 -M

When generating COD files this option will remove the precedingunderscorecharacter from sym-
bols.

13.13.11 -V

Turns on verbose mode which will display information about operationsCROMWELL is performing.

13.14 Hexmate

The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link
stage utility that provides the facility to:

• Calculate and store variable-length checksum values

• Fill unused memory locations with known data sequences

• Merge multiple Intel hex files into one output file

• Convert INHX32 files to other INHX formats (eg. INHX8M)

• Detect specific or partial opcode sequences within a hex file

• Find/replace specific or partial opcode sequences

• Provide a map of addresses used in a hex file

• Change or fix the length of data records in a hex file.

• Validate checksums within Intel hex files.

Typical applications for hexmate might include:

• Merging a bootloader or debug module into a main application at build time

• Calculating a checksum over a range of program memory and storing its value in program
memory or EEPROM

• Filling unused memory locations with an instruction to send the PC to a known location if it
gets lost.

• Storage of a serial number at a fixed address.

265

Hexmate Linker and Utilities

Table 13.8: Hexmate command-line options

Option Effect
-CK Calculate and store a checksum value
-FILL Program unused locations with a known value
-FIND Search and notify if a particular code sequence is detected
-FIND...,REPLACE Replace the code sequence with a new code sequence
-FORMAT Specify maximum data record length or select INHX variant
-HELP Show all options or display help message for specific option
-LOGFILE Save hexmate analysis of output and various results to a file
-Ofile Specify the name of the output file
-SERIAL Store a serial number or code sequence at a fixed address
-STRING Store an ASCII string at a fixed address
-W Adjust warning sensitivity
+ Prefix to any option to overwrite other data in its address range if necessary

• Storage of a string (eg. time stamp) at a fixed address.

• Store initial values at a particular memory address (eg. initialise EEPROM)

• Detecting usage of a buggy/restricted instruction

• Adjusting hex records to a fixed length as required by some bootloaders

13.14.1 Hexmate Command Line Options

Some of these hexmate operations may be possible from the compiler’s command line driver. How-
ever, if hexmate is to be run directly, its usage is:
hexmate <file1.hex ... fileN.hex> <options>
Where file1.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Addi-
tional options can be provided to further customize this process. Table13.8lists the command line
options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail.

filename.hex A list of INHX32 or INHX8M input files to feed to hexmate. A range restriction can
be applied by appending,startAddress-endAddress. The data can be stored at an offset
address by appending+offset. For example,myfile.hex,-0-1FF+1E00 will read in code

266

Linker and Utilities Hexmate

from myfile.hex which falls within address range0h - 1FFh (inclusive), but write this code
to addresses1E00h - 1FFFh. Be careful when shifting sections of executable code. Program
code shouldn’t be shifted unless it can be guarenteed that no part of the program relies upon
the absolute location of this code segment.

13.14.1.1 + Prefix

When the+ operator precedes a parameter or input file, the data obtained from that parameter will
be forced into the output file and will overwrite other data existing within its address range. For
example,+input.hex +-STRING@1000="My string". Ordinarily, hexmate will issue an error if
two sources try to store differing data at the same location. Using the+ operator informs hexmate
that if more than one data source tries to store data to the same address, the one specified with a ’+’
will take priority.

13.14.1.2 -CK

-CK is for calculating a checksum. The usage of this option is:
-CK=start-end@destination[+offset][wWidth][tCode] where:
StartandEndspecify the address range that the checksum will be calculated over.
Destinationis the address where to store the checksum result. This value cannot be within the range
of calculation.
Offsetis an optional initial value to add to the checksum result.
Width is optional and specifies the byte-width of the checksum result. Results can be calculated for
byte-widths of 1 to 4 bytes. If a positive width is requested, the result will be stored in big-endian
byte order. A negative width will cause the result to be stored in little-endian byte order. If the width
is left unspecified, the result will be 2 bytes wide and stored in little-endian byte order.
Codeis a hexadecimal code that will trail each byte in the checksum result. This can allow each byte
of the checksum result to be embedded within an instruction.
For example,-CK=0-1FFF@2FFE+2100w2 will calculate a checksum over the range0-1FFFh and
program the checksum result at address2FFEh, checksum value will apply an initial offset of2100h.
The result will be two bytes wide.

13.14.1.3 -FILL

-FILL is used for filling unused memory locations with a known value. The usage of this option is:
-FILL=Code@Start-Endwhere:
Codeis the opcode that will be programmed to unused locations in memory. Multi-byte codes should
be entered in little endian order.
StartandEndspecify the address range that this fill will apply to.

267

Hexmate Linker and Utilities

For example,-FILL=3412@0-1FFF will program opcode1234h in all unused addresses from pro-
gram memory address0 to 1FFFh (Note the endianism).-FILL accepts whole bytes of hexadecimal
data from 1 to 8 bytes in length.

13.14.1.4 -FIND

This option is used to detect and log occurances of an opcode or partial code sequence. The usage
of this option is:
-FIND=Findcode[mMask]@Start-End[/Align][w][t ”Title”] where:
Findcodeis the hexadecimal code sequence to search for and is entered in little endian byte order.
Mask is optional. It allows a bitmask over the Findcode value and is entered in little endian byte
order.
StartandEnd limit the address range to search through.
Align is optional. It specifies that a code sequence can only match if it begins on an address which
is a multiple of this value.
w, if present will cause hexmate to issue a warning whenever the code sequence is detected.
Title is optional. It allows a title to be given to this code sequence. Defining a title will make log-
reports and messages more descriptive and more readable. A title will not affect the actual search
results.

TUT•RIAL

Let’s look at some examples. The option-FIND=3412@0-7FFF/2w will detect the code
sequence1234h when aligned on a2 (two) byte address boundary, between0h and
7FFFh. w indicates that a warning will be issued each time this sequence is found.
Another example,-FIND=3412M0F00@0-7FFF/2wt"ADDXY" is same as last example
but the code sequence being matched is masked with000Fh, so hexmate will search for
123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied
to. Any messaging or reports generated by hexmate will refer to this opcode by the
name,ADDXYas this was the title defined for this search.

If hexmate is generating a logfile, it will contain the results of all searches.-FIND accepts whole
bytes of hex data from 1 to 8 bytes in length. Optionally,-FIND can be used in conjunction with
,REPLACE (described below).

13.14.1.5 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the
-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option

268

Linker and Utilities Hexmate

is:
-FIND...,REPLACE=Code[mMask] where:
Codeis a little endian hexadecimal code to replace the sequences that match the -FIND criteria.
Mask is an optional bitmask to specify which bits withinCodewill replace the code sequence that
has been matched. This may be useful if, for example, it is only necessary to modify 4 bits within a
16-bit instruction. The remaining 12 bits can masked and be left unchanged.

13.14.1.6 -FORMAT

-FORMAT can be used to specify a particular variant of INHX format or adjust maximum record
length. The usage of this option is:
-FORMAT=Type[,Length] where:
Typespecifies a particular INHX format to generate.
Lengthis optional and sets the maximum number of bytes per data record. A valid length is between
1 and 16, with 16 being the default.

TUT•RIAL

Consider this case. A bootloader trying to download an INHX32 file fails succeed
because it cannot process the extended address records which are part of the INHX32
standard. You know that this bootloader can only program data addressed within the
range 0 to 64k, and that any data in the hex file outside of this range can be safely
disregarded. In this case, by generating the hex file in INHX8M format the operation
might succeed. The hexmate option to do this would be-FORMAT=INHX8M.
Now consider this. What if the same bootloader also required every data record to
contain eight bytes of data, no more, no less? This is possible by combining-FORMAT
with -FILL. Appropriate use of-FILL can ensure that there are no gaps in the data
for the address range being programmed. This will satisfy the minimum data length
requirement. To set the maximum length of data records to eight bytes, just modify the
previous option to become-FORMAT=INHX8M,8.

The possible types that are supported by this option are listed in Table13.9. Note that INHX032 is
not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize
the upper address information to zero. This is a requirement of some device programmers.

13.14.1.7 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of
-HELP will show a detailed help message for the given option. For example,-HELP=string will
show additional help for the-STRING hexmate option.

269

Hexmate Linker and Utilities

Table 13.9: INHX types used in -FORMAT option

Type Description
INHX8M Cannot program addresses beyond 64K.
INHX32 Can program addresses beyond 64K with extended linear address records.
INHX032 INHX32 with initialization of upper address to zero.

13.14.1.8 -LOGFILE

-LOGFILE saves hexfile statistics to the named file. For example,-LOGFILE=output.log will
analyse the hex file that hexmate is generating and save a report to a file namedoutput.log.

13.14.1.9 -Ofile

The generated Intel hex output will be created in this file. For example,-Oprogram.hex will save
the resultant output toprogram.hex. The output file can take the same name as one of its input files,
but by doing so, it will replace the input file entirely.

13.14.1.10 -SERIAL

Store a particular hex value at a fixed address. The usage of this option is:
-SERIAL=Code[+/-Increment]@Address[+/-Interval][rRepetitions] where:
Codeis a hexadecimal value to store and is entered in little endian byte order.
Incrementis optional and allows the value ofCodeto change by this value with each repetition (if
requested).
Addressis the location to store this code, or the first repetition thereof.
Interval is optional and specifies the address shift per repetition of this code.
Repetitionsis optional and specifies the number of times to repeat this code.
For example,-SERIAL=000001@EFFE will store hex code00001h to addressEFFEh.
Another example,-SERIAL=0000+2@1000+10r5 will store 5 codes, beginning with value0000 at
address1000h. Subsequent codes will appear at address intervals of+10h and the code value will
change in increments of+2h.

13.14.1.11 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:
-STRING@Address[tCode]=” Text” where:
Addressis the location to store this string.

270

Linker and Utilities Hexmate

Codeis optional and allows a byte sequence to trail each byte in the string. This can allow the bytes
of the string to be encoded within an instruction.
Textis the string to convert to ASCII and embed.
For example-STRING@1000="My favourite string" will store the ASCII data for the string,My
favourite string (including null terminator) at address1000h.
Another example,-STRING@1000t34="My favourite string" will store the same string with
every byte in the string being trailed with the hexcode34h.

271

Hexmate Linker and Utilities

272

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with
the name of the function. This is followed by information analysed into the following headings.

Synopsis This is the C definition of the function, and the header file in which it is declared.

Description This is a narrative description of the function and its purpose.

Example This is an example of the use of the function. It is usually a complete small program that
illustrates the function.

Data types If any special data types (structures etc.) are defined for use with the function, they are
listed here with their C definition. These data types will be defined in the header file given
under heading — Synopsis.

See alsoThis refers you to any allied functions.

Return value The type and nature of the return value of the function, if any, is given. Information
on error returns is also included Only those headings which are relevant to each function are
used.

273

Library Functions

ABS

Synopsis

#include <stdlib.h>

int abs (int j)

Description

Theabs()function returns the absolute value ofj .

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));
}

Return Value

The absolute value ofj .

274

Library Functions

ACOS

Synopsis

#include <math.h>

double acos (double f)

Description

Theacos()function implements the converse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = acos(i)*180.0/3.141592;
printf("acos(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 toπ

275

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into thestruct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0
Note thenewlineat the end of the string. The width of each field in the string is fixed. The

example gets the current time, converts it to astruct tm pointer with localtime(), it then converts
this to ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("%s", asctime(tp));

}

See Also

ctime(), gmtime(), localtime(), time()

276

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the
compiler. See time() for more details.

277

Library Functions

ASIN

Synopsis

#include <math.h>

double asin (double f)

Description

Theasin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = asin(i)*180.0/3.141592;
printf("asin(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range -π

278

Library Functions

ASSERT

Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally
throughout your code at points where correct operation of the code depends upon certain conditions
being true initially. Anassert()routine may be used to ensure at run time that an assumption holds
true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);
If at run time the expression evaluates to false, the program will abort with a message identifying

the source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses ofassert()is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example

void
ptrfunc (struct xyz * tp)
{

assert(tp != 0);
}

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-
mented by the user.

279

Library Functions

ATAN

Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range -π

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan(1.5));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

280

Library Functions

ATOF

Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

Theatof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating
point or scientific notation.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
double i;

gets(buf);
i = atof(buf);
printf("Read %s: converted to %f\n", buf, i);

}

See Also

atoi(), atol()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

281

Library Functions

ATOI

Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = atoi(buf);
printf("Read %s: converted to %d\n", buf, i);

}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

282

Library Functions

ATOL

Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

Theatol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
long i;

gets(buf);
i = atol(buf);
printf("Read %s: converted to %ld\n", buf, i);

}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

283

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar)(const void *, const void *))

Description

Thebsearch()function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed to bycompar to compare elements in the array.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * p1, const void * p2)
{

return strcmp(((const struct value *)p1)->name,
((const struct value *)p2)->name);

}

void
main (void)
{

char inbuf[80];
int i;
struct value * vp;

284

Library Functions

i = 0;
while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);
i++;

}
qsort(values, i, sizeof values[0], val_cmp);
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if(!vp)

printf("Item ’fred’ was not found\n");
else

printf("Item ’fred’ has value %d\n", vp->value);
}

See Also

qsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these
may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

285

Library Functions

CEIL

Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less thanf.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double j;

scanf("%lf", &j);
printf("The ceiling of %lf is %lf\n", j, ceil(j));

}

286

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets()function will read one line of input from the console into the buffer passed as an ar-
gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspacedeleting the previously typed character, andctrl-U deleting the entire line typed so far.
Other characters are placed in the buffer, with acarriage returnor line feed (newline)terminating
the function. The collected string is null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

getch(), getche(), putch(), cputs()

287

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

288

Library Functions

COS

Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated
by expansion of a polynomial series approximation.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

289

Library Functions

COSH, SINH, TANH

Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description

These functions are the hyperbolic implementations of the trigonometric functions; cos(), sin() and
tan().

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", cosh(1.5));
printf("%f\n", sinh(1.5));
printf("%f\n", tanh(1.5));

}

Return Value

The functioncosh()returns the hyperbolic cosine value.
The functionsinh() returns the hyperbolic sine value.
The functiontanh() returns the hyperbolic tangent value.

290

Library Functions

CPUTS

Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputtingcarriage returnsbefore
eachnewlinein the string. It calls putch() repeatedly. On a hosted systemcputs()differs from puts()
in that it reads the console directly, rather than using file I/O. In an embedded systemcputs() and
puts() are equivalent.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

cputs(), puts(), putch()

291

Library Functions

CTIME

Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

Thectime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

292

Library Functions

DI, EI

Synopsis

#include <intrpt.h>

void ei (void)
void di (void)

Description

The ei() and di() routines enable and disable interrupts respectively. These are implemented as
macros defined inintrpt.h . On most processors they will expand to an in-line assembler instruction
that sets or clears the interrupt enable or mask bit.

The example shows the use ofei() anddi() around access to a long variable that is modified
during an interrupt. If this was not done, it would be possible to return an incorrect value, if the
interrupt occurred between accesses to successive words of the count value.

Example

#include <intrpt.h>

long count;

void
interrupt tick (void)
{

count++;
}

long
getticks (void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

di();
val = count;
ei();

293

Library Functions

return val;
}

294

Library Functions

DIV

Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

Thediv() function computes the quotient and remainder of the numerator divided by the denomina-
tor.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;

x = div(12345, 66);
printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value

Returns the quotient and remainder into thediv_t structure.

295

Library Functions

EVAL_POLY

Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

Theeval_poly()function evaluates a polynomial, whose coefficients are contained in the arrayd, at
x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed inn.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double x, y;
double d[3] = {1.1, 3.5, 2.7};

x = 2.2;
y = eval_poly(x, d, 2);
printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value

A double value, being the polynomial evaluated atx.

296

Library Functions

EXP

Synopsis

#include <math.h>

double exp (double f)

Description

Theexp() routine returns the exponential function of its argument, i.e. e to the power off.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)
printf("e to %1.0f = %f\n", f, exp(f));

}

See Also

log(), log10(), pow()

297

Library Functions

FABS

Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f %f\n", fabs(1.5), fabs(-1.5));
}

See Also

abs()

298

Library Functions

FLOOR

Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater thanf.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", floor(1.5));
printf("%f\n", floor(-1.5));

}

299

Library Functions

FREXP

Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

Thefrexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into theint object pointed to byp. Its return value x is in the interval (0.5,
1.0) or zero, andf equals x times 2 raised to the power stored in*p . If f is zero, both parts of the
result are zero.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;
int i;

f = frexp(23456.34, &i);
printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also

ldexp()

300

Library Functions

GETCH, GETCHE

Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description

Thegetch()function reads a single character from the console keyboard and returns it without echo-
ing. Thegetche()function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.
By default, the library contains a version ofgetch() that will interface to the Lucifer Debugger. The
user should supply an appropriate routine if another source is desired, e.g. a serial port.

The modulegetch.cin the SOURCES directory contains model versions of all the console I/O
routines. Other modules may also be supplied, e.g.ser180.chas routines for the serial port in a
Z180.

Example

#include <conio.h>

void
main (void)
{

char c;

while((c = getche()) != ’\n’)
continue;

}

See Also

cgets(), cputs(), ungetch()

301

Library Functions

GETCHAR

Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined instdio.h. Note that under
normal circumstancesgetchar() will NOT return unless acarriage returnhas been typed on the
console. To get a single character immediately from the console, use the function getch().

Example

#include <stdio.h>

void
main (void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

302

Library Functions

GETS

Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer ats, deleting thenewline(cf.
fgets()). The buffer is null terminated. In an embedded system,gets() is equivalent to cgets(), and
results in getche() being called repeatedly to get characters. Editing (withbackspace) is available.

Example

#include <stdio.h>

void
main (void)
{

char buf[80];

printf("Type a line: ");
if(gets(buf))

puts(buf);
}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

303

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to byt which is in seconds since 00:00:00 on Jan 1, 1970,
into a broken down time stored in a structure as defined intime.h. The structure is defined in the
’Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = gmtime(&clock);
printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also

ctime(), asctime(), time(), localtime()

304

Library Functions

Return Value

Returns a structure of typetm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

305

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.

Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description

These macros, defined inctype.h, test the supplied character for membership in one of several over-
lapping groups of characters. Note that all exceptisascii()are defined forc, if isascii(c)is true or if
c = EOF.

isalnum(c) c is in 0-9 or a-z or A-Z
isalpha(c) c is in A-Z or a-z
isascii(c) c is a 7 bit ascii character
iscntrl(c) c is a control character
isdigit(c) c is a decimal digit
islower(c) c is in a-z
isprint(c) c is a printing char
isgraph(c) c is a non-space printable character
ispunct(c) c is not alphanumeric
isspace(c) c is a space, tab or newline
isupper(c) c is in A-Z
isxdigit(c) c is in 0-9 or a-f or A-F

306

Library Functions

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = 0;
while(isalnum(buf[i]))

i++;
buf[i] = 0;
printf("’%s’ is the word\n", buf);

}

See Also

toupper(), tolower(), toascii()

307

Library Functions

LDEXP

Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

Theldexp() function performs the inverse of frexp() operation; the integeri is added to the exponent
of the floating pointf and the resultant returned.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

f = ldexp(1.0, 10);
printf("1.0 * 2^10 = %f\n", f);

}

See Also

frexp()

Return Value

The return value is the integeri added to the exponent of the floating point valuef.

308

Library Functions

LDIV

Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

Theldiv() routine divides the numerator by the denominator, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and
the members of the returned structure are all of typelong int.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

ldiv_t lt;

lt = ldiv(1234567, 12345);
printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also

div()

Return Value

Returns a structure of typeldiv_t

309

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

Thelocaltime() function converts the time pointed to byt which is in seconds since 00:00:00 on Jan
1, 1970, into a broken down time stored in a structure as defined intime.h. The routinelocaltime()
takes into account the contents of the global integer time_zone. This should contain the number of
minutes that the local time zone iswestwardof Greenwich. Since there is no way under MS-DOS of
actually predetermining this value, by defaultlocaltime() will return the same result asgmtime().

Example

#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("Today is %s\n", wday[tp->tm_wday]);

}

310

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of typetm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

311

Library Functions

LOG, LOG10

Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description

The log() function returns the natural logarithm off. The functionlog10() returns the logarithm to
base 10 off.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("log(%1.0f) = %f\n", f, log(f));

}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

312

Library Functions

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.
To use this facility, setjmp() should be called with ajmp_buf argument in some outer level function.
The call from setjmp() will return 0.

To return to this level of execution,lonjmp() may be called with the samejmp_buf argument
from an inner level of execution.Notehowever that the function which called setjmp() must still be
active whenlongjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. Theval argument tolongjmp() will be the value apparently returned from
the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

313

Library Functions

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");
inner();
printf("inner returned - bad!\n");

}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active whenlongjmp() is called. Breach of this rule
will cause disaster, due to the use of a stack containing invalid data.

314

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

Thememcmp() function compares two blocks of memory, of lengthn, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character. The ASCII
collating sequence is used for the comparison, but the effect of including non-ASCII characters in
the memory blocks on the sense of the return value is indeterminate. Testing for equality is always
reliable.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int buf[10], cow[10], i;

buf[0] = 1;
buf[2] = 4;
cow[0] = 1;
cow[2] = 5;
buf[1] = 3;
cow[1] = 3;
i = memcmp(buf, cow, 3*sizeof(int));
if(i < 0)

printf("less than\n");
else if(i > 0)

printf("Greater than\n");
else

315

Library Functions

printf("Equal\n");
}

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whethers1points to string which is less than, equal
to or greater than the string pointed to bys2 in the collating sequence.

316

Library Functions

MODF

Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argumentvalue into integral and fractional parts, each having the
same sign asvalue. For example, -3.17 would be split into the intergral part (-3) and the fractional
part (-0.17).

The integral part is stored as a double in the object pointed to byiptr .

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);
}

Return Value

The signed fractional part ofvalue.

317

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE

Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description

Thepersist_check()function is used with non-volatile RAM variables, declared with the persistent
qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call
to persist_validate()and a checksum also calculated bypersist_validate(). If the magic number and
checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it
will optionally zero out and re-validate the non-volatile RAM area (by callingpersist_validate()).
This is done if the flag argument is true.

Thepersist_validate()routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example

#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{

if(!persist_check(1))
printf("Reset count invalid - zeroed\n");

else
printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;;)

continue; /* sleep until next reset */

318

Library Functions

}

Return Value

FALSE (zero) if the NV-RAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

319

Library Functions

POW

Synopsis

#include <math.h>

double pow (double f, double p)

Description

Thepow() function raises its first argument,f, to the powerp.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also

log(), log10(), exp()

Return Value

f to the power ofp.

320

Library Functions

PRINTF, VPRINTF

Synopsis

#include <stdio.h>

int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_arg)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating on a given stream (fprintf()) or into a string buffer (sprintf()). Theprintf() routine
is passed a format string, followed by a list of zero or more arguments. In the format string are
conversion specifications, each of which is used to print out one of the argument list values.

Each conversion specification is of the form%m.nc where the percent symbol% introduces
a conversion, followed by an optional width specificationm. The n specification is an optional
precision specification (introduced by the dot) andc is a letter specifying the type of the conversion.

A minus sign (’-’) precedingm indicates left rather than right adjustment of the converted value
in the field. Where the field width is larger than required for the conversion, blank padding is per-
formed at the left or right as specified. Where right adjustment of a numeric conversion is specified,
and the first digit ofm is 0, then padding will be performed with zeroes rather than blanks. For
integer formats, the precision indicates a minimum number of digits to be output, with leading zeros
inserted to make up this number if required.

A hash character (#) preceding the width indicates that an alternate format is to be used. The
nature of the alternate format is discussed below. Not all formats have alternates. In those cases, the
presence of the hash character has no effect.

The floating point formats require that the appropriate floating point library is linked. From
within HPD this can be forced by selecting the "Float formats in printf" selection in the options
menu. From the command line driver, use the option-LF .

If the character* is used in place of a decimal constant, e.g. in the format%*d , then one integer
argument will be taken from the list to provide that value. The types of conversion are:

f
Floating point -m is the total width andn is the number of digits after the decimal point. Ifn is

321

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

e
Print the corresponding argument in scientific notation. Otherwise similar tof.

g
Usee or f format, whichever gives maximum precision in minimum width. Any trailing zeros after
the decimal point will be removed, and if no digits remain after the decimal point, it will also be
removed.

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the
case ofd, unsigned otherwise. The precision value is the total number of digits to print, and may be
used to force leading zeroes. E.g.%8.4x will print at least 4 hex digits in an 8 wide field. Preceding
the key letter with anl indicates that the value argument is a long integer. The letterX prints out
hexadecimal numbers using the upper case lettersA-F rather thana-f as would be printed when using
x. When the alternate format is specified, a leading zero will be supplied for the octal format, and a
leading 0x or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At mostn characters from
the string will be printed, in a fieldm characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus% will produce a
single percent sign.

Thevprintf() function is similar toprintf() but takes a variable argument list pointer rather than
a list of arguments. See the description of va_start() for more information on variable argument lists.
An example of usingvprintf() is given below.

Example

printf("Total = %4d%", 23)
yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

printf("Name = %.8s", "a1234567890")
yields ’Name = a1234567’

322

Library Functions

printf("xx%*d", 3, 4)
yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
main (void)
{

int i;

i = 3;
error("testing 1 2 %d", i);

}

See Also

fprintf(), sprintf()

Return Value

Theprintf() andvprintf() functions return the number of characters written to stdout.

323

Library Functions

PUTCH

Synopsis

#include <conio.h>

void putch (char c)

Description

Theputch() function outputs the characterc to the console screen, prepending acarriage returnif
the character is anewline. In a CP/M or MS-DOS system this will use one of the system I/O calls.
In an embedded system this routine, and associated others, will be defined in a hardware dependent
way. The standardputch() routines in the embedded library interface either to a serial port or to the
Lucifer Debugger.

Example

#include <conio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putch(*x++);
putch(’\n’);

}

See Also

cgets(), cputs(), getch(), getche()

324

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

Theputchar() function is a putc() operation on stdout, defined instdio.h.

Example

#include <stdio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putchar(*x++);
putchar(’\n’);

}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

325

Library Functions

Note

This routine is not usable in a ROM based system.

326

Library Functions

PUTS

Synopsis

#include <stdio.h>

int puts (const char * s)

Description

Theputs() function writes the strings to thestdout stream, appending anewline. The null character
terminating the string is not copied.

Example

#include <stdio.h>

void
main (void)
{

puts("Hello, world!");
}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

327

Library Functions

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,
int (*func)(const void *, const void *))

Description

Theqsort() function is an implementation of the quicksort algorithm. It sorts an array ofnel items,
each of lengthwidth bytes, located contiguously in memory atbase. The argumentfunc is a pointer
to a function used byqsort() to compare items. It callsfunc with pointers to two items to be com-
pared. If the first item is considered to be greater than, equal to or less than the second thenfunc
should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int aray[] = {
567, 23, 456, 1024, 17, 567, 66

};

int
sortem (const void * p1, const void * p2)
{

return *(int *)p1 - *(int *)p2;
}

void
main (void)
{

register int i;

328

Library Functions

qsort(aray, sizeof aray/sizeof aray[0], sizeof aray[0], sortem);
for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);
putchar(’\n’);

}

Note

The function parameter must be a pointer to a function of type similar to:
int func (const void *, const void *)
i.e. it must accept two const void * parameters, and must be prototyped.

329

Library Functions

RAM_VECTOR, CHANGE_VECTOR, READ_RAM_VECTOR

Synopsis

#include <intrpt.h>

void RAM_VECTOR (unsigned vector, isr func)
void CHANGE_VECTOR (unsigned vector, isr func)
void (* READ_RAM_VECTOR (unsigned vector)(void))

Description

TheRAM_VECTOR() , CHANGE_VECTOR() andREAD_RAM_VECTOR() macros are used
to initialize, modify and read interrupt vectors which are directed through internal RAM based in-
terrupt vectors. These macros should only be used for vectors which need to be modifiable, so as to
point at different interrupt functions at different points in the program. TheCHANGE_VECTOR()
andREAD_RAM_VECTOR() macros should only be used with interrupt vectors which have been
initialized usingRAM_VECTOR() , otherwise garbage will be returned.

Please refer to the section "Interrupt Handling in C" in this manual for further details.

Example

volatile unsigned char wait_flag;

interrupt void wait_handler(void)
{

++wait_flag;
}

void wait_for_serial_intr(void)
{

interrupt void (*old_handler)(void);

di();
old_handler = READ_RAM_VECTOR(RXI);
wait_flag = 0;
CHANGE_VECTOR(RXI, wait_handler);

}

330

Library Functions

See Also

di(), ei(), ROM_VECTOR()

Note

These macros, for the Z80/Z180, may only be used with mode 2 interrupts.

331

Library Functions

RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0
to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using thesrand() call.
The example shows use of thetime() function to generate a different starting point for the sequence
each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

srand()

332

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

333

Library Functions

REALLOC

Synopsis

#include <stdlib.h>

void * realloc (void * ptr, size_t cnt)

Description

Therealloc() function frees the block of memory atptr , which should have been obtained by a pre-
vious call to malloc(), calloc() orrealloc(), then attempts to allocatecnt bytes of dynamic memory,
and if successful copies the contents of the block of memory located atptr into the new block.

At most, realloc() will copy the number of bytes which were in the old block, but if the new
block is smaller, will only copycnt bytes.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * cp;

cp = malloc(255);
if(gets(cp))

cp = realloc(cp, strlen(cp)+1);
printf("buffer now %d bytes long\n", strlen(cp)+1);

}

See Also

malloc(), calloc()

334

Library Functions

Return Value

A pointer to the new (or resized) block. NULL if the block could not be expanded. A request to
shrink a block will never fail.

335

Library Functions

ROM_VECTOR

Synopsis

#include <intrpt.h>

void ROM_VECTOR (unsigned vector, isr func, unsigned psw)

Description

The ROM_VECTOR() macro is used to set up a "hard coded" ROM vector, which points to an
interrupt handler. This macro does not generate any code which is executed at run-time, so it can be
placed anywhere in your code.ROM_VECTOR() generates in-line assembler code, so the vector
address passed to it may be in any format acceptable to the assembler.

Please refer to the section "Interrupt Handling in C", in this manual for further details.

See Also

di(), ei(), RAM_VECTOR()

336

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from thestdin stream. Similar func-
tions are available for streams in general, and for strings. The functionvscanf() is similar, but takes
a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according to thefmt string; in general a character in the
format string must match a character in the input; however a space character in the format string will
match zero or more "white space" characters in the input, i.e.spaces, tabs or newlines.

A conversion specification takes the form of the character% , optionally followed by an assign-
ment suppression character (’* ’), optionally followed by a numerical maximum field width, followed
by a conversion specification character. Each conversion specification, unless it incorporates the as-
signment suppression character, will assign a value to the variable pointed at by the next argument.
Thus if there are two conversion specifications in thefmt string, there should be two additional
pointer arguments.

The conversion characters are as follows:
o x d

Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was
supplied, take at most that many characters from the input. A leading minus sign will be recognized.

f
Skip white space, then convert a floating number in either conventional or scientific notation. The
field width applies as above.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

337

Library Functions

argument must be a pointer to char. The field width will limit the number of characters copied. The
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a
field width is specified, then copy that many characters. This differs from thes format in that white
space does not terminate the character sequence.

The conversion characterso, x, u, d and f may be preceded by anl to indicate that the corre-
sponding pointer argument is a pointer to long or double as appropriate. A precedingh will indicate
that the pointer argument is a pointer to short rather than int.

Example

scanf("%d %s", &a, &c)
with input " 12s"
will assign 12 to a, and "s" to s.

scanf("%3cd %lf", &c, &f)
with input " abcd -3.5"
will assign " abc" to c, and -3.5 to f.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file
was seen before any conversions were performed.

338

Library Functions

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

Thesetjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-
mation.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");

339

Library Functions

inner();
printf("inner returned - bad!\n");

}

See Also

longjmp()

Return Value

Thesetjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().

340

Library Functions

SET_VECTOR

Synopsis

#include <intrpt.h>

isr set_vector (isr * vector, isr func)

Description

This routine allows an interrupt vector to be initialized. The first argument should be the address of
the interrupt vector (not the vector number but the actual address) cast to a pointer toisr, which is a
typedef’d pointer to an interrupt function. The second argument should be the function which you
want the interrupt vector to point to. This must be declared using theinterrupt type qualifier.

Not all compilers support this routine; the macros ROM_VECTOR(), RAM_VECTOR() and
CHANGE_VECTOR() are used with some processors. These routines are to be preferred even
whereset_vector()is supported. Seeintrpt.h or the processor specific manual section to determine
what is supported for a particular compiler.

The example shown sets up a vector for the DOS ctrl-BREAK interrupt.

Example

#include <signal.h>
#include <stdlib.h>
#include <intrpt.h>

static far interrupt void
brkintr (void)
{

exit(-1);
}

#define BRKINT 0x23
#define BRKINTV ((far isr *)(BRKINT * 4))

void
set_trap (void)
{

341

Library Functions

set_vector(BRKINTV, brkintr);
}

See Also

di(), ei(), ROM_VECTOR(), RAM_VECTOR(), CHANGE_VECTOR()

Return Value

The return value ofset_vector()is the previous contents of the vector, ifset_vector()is implemented
as a function. If it is implemented as a macro, it has no return value.

Note

The set_vector()routine is equivalent to ROM_VECTOR() and is present only for compatibility
with version 5 and 6 HI-TECH compilers. It is suggested that ROM_VECTOR() be used in place of
set_vector()for maximum compatibility with future versions of HI-TECH C.

342

Library Functions

SIN

Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale off.

343

Library Functions

SPRINTF, VSPRINTF

Synopsis

#include <stdio.h>

int sprintf (char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char * buf, const char * fmt, va_list ap)

Description

The sprintf() function operates in a similar fashion to printf(), except that instead of placing the
converted output on thestdout stream, the characters are placed in the buffer atbuf. The resultant
string will be null terminated, and the number of characters in the buffer will be returned.

The vsprintf() function is similar tosprintf() but takes a variable argument list pointer rather
than a list of arguments. See the description of va_start() for more information on variable argument
lists.

See Also

printf(), fprintf(), sscanf()

Return Value

Both these routines return the number of characters placed into the buffer.

344

Library Functions

SQRT

Synopsis

#include <math.h>

double sqrt (double f)

Description

The functionsqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)
printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

345

Library Functions

SRAND

Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence
yielded by rand(). On the z80, a good place to get a truly random seed is from the refresh register.
Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

rand()

346

Library Functions

STRCAT

Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description

This function appends (catenates) strings2to the end of strings1. The result will be null terminated.
The arguments1must point to a character array big enough to hold the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strncat(), strlen()

Return Value

The value ofs1 is returned.

347

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description

Thestrchr() function searches the strings for an occurrence of the characterc. If one is found, a
pointer to that character is returned, otherwise NULL is returned.

Thestrichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)
{

static char temp[] = "Here it is...";
char c = ’s’;

if(strchr(temp, c))
printf("Character %c was found in string\n", c);

else
printf("No character was found in string");

}

See Also

strrchr(), strlen(), strcmp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

348

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value
are used.

349

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whethers1 is less than, equal to or greater thans2. The comparison is done with
the standard collating sequence, which is that of the ASCII character set.

Thestricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

int i;

if((i = strcmp("ABC", "ABc")) < 0)
printf("ABC is less than ABc\n");

else if(i > 0)
printf("ABC is greater than ABc\n");

else
printf("ABC is equal to ABc\n");

}

See Also

strlen(), strncmp(), strcpy(), strcat()

350

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

351

Library Functions

STRCPY

Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description

This function copies a null terminated strings2to a character array pointed to bys1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointers1 is returned.

352

Library Functions

STRCSPN

Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

Thestrcspn() function returns the length of the initial segment of the string pointed to bys1which
consists of characters NOT from the string pointed to bys2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));
printf("%d\n", strcspn("xxxbcadefs", set));
printf("%d\n", strcspn("1234567890", set));

}

See Also

strspn()

Return Value

Returns the length of the segment.

353

Library Functions

STRDUP

Synopsis

#include <string.h>

char * strdup (const char * s1)

Description

Thestrdup() function returns a pointer to a new string which is a duplicate of the string pointed to
by s1. The space for the new string is obtained using malloc(). If the new string cannot be created, a
null pointer is returned.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;

ptr = strdup("This is a copy");
printf("%s\n", ptr);

}

Return Value

Pointer to the new string, or NULL if the new string cannot be created.

354

Library Functions

STRLEN

Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

Thestrlen() function returns the number of characters in the strings, not including the null termina-
tor.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

Return Value

The number of characters preceding the null terminator.

355

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description

This function appends (catenates) strings2 to the end of strings1. At most n characters will be
copied, and the result will be null terminated.s1must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strncat(s1, s2, 5);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strcat(), strlen()

356

Library Functions

Return Value

The value ofs1 is returned.

357

Library Functions

STRNCMP, STRNICMP

Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description

Thestrcmp() function compares its two, null terminated, string arguments, up to a maximum ofn
characters, and returns a signed integer to indicate whethers1is less than, equal to or greater thans2.
The comparison is done with the standard collating sequence, which is that of the ASCII character
set.

Thestricmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strcmp("abcxyz", "abcxyz");
if(i == 0)

printf("Both strings are equal\n");
else if(i > 0)

printf("String 2 less than string 1\n");
else

printf("String 2 is greater than string 1\n");
}

See Also

strlen(), strcmp(), strcpy(), strcat()

358

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

359

Library Functions

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description

This function copies a null terminated strings2 to a character array pointed to bys1. At most
n characters are copied. If strings2 is longer thann then the destination string will not be null
terminated. The destination array must be large enough to hold the entire string, including the null
terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strncpy(buffer, "Start of line", 6);
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcat(), strlen(), strcmp()

360

Library Functions

Return Value

The destination buffer pointers1 is returned.

361

Library Functions

STRPBRK

Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in strings1 of any character from
strings2, or a null pointer if no character froms2exists ins1.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strpbrk(str+1, "aeiou");

}
}

Return Value

Pointer to the first matching character, or NULL if no character found.

362

Library Functions

STRRCHR, STRRICHR

Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to thestrchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates thelast occurrence of the characterc in the null terminated
strings. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

Thestrrichr() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strrchr(str+1, ’s’);

}
}

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

363

Library Functions

STRSPN

Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

Thestrspn() function returns the length of the initial segment of the string pointed to bys1which
consists entirely of characters from the string pointed to bys2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strspn("This is a string", "This"));
printf("%d\n", strspn("This is a string", "this"));

}

See Also

strcspn()

Return Value

The length of the segment.

364

Library Functions

STRSTR, STRISTR

Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description

Thestrstr() function locates the first occurrence of the sequence of characters in the string pointed
to bys2 in the string pointed to bys1.

Thestristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strstr("This is a string", "str"));
}

Return Value

Pointer to the located string or a null pointer if the string was not found.

365

Library Functions

STRTOK

Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)

Description

A number of calls tostrtok() breaks the strings1(which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator strings2) into its separate tokens.

The first call must have the strings1. This call returns a pointer to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null
character, which terminates the current token.

For subsequent calls tostrtok() , s1 should be set to a null pointer. These calls start searching
from the end of the last token found, and again return a pointer to the first character of the next token,
or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;
char buf[] = "This is a string of words.";
char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);
while(ptr != NULL) {

printf("%s\n", ptr);
ptr = strtok(NULL, sep_tok);

}
}

366

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator strings2may be different from call to call.

367

Library Functions

TAN

Synopsis

#include <math.h>

double tan (double f)

Description

Thetan() function calculates the tangent off.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent off.

368

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time
in seconds since 00:00:00 on Jan 1, 1970. If the argumentt is not equal to NULL, the same value is
stored into the object pointed to byt.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,
1970.

369

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.

370

Library Functions

TOLOWER, TOUPPER, TOASCII

Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, thetolower()
routine performs the reverse conversion and thetoascii() macro returns a result that is guaranteed
in the range 0-0177. The functionstoupper() and tolower() return their arguments if it is not an
alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{

char * array1 = "aBcDE";
int i;

for(i=0;i < strlen(array1); ++i) {
printf("%c", tolower(array1[i]));

}
printf("\n");

}

See Also

islower(), isupper(), isascii(), et. al.

371

Library Functions

UNGETCH

Synopsis

#include <conio.h>

void ungetch (char c)

Description

Theungetch() function will push back the characterc onto the console stream, such that a subse-
quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

372

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in
a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function
are not known at compile time.

The rightmost parameter to the function (shown asparmN) plays an important role in these
macros, as it is the starting point for access to further parameters. In a function taking variable num-
bers of arguments, a variable of typeva_list should be declared, then the macrova_start() invoked
with that variable and the name ofparmN. This will initialize the variable to allow subsequent calls
of the macrova_arg() to access successive parameters.

Each call tova_arg() requires two arguments; the variable previously defined and a type name
which is the type that the next parameter is expected to be. Note that any arguments thus accessed
will have been widened by the default conventions toint, unsigned intor double. For example if a
character argument has been passed, it should be accessed byva_arg(ap, int) since thechar will
have been widened toint.

An example is given below of a function taking one integer parameter, followed by a number
of other parameters. In this example the function expects the subsequent parameters to be pointers
to char, but note that the compiler is not aware of this, and it is the programmers responsibility to
ensure that correct arguments are supplied.

Example

#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

373

Library Functions

va_list ap;

va_start(ap, a);
while(a--)

puts(va_arg(ap, char *));
va_end(ap);

}

void
main (void)
{

pf(3, "Line 1", "line 2", "line 3");
}

374

Library Functions

XTOI

Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

Thextoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = xtoi(buf);
printf("Read %s: converted to %x\n", buf, i);

}

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

375

Library Functions

376

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with
an explanation of each message. Most messages have been assigned a unique number which appears
in brackets before each message in this chapter, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-numbered messages
appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets
opposite the error message. In some cases examples of code or options that could trigger the error
are given. The use of * in the error message is used to represent a string that the compiler will
substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error
message.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matching#endif, e.g.:

#if INPUT /* error flagged here */
void main(void)
{
run();

} /* no #endif was found in this module */

377

Error and Warning Messages

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a#else. These can only follow a
#if, e.g.:

#ifdef FOO
result = foo;

#else
result = bar;

#elif defined(NEXT) /* the #else above terminated the #if */
result = next(0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching#if line. If there is an
apparently corresponding#if line, check for things like extra#endif’s, or improperly terminated
comments, e.g.:

#ifdef FOO
result = foo;

#endif
result = bar;

#elif defined(NEXT) /* the #endif above terminated the #if */
result = next(0);

#endif

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc. Remove the directive to remove the error, but first check as
to why the directive is there.

(104) preprocessor assertion failure (Preprocessor)

The argument to a preprocessor#assert directive has evaluated to zero. This is a programmer
induced error.

#assert SIZE == 4 /* size should never be 4 */

378

Error and Warning Messages

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching#asm, e.g.:

void cleardog(void)
{
clrwdt

#endasm /* this ends the in-line assembler, only where did it begin? */
}

(106) nested #asm directive (Preprocessor)

It is not legal to nest#asm directives. Check for a missing or misspelt#endasm directive, e.g.:

#asm
move r0, #0aah

#asm ; the previous #asm must be closed before opening another
sleep

#endasm

(107) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand the# directive. It is probably a misspelling of a pre-processor#
directive, e.g.:

#indef DEBUG /* woops -- that should be #undef DEBUG */

(108) #if, #ifdef, or #ifndef without an argument (Preprocessor)

The preprocessor directives#if, #ifdef and#ifndef must have an argument. The argument to#if
should be an expression, while the argument to#ifdef or #ifndef should be a single name, e.g.:

#if /* woops -- no argument to check */
output = 10;

#else
output = 20;

#endif

379

Error and Warning Messages

(109) #include syntax error (Preprocessor)

The syntax of the filename argument to#include is invalid. The argument to#include must be
a valid file name, either enclosed in double quotes"" or angle brackets< >. Spaces should not be
included, and the closing quote or bracket must be present. There should be nothing else on the line
other than comments, e.g.:

#include stdio.h /* woops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-
sor is being executed by a compiler driver.

(111) redefining macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want
to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1
/* elsewhere: */
#define ONE one /* Is this correct? It will overwrite the first definition. */

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that
does not start with a letter or a missingclosing parenthesis,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to#undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

380

Error and Warning Messages

(115) recursive macro definition of "*" defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion
of itself!

(116) end of file within macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument
started, e.g.:

#define FUNC(a, b) func(a+b)
FUNC(5, 6; /* woops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a#if expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator, e.g.:

#if FOO BAR /* woops -- did you mean: #if FOO == BAR ? */

(118) #if value stack overflow (Preprocessor)

The preprocessor filled up its expression evaluation stack in a#if expression. Simplify the expres-
sion — it probably contains too many parenthesized subexpressions.

(119) illegal #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(120) operator * in incorrect context (Preprocessor)

An operator has been encountered in a#if expression that is incorrectly placed, e.g. two binary
operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */
#define BIG

#endif

381

Error and Warning Messages

(121) expression stack overflow at op "*" (Preprocessor)

Expressions in#if lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.

(122) unbalanced paren’s, op is "*" (Preprocessor)

The evaluation of a#if expression found mismatched parentheses. Check the expression for correct
parenthesisation, e.g.:

#if ((A) + (B) /* woops -- a missing), I think */
#define ADDED

#endif

(123) misplaced "?" or ":", previous operator is * (Preprocessor)

A colon operator has been encountered in a#if expression that does not match up with a corre-
sponding? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in a#if expression that has no business being there. Valid characters are the
letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY‘ /* what are these characters doing here? */
int m;

#endif

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a#if expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ^SYYY /* what is this control characters doing here? */
int m;

#endif

382

Error and Warning Messages

(126) can’t use a string in an #if (Preprocessor)

The preprocessor does not allow the use of strings in#if expressions, e.g.:

#if MESSAGE > “hello” /* no string operations allowed by the preprocessor */
#define DEBUG
#endif

(127) bad #if ... defined() syntax (Preprocessor)

Thedefined() pseudo-function in a preprocessor expression requires its argument to be a single
name. The name must start with a letter and should be enclosed in parentheses, e.g.:

#if defined(a&b) /* woops -- defined expects a name, not an expression */
input = read();

#endif

(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* woops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

Thebackslashis incorrect in the#if statement, e.g.:

#if FOO == \34
#define BIG

#endif

(130) #if sizeof, unknown type "*" (Preprocessor)

An unknown type was used in a preprocessorsizeof(). The preprocessor can only evaluate
sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

383

Error and Warning Messages

(131) #if ... sizeof: illegal type combination (Preprocessor)

The preprocessor found an illegal type combination in the argument tosizeof() in a #if expres-
sion, e.g.

#if sizeof(short long int) == 2 /* short or long? make up your mind */
i = 0xFFFF;

#endif

(132) #if sizeof() error, no type specified (Preprocessor)

Sizeof() was used in a preprocessor#if expression, but no type was specified. The argument to
sizeof() in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* woops -- size of what? */
i = 0;

#endif

(133) #if ... sizeof: bug, unknown type code 0x* (Preprocessor)

The preprocessor has made an internal error in evaluating asizeof() expression. Check for a
malformed type specifier. This is an internal error. Contact HI-TECH Software technical support
with details.

(134) #if ... sizeof() syntax error (Preprocessor)

The preprocessor found a syntax error in the argument tosizeof, in a #if expression. Probable
causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

(135) #if bug, operand = * (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is
an internal error. Contact HI-TECH Software technical support with details.

384

Error and Warning Messages

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation operator## that is neither a letter nor a digit.
Since the result of this operator must be a legal token, the operands must be tokens containing only
letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator## that is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must be tokens
containing only letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(139) EOF in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here is the start of a comment. I’m not sure where I end, though
}

(140) can’t open command file * (Driver, Preprocessor, Assembler, Linker)

The command file specified could not be opened for reading. Confirm the spelling and path of the
file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

(141) can’t open output file * (Preprocessor, Assembler)

An output file could not be created. Confirm the spelling and path of the file specified on the com-
mand line.

385

Error and Warning Messages

(142) can’t open input file * (Preprocessor, Assembler)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(144) too many nested #if statements (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(145) cannot open include file "*" (Preprocessor)

The named preprocessor include file could not be opened for reading by the preprocessor. Check
the spelling of the filename. If it is a standard header file, not in the current directory, then the name
should be enclosed in angle brackets<> not quotes. For files not in the current working directory or
the standard compiler include directory, you may need to specify an additional include file path to
the command-line driver, see Section10.4.6.

(146) filename work buffer overflow (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many include directories (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The
number of directories specified with the driver is too great.

(148) too many arguments for macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is
normally 8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K
bytes.

(150) bug: illegal __ macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

386

Error and Warning Messages

(151) too many arguments in macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is
31.

(152) bad dp/nargs in openpar: c = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(153) out of space in macro "*" arg expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes
long.

(155) work buffer overflow doing * ## (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer overflow: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) out of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too much pushback (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(160) too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)

There were so many errors that the compiler has given up. Correct the first few errors and many of
the later ones will probably go away.

387

Error and Warning Messages

(161) control line "*" within macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.
This should not happen.

(163) unexpected text in #control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text
will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to
enclose the text as a comment, e.g.:

#if defined(END)
#define NEXT

#endif END /* END would be better in a comment here */

(164) included file * was converted to lower case (Preprocessor)

The file specified to be included was not found, but a file with a lowercase version of the name of
the file specified was found and used instead, e.g.:

#include “STDIO.H” /* is this meant to be stdio.h ? */

(164) included file * was converted to lower case (Preprocessor)

The#include file name had to be converted to lowercase before it could be opened.

#include <STDIO.H> /* woops -- should be: #include <stdio.h> */

(166) -S, too few values specified in * (Preprocessor)

The list of values to the preprocessor (CPP)-S option is incomplete. This should not happen if the
preprocessor is being invoked by the compiler driver. The values passes to this option represent the
sizes ofchar, short, int, long, float anddouble types.

(167) -S, too many values, "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message-s, too
few values specified in * on page388.

(168) unknown option "*" (Hexmate, Preprocessor)

This option to the preprocessor/hexmate is not recognized.

388

Error and Warning Messages

(169) strange character after # (*) (Preprocessor)

There is an unexpected character after#.

(170) symbol "*" not defined in #undef (Preprocessor)

The symbol supplied as argument to#undef was not already defined. This warning may be disabled
with some compilers. This warning can be avoided with code like:

#ifdef SYM
#undef SYM /* only undefine if defined */

#endif

(171) wrong number of macro arguments for "*" - * instead of * (Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)
ADD(1, 2, 3) /* woops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator# (not to be confused with the leading# used for preprocessor control
lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* woops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use__mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a#if expression was not a defined preprocessor macro. For the purposes of this
expression, its value has been taken as zero. This warning may be disabled with some compilers.
Example:

#if FOO+BAR /* e.g. FOO was never #defined */
#define GOOD

#endif

389

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,
e.g.:

#if CHAR == ’ab’
#define MULTI

#endif

(175) division by zero in #if, zero result assumed (Preprocessor)

Inside a#if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
int a;

#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line
at the end. This problem is normally introduced by editors.

(177) macro "*" wasn’t defined (Preprocessor)

A macro name specified in a-U option to the preprocessor was not initially defined, and thus cannot
be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated
flag = TRUE; /* another comment: hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

390

Error and Warning Messages

(181) non-scalar types can’t be converted (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* woops -- did you mean: sp = &test; ? */

(182) illegal conversion (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure
type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* an int cannot be converted into a struct */

Note that even if a structure only contains anint, for example, it cannot be assigned to anint
variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;
a = b(c+d); /* b is not a function -- did you mean a = b*(c+d) ? */

(184) can’t call an interrupt function (Parser)

A function qualifiedinterrupt can’t be called from other functions. It can only be called by a
hardware (or software) interrupt. This is because aninterrupt function has special function entry
and exit code that is appropriate only for calling from an interrupt. Aninterrupt function can call
other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

int get_value(void);
void main(void)
{

391

Error and Warning Messages

int input;
input = get_value(6); /* woops -- the parameter should not be here */

}

(186) too many arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);
add(5, 7, input); /* this call has too many arguments */

(187) too few arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add(5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;
switch(input) {

case a: /* woops -- you cannot use a variable as part of a case label */
input++;

}

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* woops -- twelve and a half elements, eh? */

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* woops -- exactly which element do you mean? */

392

Error and Warning Messages

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either
scalar (i.e. not an array or a structure) or the typevoid, e.g.:

lip = (long [])input; /* woops -- maybe: lip = (long *)input */

(192) undefined identifier: * (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors if you think it has been defined.

(193) not a variable identifier: * (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194)) expected (Parser)

A closing parenthesis,), was expected here. This may indicate you have left out this character in an
expression, or you have some other syntax error. The error is flagged on the line at which the code
first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */
b = 0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* woops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)

A structure or union identifier is required before a dot., e.g.:

int a;
a.b = 9; /* woops -- a is not a structure */

(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

393

Error and Warning Messages

(198) undefined struct/union: * (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand toif, while statements or to boolean operators like! and&&
must be a scalar integral type, e.g.:

struct FORMAT format;
if(format) /* this operand must be a scaler type */

format.a = 0;

(200) can’t take address of register variable (Parser)

A variable declaredregister may not have storage allocated for it in memory, and thus it is illegal
to attempt to take the address of it by applying the& operator, e.g.:

int * proc(register int in)
{

int * ip = ∈ /* woops -- in may not have an address to take */
return ip;

}

(201) can’t take this address (Parser)

The expression which was the operand of the& operator is not one that denotes memory storage ("an
lvalue") and therefore its address can not be defined, e.g.:

ip = &8; /* woops -- you can’t take the address of a literal */

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned
to or otherwise modified, e.g.:

int array[10];
int * ip;
char c;
array = ip; /* array is not a variable, it cannot be written to */

394

Error and Warning Messages

A typecast does not yield an lvalue, e.g.:

(int)c = 1; /* the contents of c cast to int is only a intermediate value */

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on a bit variable (Parser)

Not all operations onbit variables are supported. This operation is one of those, e.g.:

bit b;
int * ip;
ip = &b; /* woops -- cannot take the address of a bit object */

(204) void function cannot return value (Parser)

A void function cannot return a value. Anyreturn statement should not be followed by an expres-
sion, e.g.:

void run(void)
{
step();
return 1; /* either run should not be void, or remove the 1 */

}

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value
is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for * (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

395

Error and Warning Messages

(208) operands of * not same type (Parser)

The operands of this operator are of different pointer, e.g.:

int * ip;
char * cp, * cp2;
cp = flag ? ip : cp2; /* result of ? : will either be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(212) missing number after pragma "pack" (Parser)

The pragmapack requires a decimal number as argument. This specifies the alignment of each
member within the structure. Use this with caution as some processors enforce alignment and will
not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)

The pragmainterrupt_level requires an argument from 0 to 7.

(215) missing argument to "pragma switch" (Parser)

The pragma switch requires an argument ofauto, direct or simple, e.g.:

#pragma switch /* woops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

396

Error and Warning Messages

(216) missing argument to "pragma psect" (Parser)

The pragmapsect requires an argument of the formoldname =newname whereoldname is an
existing psect name known to the compiler, andnewname is the desired new name, e.g.:

#pragma psect /* woops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

Theinline pragma expects the name of a function to follow. The function name must be recognized
by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style
format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in<stdio.h>.

(220) exponent expected (Parser)

A floating point constant must have at least one digit after thee or E., e.g.:

float f;
f = 1.234e; /* woops -- what is the exponent? */

397

Error and Warning Messages

(221) hex digit expected (Parser)

After 0x should follow at least one of the hex digits0-9 andA-F or a-f, e.g.:

a = 0xg6; /* woops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)

A binary digit was expected following the0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal
number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string
commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058; /* a leading 0 implies octal which has digits 0 thru 7 */

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c = ’12’; /* woops -- only one character may be specified */

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of theellipsissymbol, which
must have 3 dots. (Anellipsis is used in function prototypes to indicate a variable number of param-
eters.)

Either.. was meant to be anellipsissymbol which would require you to add an extra dot, or it
was meant to be astructure member operatorwhich would require you remove one dot.

398

Error and Warning Messages

(228) illegal character (*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising
the acceptable operators, e.g.:

c = ‘a‘; /* woops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing arg to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(231) unknown qualifier "*" given to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing arg to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (disk space?) (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator@, used to associate an absolute address
with a variable, e.g.:

int address;
char LOCK @ address;

399

Error and Warning Messages

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading
is illegal, e.g.:

int twice(int a)
{

return a*2;
}
long twice(long a) /* only one prototype & definition of rv can exist */
{

return a*2;
}

(238) illegal initialisation (Parser)

You can’t initialise atypedef declaration, because it does not reserve any storage that can be ini-
tialised, e.g.:

typedef unsigned int uint = 99; /* woops -- uint is a type, not a variable */

(239) identifier redefined: * (from line *) (Parser)

This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */
int a; /* this attempts to define another with the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-
mended.

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure), e.g.:

int ivals[3] = { 2, 4, 6, 8}; /* three elements, but four initializers */

400

Error and Warning Messages

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-
ber of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’}; /* woops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,
e.g:

double d;
switch(d) { /* woops -- this must be integral */
case ’1.0’:

d = 0;
}

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-
ture. Acontinue can only be used inside awhile, for or do while loop, whilebreak can only be
used inside those loops or aswitch statement, e.g.:

switch(input) {
case 0:

if(output == 0)
input = 0xff;

} /* woops -- this shouldn’t be here and closed the switch */
break; /* this should be inside the switch */

(244) default case redefined (Parser)

There is only allowed to be onedefault label in a switch statement. You have more than one, e.g.:

switch(a) {
default: /* if this is the default case... */
b = 9;
break;

default: /* then what is this? */
b = 10;
break;

401

Error and Warning Messages

(245) "default" not in switch (Parser)

A label has been encountered calleddefault but it is not enclosed by aswitch statement. A
default label is only legal inside the body of aswitch statement.

If there is aswitch statement before thisdefault label, there may be one too many closing
braces in theswitch code which would prematurely terminate theswitch statement. See example
for Error Message’case’ not in switch on page402.

(246) "case" not in switch (Parser)

A case label has been encountered, but there is no enclosingswitch statement. Acase label may
only appear inside the body of aswitch statement.

If there is aswitch statement before thiscase label, there may be one too many closing braces
in theswitch code which would prematurely terminate theswitch statement, e.g.:

switch(input) {
case ’0’:

count++;
break;

case ’1’:
if(count>MAX)

count= 0;
} /* woops -- this shouldn’t be here */
break;

case ’2’: /* error flagged here */

(247) duplicate label * (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is
the entire function, not just the block that encloses a label, e.g.:

start:
if(a > 256)

goto end;
start: /* error flagged here */

if(a == 0)
goto start; /* which start label do I jump to? */

402

Error and Warning Messages

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with anif statement. This may
mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...
if(a > b) {
c = 0; /* ... that will be closed here, thus removing the “if” */

else /* my “if” has been lost */
c = 0xff;

(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding
function has not been ended with a closing brace. This probably means that a closing brace has been
omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

void set(char a)
{
PORTA = a;

/* the closing brace was left out here */
void clear(void) /* error flagged here */
{
PORTA = 0;

}

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It
is acceptable to redeclare the size of an array that was previously declared with a zero dimension,
but not otherwise, e.g.:

extern int array[5];
int array[10]; /* woops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not
agree with a previous prototype for this function, e.g.:

403

Error and Warning Messages

extern int calc(int, int); /* this is supposedly calc’s prototype */
int calc(int a, long int b) /* hmmm -- which is right? */
{ /* error flagged here */

return sin(b/a);
}

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.
Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */

return a + b;
}

(254) undefined *: * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union * (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

struct {
int a, b, c;

} data;
if(data.d) /* woops -- there is no member d in this structure */

return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only register storage class allowed (Parser)

The only storage class allowed for a function parameter isregister, e.g.:

void process(static int input)

404

Error and Warning Messages

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either
directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;
volatile vint very_vol; /* woops -- this results in two volatile qualifiers */

(259) can’t be both far and near (Parser)

It is illegal to qualify a type as bothfar andnear, e.g.:

far near int spooky; /* woops -- choose either far or near, not both */

(260) undefined enum tag: * (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) member * redefined (Parser)

This name of this member of the struct or union has already been used in thisstruct or union, e.g.:

struct {
int a;
int b;
int a; /* woops -- a different name is required here */

} input;

(262) struct/union redefined: * (Parser)

A structure or union has been defined more than once, e.g.:

struct {
int a;

} ms;
struct {
int a;

} ms; /* was this meant to be the same name as above? */

405

Error and Warning Messages

(263) members cannot be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:

struct {
int a;
int get(int); /* this should be a pointer: int (*get)(int); */

} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type ofint (signed or unsigned), e.g.:

struct FREG {
char b0:1; /* woops -- these must be part of an int, not char */
char :6;
char b7:1;

} freg;

(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a
bitfield. An integral constant must appear after thecolon to define the number of bits in the bitfield,
e.g.:

struct {
unsigned first: /* woops -- should be: unsigned first; */
unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {
unsigned first : 4; /* 4 bits wide */
unsigned second: 4; /* another 4 bits */

} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure, e.g.:

406

Error and Warning Messages

struct {
static int first; /* no additional qualifiers may be present with members */

} ;

(267) bad storage class (Code Generator)

The code generator has encounterd a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power(static int a) /* paramters may not be static */
{
return foo * a;

}

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,
e.g.:

extern static int where; /* so is it static or extern? */

(269) inconsistent type (Parser)

Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) can’t be register (Parser)

Only function parameters orauto variables may be declared using theregister qualifier, e.g.:

register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */
{
return input + gi;

}

407

Error and Warning Messages

(271) can’t be long (Parser)

Only int andfloat can be qualified withlong.

long char lc; /* what? */

(272) can’t be short (Parser)

Only int can be modified withshort, e.g.:

short float sf; /* what? */

(273) can’t have "signed" and "unsigned" together (Parser)

The type modifierssigned andunsigned cannot be used together in the same declaration, as they
have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? signed or unsigned? */

(274) can’t be unsigned (Parser)

A floating point type cannot be madeunsigned, e.g.:

unsigned float uf; /* what? */

(275) ... illegal in non-prototype arg list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not
appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style
non-prototype function definitions. For example:

int kandr(a, b, ...) /* K&R-style non-prototyped function definition */
int a, b;

{

(276) type specifier required for proto arg (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

408

Error and Warning Messages

(277) can’t mix proto and non-proto args (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration
list before the start of the function body), e.g.:

int plus(int a, b) /* woops -- a is prototyped, b is not */
int b;
{
return a + b;

}

(278) argument redeclared: * (Parser)

The specified argument is declared more than once in the same argument list, e.g.

int calc(int a, int a) /* you cannot have two parameters called “a” */

(279) can’t initialize arg (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument
happens when the function is called and a value is provided for the argument by the calling function,
e.g.:

extern int proc(int a = 9); /* woops -- a is initialized when proc is called */

(280) can’t have array of functions (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,
e.g.:

int * farray[](); /* woops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer
to a function could be declared like this: int (* (name()))(). Note the many parentheses that are
necessary to make the parts of the declaration bind correctly.

409

Error and Warning Messages

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present as a constant expression, e.g.:

enum { one = 1, two };
int get_element(int array[two][]) /* should be, e.g.: int array[][7] */
{

return array[1][6];
}

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */
{
}

(286) declarator too complex (Parser)

This declarator is too complex for the compiler to handle. Examine the declaration and find a way
to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) can’t have an array of bits or a pointer to bit (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */
bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)

A variable may not bevoid. Only a function can bevoid, e.g.:

int a;
void b; /* this makes no sense */

410

Error and Warning Messages

(289) only functions may be qualified interrupt (Parser)

The qualifierinterrupt may not be applied to anything except a function, e.g.:

interrupt int input; /* variables cannot be qualified interrupt */

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier
only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have
forgotten out a star* indicating that the function should return a pointer to a qualified object, e.g.

const char ccrv(void) /* woops -- did you mean const * char ccrv(void) ? */
{ /* error flagged here */
return ccip;

}

(291) not an argument: * (Parser)

This identifier that has appeared in a K&R stype argument declarator is not listed inside the paren-
theses after the function name, e.g.:

int process(input)
int unput; /* woops -- that should be int input; */
{
}

(292) a parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has
been omitted from the declaration.

(293) bad size in index_type (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

411

Error and Warning Messages

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or
split into two expressions.

(297) bad arg (*) to tysize (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(298) EOF in #asm (Preprocessor)

An end of file has been encountered inside a#asm block. This probably means the#endasm is
missing or misspelt, e.g.:

#asm
mov r0, #55
mov [r1], r0

} /* woops -- where is the #endasm */

(300) unexpected EOF (Parser)

An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)
{

init();
run(); /* is that it? What about the close brace */

(301) EOF on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’t reopen * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) no memory for string buffer (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort
and merge strings. Try reducing the number or length of strings in this module.

412

Error and Warning Messages

(305) can’t open * (Code Generator, Assembler, Optimiser, Cromwell)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(306) out of far memory (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(308) too many cases in switch (Code Generator)

There are too manycase labels in thisswitch statement. The maximum allowable number ofcase
labels in any oneswitch statement is 511.

(309) too many symbols (Assembler)

There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in
your program.

(310)] expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,
e.g.

process(carray[idx); /* woops -- should be: process(carray[idx]); */

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow, e.g.:

int get_value(a, b); /* the function block must follow, not a semicolon */

413

Error and Warning Messages

(314) ; expected (Parser)

A semicolonis missing from a statement. A close brace or keyword was found following a statement
with no terminatingsemicolon, e.g.:

while(a) {
b = a-- /* woops -- where is the semicolon? */

} /* error is flagged here */

Note: Omitting a semicolon from statements not preceeding a close brace or keyword typically
results in some other error being issed for the following code which the parser assums to be part of
the original statement.

(315) { expected (Parser)

An opening bracewas expected here. This error may be the result of a function definition missing
theopening brace, e.g.:

void process(char c) /* woops -- no opening brace after the prototype */
return max(c, 10) * 2; /* error flagged here */

}

(316) } expected (Parser)

A closing bracewas expected here. This error may be the result of a initialized array missing the
closing brace, e.g.:

char carray[4] = { 1, 2, 3, 4; /* woops -- no closing brace */

(317) (expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after awhile, for, if,
do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */
b = 0;

(318) string expected (Parser)

The operand to anasm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

414

Error and Warning Messages

(319) while expected (Parser)

The keywordwhile is expected at the end of ado statement, e.g.:

do {
func(i++);

} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
end();

(320) : expected (Parser)

A colon is missing after acase label, or after the keyworddefault. This often occurs when a
semicolonis accidentally typed instead of acolon, e.g.:

switch(input) {
case 0; /* woops -- that should have been: case 0: */

state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear aftergoto, e.g.:

if(a)
goto 20; /* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or { expected (Parser)

After the keywordenum must come either an identifier that is or will be defined as anenum tag, or
an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow astruct or union
keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

415

Error and Warning Messages

struct {
int a;

} my_struct;

(324) too many arguments for format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string, e.g.:

printf(“%d - %d”, low, high, median); /* woops -- missed a placeholder? */

(325) error in format string (Parser)

There is an error in the format string here. The string has been interpreted as aprintf() style format
string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at
run time, e.g.:

printf(“%l”, lll); /* woops -- maybe: printf(“%ld”, lll); */

(326) long argument required (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-
fiers and corresponding arguments, e.g.:

printf(“%lx”, 2); /* woops -- maybe you meant: printf(“%lx”, 2L);

(328) integral argument required (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* woops -- either wrong number or wrong placeholder */

(329) double float argument required (Parser)

The printf format specifier corresponding to this argument is%f or similar, and requires a floating
point expression. Check for missing or extra format specifiers or arguments to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

416

Error and Warning Messages

(330) pointer to * argument required (Parser)

A pointer argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

(331) too few arguments for format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time, e.g.:

printf(“%d - %d”, low); /* woops -- where is the other value to print? */

(332) interrupt_level should be 0 to 7 (Parser)

The pragmainterrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* woops -- what is the level */
void interrupt isr(void)
{
/* isr code goes here */

}

(333) unrecognized qualifier name after "strings" (Parser)

Thepragma strings was passed a qualifier that was not identified, e.g.:

#pragma strings cinst /* woops -- should that be #pragma strings const ? */

(335) unknown pragma * (Parser)

An unknownpragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
“there”; /* this is okay, but is it what you had intended? */

417

Error and Warning Messages

(337) line does not have a newline on the end (Parser)

The last line in the file is missing thenewline(operating system dependent character) from the end.
Some editors will create such files, which can cause problems for include files. The ANSI C standard
requires all source files to consist of complete lines only.

(338) can’t create * file "*" (Code Generator, Assembler, Linker, Optimiser)

The application tried to create the named file, but it could not be created. Check that all file path-
names are correct.

(338) can’t create * file "*" (Linker, Code Generator Driver)

The compiler was unable to create a temporary file. Check the DOS Environment variable TEMP
(and TMP) and verify it points to a directory that exists, and that there is space available on that
drive. For example,AUTOEXEC.BAT should have something like:

SET TEMP=C:\TEMP

where the directoryC:\TEMP exists.

(339) initializer in "extern" declaration (Parser)

A declaration containing the keywordextern has an initialiser. This overrides theextern storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated storage,
how can it be initialized? */

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach
the end of the function body, thus returning without a value. Either insert areturn statement with a
value, or if the function is not to return a value, declare itvoid, e.g.:

int mydiv(double a, int b)
{

if(b != 0)
return a/b; /* what about when b is 0? */

} /* warning flagged here */

418

Error and Warning Messages

(344) non-void function returns no value (Parser)

A function that is declared as returning a value has areturn statement that does not specify a return
value, e.g.:

int get_value(void)
{
if(flag)

return val++;
return; /* what is the return value in this instance? */

}

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be
reached, e.g.:

while(1) /* how does this loop finish? */
process();

flag = FINISHED; /* how do we get here? */

(346) declaration of * hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended, e.g.:

int input; /* input has filescope */
void process(int a)
{
int input; /* local blockscope input */
a = input; /* this will use the local variable. Is this right? */

(347) external declaration inside function (Parser)

A function contains anextern declaration. This is legal but is invariably not desirable as it restricts
the scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have
the earlier declaration and thus will be unable to check that the declarations are consistent. This
can lead to strange behaviour of your program or signature errors at link time. It will also hide any
previous declarations of the same thing, again subverting the compiler’s type checking. As a general
rule, always declareextern variables and functions outside any other functions. For example:

419

Error and Warning Messages

int process(int a)
{

extern int away; /* this would be better outside the function */
return away + a;

}

(348) auto variable * should not be qualified (Parser)

An auto variable should not have qualifiers such asnear or far associated with it. Its storage class
is implicitly defined by the stack organization. Anauto variable may be qualified withstatic, but
it is then no longerauto.

(349) non-prototyped function declaration: * (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions, e.g.:

int process(input)
int input; /* warning flagged here */
{
}

This would be better written:

int process(int input)
{
}

(350) unused *: * (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is
redundant, or the code that was meant to use it was excluded from compilation or misspelt the name
of the object. Note that the symbolsrcsid andsccsid are never reported as being unused.

(352) float param coerced to double (Parser)

Where a non-prototyped function has a parameter declared asfloat, the compiler converts this into
a double float. This is because the default C type conversion conventions provide that when a
floating point number is passed to a non-prototyped function, it will be converted todouble. It is
important that the function declaration be consistent with this convention, e.g.:

420

Error and Warning Messages

double inc_flt(f) /* the parameter f will be converted to double type */
float f; /* warning flagged here */
{
return f * 2;

}

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an
explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default
pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a largerunsigned type. Under the
ANSI "value preserving" rules, this will result in thesigned value being first sign-extended to a
signed number the size of the target type, then converted tounsigned (which involves no change
in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first
convert the signed value to an unsigned equivalent, e.g.:

signed char sc;
unsigned int ui;
ui = sc; /* if sc contains 0xff, ui will contain 0xffff for example */

will perform a sign extension of thechar variable to the longer type. If you do not want this to take
place, use a cast, e.g.:

ui = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result
in truncation of the floating point value. A typecast will make this warning go away.

421

Error and Warning Messages

double dd;
int i;
i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the& address operator, e.g.:

int * ip;
int i;
ip = i; /* woops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the* dereference operator, e.g.:

int * ip;
int i;
i = ip; /* woops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

422

Error and Warning Messages

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer
of a different type. This will usually mean you have used the wrong variable, but if this is genuinely
what you want to do, use a typecast to inform the compiler that you want the conversion and the
warning will be suppressed, e.g.:

long input;
char * cp;
cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the
intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,
but which have different qualifiers, e.g.:

char * cp;
cp = “I am a string of characters”; /* yes, but what sort of characters? */

If the default type for string literals isconst char *, then this warning is quite valid. This should
be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array. This warning will not be issued when accessing an array element
via a pointer variable, e.g.:

int i, * ip, input[10];
i = input[-2]; /* woops -- this element doesn’t exist */
ip = &input[5];
i = ip[-2]; /* this is okay */

423

Error and Warning Messages

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of typeint, with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type
and arguments will be different from the earlier implicit declaration, causing a compiler error. The
solution is to ensure that all functions are defined or at least declared before use, preferably with
prototyped parameters. If it is necessary to make a forward declaration of a function, it should be
preceded with the keywordsextern or static as appropriate. For example:

void set(long a, int b); /* I may prevent an error arising from calls below */
void main(void)
{

set(10L, 6); /* by here a prototype for set should have seen */
}

(362) redundant & applied to array (Parser)

The address operator& has been applied to an array. Since using the name of an array gives its
address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];
int * ip;
ip = &array; /* array is a constant, not a variable; the & is redundant. */

(364) attempt to modify * object (Parser)

Objects declaredconst or code may not be assigned to or modified in any other way by your
program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* woops -- writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,
since the storage associated with automatic variables becomes invalid when the function returns,
e.g.:

424

Error and Warning Messages

char * get_addr(void)
{
char c;
return &c; /* returning this is dangerous; the pointer could be dereferenced */

}

(366) operands of * not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used
the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error
message.

(367) function is already "extern"; can’t be "static" (Parser)

This function was already declaredextern, possibly through an implicit declaration. It has now
been redeclaredstatic, but this redeclaration is invalid.

void main(void)
{
set(10L, 6); /* at this point the compiler assumes set is extern... */

}
static void set(long a, int b) /* now it finds out otherwise */
{
PORTA = a + b;

}

(368) array dimension on *[] ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the
dimension from the parameter, or define the parameter using pointer syntax, e.g.:

int get_first(int array[10]) /* param should be: “int array[]” or “int *” */
{ /* warning flagged here */
return array[0];

}

425

Error and Warning Messages

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be typeint, the compiler still
treats it asunsigned, e.g.:

struct {
signed int sign: 1; /* this must be unsigned */
signed int value: 15;

} ;

(371) missing basic type: int assumed (Parser)

This declaration does not include a basic type, soint has been assumed. This declaration is not
illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int i */
func(); /* ditto, use: extern int func(int); */

(372) , expected (Parser)

A commawas expected here. This could mean you have left out thecommabetween two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and
has thus been interpreted as an identifier, e.g.:

unsigned char a;
unsigned chat b; /* thinks: chat & b are unsigned, but where is the comma? */

(375) unknown FNREC type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in
the call graph. This probably means the program has indirect recursion, which is not allowed when
using a compiled stack.

(378) can’t create * file “*” (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

426

Error and Warning Messages

(379) bad record type * (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact
HI-TECH Software technical support with details.

(380) unknown record type: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record too long (*): * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not
a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length too small: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expr * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(386) can’t open error file * (Linker)

The error file specified using the-e linker option could not be opened.

(387) illegal or too many -g flags (Linker)

There has been more than one linker-g option, or the-g option did not have any arguments follow-
ing. The arguments specify how the segment addresses are calculated.

(388) duplicate -m flag (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of this
option is present on the command line. See Section13.7.9for information on the correct syntax for
this option.

427

Error and Warning Messages

(389) illegal or too many -o flags (Linker)

This linker-o flag is illegal, or another-o option has been encountered. A-o option to the linker
must be immediately followed by a filename with no intervening space.

(390) illegal or too many -p flags (Linker)

There have been too many-p options passed to the linker, or a-p option was not followed by any
arguments. The arguments of separate-p options may be combined and separated bycommas.

(391) missing arg to -Q (Linker)

The-Q linker option requires the machine type for an argument.

(392) missing arg to -u (Linker)

The-U (undefine) option needs an argument.

(393) missing arg to -w (Linker)

The-W option (listing width) needs a numeric argument.

(394) duplicate -d or -h flag (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of either
of these options is present on the command line.

(395) missing arg to -j (Linker)

The maximum number of errors before aborting must be specified following the-j linker option.

(396) illegal flag -* (Linker)

This linker option is unrecognized.

(398) output file cannot be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be
done, because it needs to simultaneously read and write input and output files.

428

Error and Warning Messages

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a
valid HI-TECH object file. Contact HI-TECH Software technical support with details.

(401) cannot get memory (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)

The first value to the OBJTOHEX-n,m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX-n,m hex length/rounding option is invalid.

(410) bad combination of flags (Objtohex)

The combination of options supplied toOBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on * (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on * (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character in extended Tekhex line (*) (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

429

Error and Warning Messages

(417) seek error (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed toOBJTOHEX has relocation items in it. This may indicate it is the wrong object
file, or that the linker or OBJTOHEX have been given invalid options. The object output files from
the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) no end record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH
Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with
details.

430

Error and Warning Messages

(426) can’t open checksum file * (Linker)

The checksum file specified toOBJTOHEXcould not be opened. Confirm the spelling and path of
the file specified on the command line.

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from
standard input in response to an option.

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied toOBJTOHEX is syntatically incorrect.

(433) out of memory allocating * blocks of * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some
global symbols to local symbols to reduce the number of symbols.

(435) bad segspec * (Linker)

The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

431

Error and Warning Messages

(436) psect "*" re-orged (Linker)

This psect has had its start address specified more than once.

(437) missing "=" in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section13.7.9for more infomation.

(438) bad size in -S option (Linker)

The address given in a-S specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailingO, for octal, orH for hex. A leading0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-SCODE=f000

Did you forget the radix?

-SCODE=f000h

(441) bad -A spec: "*" (Linker)

The format of a-A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address in -A spec - * (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

432

Error and Warning Messages

(444) expected "-" in -A spec (Linker)

There should be a minus sign,-, between the high and low addresses in a-A linker option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

(445) bad high address in -A spec - * (Linker)

The high address given in a-A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailingO, for octal, orH for hex. A leading0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh

See Section13.7.20for more infomation.

(446) bad overrun address in -A spec - * (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,
octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

433

Error and Warning Messages

(447) bad load address in -A spec - * (Linker)

The load address given in a-A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailingO (for octal) orH for hex. A leading0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,
e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

(448) bad repeat count in -A spec - * (Linker)

The repeat count given in a-A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The-A spec is invalid. A valid -A spec should be something like:
-AROM=1000h-1FFFh

(450) unknown psect: * (Linker, Optimiser)

This psect has been listed in a-P option, but is not defined in any module within the program.

(451) bad origin format in spec (Linker)

The origin format in a-p option is not a validly formed decimal, octal or hex number, nor is it the
name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

434

Error and Warning Messages

(452) bad min (+) format in spec (Linker)

The minimum address specification in the linker’s-p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after % in -p option (Linker)

The% operator in a-p option (for rounding boundaries) must have a number after it.

(455) psect * not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct
the-p option. if necessary.

(458) cannot open (Objtohex)

OBJTOHEX cannot open the specified input file. Confirm the spelling and path of the file specified on
the command line.

(462) can’t open avmap file * (Linker)

A file required for producing Avocet format symbol files is missing. Confirm the spelling and path
of the file specified on the command line.

(463) missing memory key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol in FNBREAK record: * (Linker)

The linker has found an undefined symbol in theFNBREAK record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

435

Error and Warning Messages

(466) undefined symbol in FNINDIR record: * (Linker)

The linker has found an undefined symbol in theFNINDIR record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol in FNADDR record: * (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.
Contact HI-TECH Support if this is not handwritten assembler code.

(468) undefined symbol in FNCALL record: * (Linker)

The linker has found an undefined symbol in theFNCALL record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol in FNROOT record: * (Linker)

The linker has found an undefined symbol in theFNROOT record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol in FNSIZE record: * (Linker)

The linker has found an undefined symbol in theFNSIZE record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-
ically allocated local variables (compiled stack). Either use thereentrant keyword (if supported
with this compiler) or recode to avoid recursion, e.g.:

int test(int a)
{

if(a == 5)
return test(a++); /* recursion may not be supported by some compilers */

return 0;
}

436

Error and Warning Messages

(472) function * appears in multiple call graphs: rooted at * and * (Linker)

This function can be called from both main-line code and interrupt code. Use thereentrant key-
word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate
the function, e.g.:

void interrupt my_isr(void)
{
scan(6); /* scan is called from an interrupt function */

}
void process(int a)
{
scan(a); /* scan is also called from main-line code */

}

(474) no psect specified for function variable/argument allocation (Linker)

TheFNCONF assembler directive which specifies to the linker information regarding the auto/parameter
block was never seen. This is supplied in the standard runtime files if necessary. This error may im-
ply that the correct run-time startoff module was not linked. Ensure you have used theFNCONF
directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflictingFNCONF directives. This directive should only be specified once
and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (loc 0x* (0x*+*), size *, value 0x*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
See the following error message (477) for more information..

(477) fixup overflow in expression (loc 0x* (0x*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program
sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

437

Error and Warning Messages

The causes for this can be many, but hand-written assembler code is always the first suspect.
Badly written C code can also generate assembler that ultimately generates fixup overflow errors.
Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1), size 1, value 0x7FC)

This indicates that the file causing the problem wasmain.obj. This would be typically be the output
of compilingmain.c or main.as. This tells you the file in which you should be looking. The next
number (8 in this example) is the record number in the object file that was causing the problem. If
you use theDUMP utility to examine the object file, you can identify the record, however you do not
normally need to do this.

The location (loc) of the instruction (0x1FD), thesize (in bytes) of the field in the instruction
for the value (1) , and thevalue which is the actual value the symbol represents, is typically the only
information needed to track down the cause of this error. Note that a size which is not a multiple of
8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as
1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the
error message.

7 07FC 0E21 movlw 33
8 07FD 6FFC movwf _foo
9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the
symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but
clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.
If the assembler instruction that caused this error was generated by the compiler, in the assem-

bler list file look back up the file from the instruction at fault to determine which C statement has
generated this instruction. You will then need to examine the C code for possible errors. incorrectly
qualified pointers are an common trigger.

438

Error and Warning Messages

(479) circular indirect definition of symbol * (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

(480) signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);
/* and in another module: */
int get_value(int in, char type) /* this is different to the declaration */
{

(481) common symbol psect conflict: * (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" multiply defined in file "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have anunderscoreprepended to their name after compilation.

(483) symbol * cannot be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

439

Error and Warning Messages

(484) psect * cannot be in classes * and * (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting
class= options to the PSECT directive, or use of the-C option to the linker, e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY

(485) unknown "with" psect referenced by psect * (Linker)

The specified psect has been placed with a psect using the psectwith flag. The psect it has been
placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext ; was that meant to be with text?

(486) psect * selector value redefined (Linker)

The selector associated with this psect has been defined differently in two or more places.

(486) psect * selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect * type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are
trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode
code.

(488) psect * memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,
if they are the same psect, place them in the same memory space using thespace psect flag, e.g.:

psect spdata,class=RAM,space=0
ds 6

; elsewhere:
psect spdata,class=RAM,space=1

440

Error and Warning Messages

(489) psect * memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:
; elsewhere:
psect final,class=CODE,delta=1

(490) class * memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they
are the same class, place them in the same memory space.

(491) can’t find * words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that is
generated from the program into the memory available for the target device. This error indicates that
the linker was unable to find an area of free memory large enough to accomodate one of the psects.
The error message indicates the name of the psect that the linker was attempting to position and the
segment name which is typically the name of a class which is defined with a linker-A option.

Section?? lists each compiler-generated psect and what it contains. Typically psect names which
are, or include,text relate to program code. Names such asbss or data refer to variable blocks.
This error can be due to two reasons.

First, the size of the program or the progam’s data has exceeded the total amount of space on the
selected device. In other words, some part of your device’s memory has completely filled. If this is
the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being
positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous
block is too small to accomodate the psect. The linker is unable to split psects in this situation. That
is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the linker
must be able to find a contiguous block of memory large enough for every psect. If this is the cause
of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section10.4.9
for information on how to generate a map file. Search for the stringUNUSED ADDRESS RANGES.
Under this heading, look for the name of the segment specified in the error message. If the name
is not present, then all the memory available for this psect has been allocated. If it is present, there
will be one address range specified under this segment for each free block of memory. Determine
the size of each block and compare this with the number of words specified in the error message.

441

Error and Warning Messages

Psects containing code can be reduced by using all the compiler’s optimizations, or restructring
the program. If a code psect must be split into two or more small psects, this requies splitting a
function into two or more smaller functions (which may call each other). These functions may need
to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect
is less dramatic. The program may need to be rewritten so that it needs less variables. Section
13.9.1has information on interpreting the map file’s call graph if the compiler you are using uses
a compiled stack. (If the stringCall grpah: is not present in the map file, then the compiled
code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions
for variables will need to be moved to new modules or more evenly spread in the existing modules.
Memory allocation forauto variables is entirely handled by the compiler. Other than reducing the
number of these variables used, the programmer has little control over their operation. This applies
whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES
CODE 00000244-0000025F

00001000-0000102f
RAM 00300014-00301FFB

In theCODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one block and 0x30
available in another block. Neither of these are large enough to accomodate the psecttext which
is 0x34 bytes long. Notice, however, that the total amout of memory available is larger than 0x34
bytes.

(492) psect is absolute: * (Linker)

This psect is absolute and should not have an address specified in a-P option. Either remove the
abs psect flag, or remove the-P linker option.

(493) psect origin multiply defined: * (Linker)

The origin of this psect is defined more than once. There is most likely more than one-p linker
option specifying this psect.

442

Error and Warning Messages

(494) bad -P format "*"/"*" (Linker)

The-P option given to the linker is malformed. This option specifies placement of a psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(497) psect exceeds max size: *: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using thesize psect flag.

(498) psect exceeds address limit: *: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using thelimit psect flag. Either
the psect needs to be linked at a different location or there is too much code/data in the psect.

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(501) entry point multiply defined (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is
specified after theEND directive. The runtime startup code defines the entry point, e.g.:

powerup:
goto start
END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or
not an object file. Contact HI-TECH Support with details.

443

Error and Warning Messages

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for
different processor types.

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known
to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object
file if you have not patched the linker.

(505) no end record found (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an
object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset * out of range 0..*-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using
a linker that is out of date, or that there is an internal error in the assembler or linker. Contact
HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -r or -l options (Linker)

The linker was given a-R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

444

Error and Warning Messages

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the
file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was
created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(517) write error (out of disk space?) * (Linker)

A write error occurred on the named file. This probably means you have run out of disk space.

(519) can’t seek in * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function * is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-
ing it. If you believe this function should be called, check your source code. Some assembler library
routines are never called, although they are actually execute. In this case, the routines are linked in
a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by * (Linker)

The call graph shows that functions are nested to a depth greater than specified.

445

Error and Warning Messages

(522) library * is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument -W* ignored (Linker)

The argument to the linker option-w is out of range. This option controls two features. For warning
levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

(524) unable to open list file * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will
contain absolute addresses. Ensure that an assembler list file was generated during the compilation
stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address spaces - space * ignored (Linker)

The limit to the number of address spaces (specified with thePSECT assembler directive) is currently
16.

(526) psect * not specified in -p option (first appears in *) (Linker)

This psect was not specified in a-P or -A option to the linker. It has been linked at the end of the
program, which is probably not where you wanted it.

(528) no start record: entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in
your startup module by using theEND directive.

(593) can’t find 0x* words (0x* withtotal) for psect * in segment * (Linker)

See error (491) in AppendixB.

(596) segment *(*-*) overlaps segment *(*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the-P
linker option.

446

Error and Warning Messages

(597) can’t open (Linker)

An object file could not be opened. Confirm the spelling and path of the file specified on the com-
mand line.

(602) null format name (Cromwell)

The-I or -O option to Cromwell must specify a file format.

(603) ambiguous format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with
the-ikey and-okey options respectively.

(604) unknown format name "*" (Cromwell)

The output format specified toCROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot

and output file type ofcot, did you meancof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
or HI-TECH.

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The-p option to cromwell must specify a processor name.

(611) too many input files (Cromwell)

To many input files have been specified to be converted byCROMWELL.

447

Error and Warning Messages

(612) too many output files (Cromwell)

To many output file formats have been specified toCROMWELL.

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

(619) I/O error reading symbol table

Cromwell could not read the symbol table. This could be because the file was truncated or there was
some other problem reading the file. Contact HI-TECH Support with details.

(620) file name index out of range in line number record (Cromwell)

The COD file has an invalid format in the specified record.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in coff:get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(634) error dumping * (Cromwell)

Either the input file toCROMWELL is of an unsupported type or that file cannot be dumped to the
screen.

(635) invalid hex file: *, line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was
generated by the compiler.

448

Error and Warning Messages

(636) checksum error in Intel hex file *, line * (Cromwell, Hexmate)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may
be corrupt.

(674) too many references to * (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(675) can’t open * for input (Cref)

CREFcannot open the specified input file. Confirm the spelling and path of the file specified on the
command line.

(676) can’t open * for output (Cref)

CREFcannot open the specified output file. Confirm the spelling and path of the file specified on the
command line.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(680) bad format for -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(685) bad putwsize (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(686) bad switch size * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(687) bad pushreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section13.7.2for more infomation.

449

Error and Warning Messages

(688) bad popreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(692) interrupt function "*" may only have one interrupt level (Code Generator)

Only one interrupt level may be associated with aninterrupt function. Check to ensure that only
oneinterrupt_level pragma has been used with the function specified. This pragma may be used
more than once on main-line functions that are called frominterrupt functions. For example:

#pragma interrupt_level 0
#pragma interrupt_level 1 /* which is it to be: 0 or 1? */
void interrupt isr(void)
{

(693) interrupt level may only be 0 (default) or 1 (Code Generator)

The only possible interrupt levels are 0 or 1. Check to ensure that allinterrupt_level pragmas
use these levels.

#pragma interrupt_level 2 /* woops -- only 0 or 1 */
void interrupt isr(void)
{

/* isr code goes here */
}

(695) duplicate case label * (Code Generator)

There are two case labels with the same value in thisswitch statement, e.g.:

switch(in) {
case ’0’: /* if this is case ’0’... */

b++;
break;

case ’0’: /* then what is this case? */
b--;
break;

}

450

Error and Warning Messages

(696) out-of-range case label * (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never
be selected.

(697) non-constant case label (Code Generator)

A case label in thisswitch statement has a value which is not a constant.

(699) no case labels (Code Generator)

There are nocase labels in thisswitch statement, e.g.:

switch(input) {
} /* there is nothing to match the value of input */

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused - bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section13.7.2for more infomation.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after I (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) expand - bad which (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

451

Error and Warning Messages

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.See
Section13.7.20for more infomation.

(708) bad mod "+" for how = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister * can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) expand - bad how (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For
successful code generation, the code generator must know how to compile an expression and there
must be enough resources (e.g. registers or temporary memory locations) available. Simplifying
the expression, e.g. using a temporary variable to hold an intermediate result, may get around this
message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example
code which writes to a const-qualified object is illegal and will result in warning messages, but the
code generator may unsuccessfully try to produce code to perform the write.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma * (Code Generator)

The code generator has been passed apragma directive that it does not understand. This implies that
the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using
has not implemented this pragma.

452

Error and Warning Messages

(716) bad -M option: -M* (Code Generator)

The code generator has been passed a-M option that it does not understand. This should not happen
if it is being invoked by a standard compiler driver.

(717) illegal switch * (Code Generator, Assembler, Optimiser)

This command line option was not understood.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path name, change it to something
shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(721) bad element count expr (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) functions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-
TECH Support with details.

(724) bad op * to revlog (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad uconval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

453

Error and Warning Messages

(727) bad bconfloat - * (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad confloat - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad conval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op: "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(732) can’t initialize bit type (Code Generator)

Variables of typebit cannot be initialised, e.g.:

bit b1 = 1; /* woops -- b1 must be assigned a value after its definition */

(733) bad string "*" in psect pragma (Code Generator)

The code generator has been passed apragma psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

(734) too many psect pragmas (Code Generator)

Too many#pragma psect directives have been used.

454

Error and Warning Messages

(737) unknown argument to "pragma switch": * (Code Generator)

The#pragma switch directive has been used with an invalid switch code generation method. Pos-
sible arguments are:auto, simple anddirect.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) bad dimensions (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bit field too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in anint, e.g. assuming
anint is 16 bits wide:

struct {
unsigned flag : 1;
unsigned value : 12;
unsigned cont : 6; /* woops -- that makes a total of 19 bits */

} object;

(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a
call like:

void fn1(void)
{
fn3(7, fn2(3), fn2(9)); /* Offending call */

}
char fn2(char fred)
{
return fred + fn3(5,1,0);

}
char fn3(char one, char two, char three)
{
return one+two+three;

}

455

Error and Warning Messages

wherefn1 is callingfn3, and two arguments are evaluated by callingfn2, which in turn callsfn3.
The program structure should be modified to prevent this type of call sequence.

(744) static object has zero size: * (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(747) unrecognized option to -Z: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable may be used before set: * (Code Generator)

This variable may be used before it has been assigned a value. Since it is anauto variable, this will
result in it having a random value, e.g.:

void main(void)
{

int a;
if(a) /* woops -- a has never been assigned a value */

process();
}

(749) unknown register name * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to || or && (Code Generator)

One operand to the logical operators|| or && is a constant. Check the expression for missing or
badly placed parentheses. This message may also occur if the global optimizer is enabled and one of
the operands is anauto orstatic local variable whose value has been tracked by the code generator,
e.g.:

{
int a;
a = 6;

456

Error and Warning Messages

if(a || b) /* a is 6, therefore this is always true */
b++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is
too big for the type of the expression. The most common code to trigger this warning is assignments
to signed data types. For example:

signed char c;
c = 0xFF;

As asigned 8-bit quantity,c can only be assigned values -128 to 127. The constant is equal to 255
and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.
This warning can also be triggered by intermediate values overflowing. For example:

unsigned int i; /* assume ints are 16 bits wide */
i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveils that 240 * 137 is 32880 which can easily be stored in
anunsigned int, but a warning is produced. Why? Because 240 and 137 and bothsigned int
values. Therefore the result of the multiplication must also be asigned int value, but asigned
int cannot hold the value 32880. (Both operands are constant values so the code generator can
evaluate this expression at compile time, but it must do so following all the ANSI rules.) The
following code forces the multiplication to be performed with anunsigned result:

i = 240u * 137; /* force at least one operand to be unsigned */

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the lvalue is of shorter type than the rvalue, e.g.:

char a;
int b, c;
a = b + c; /* conversion of int to char may result in truncation */

457

Error and Warning Messages

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of
bits in the data type. This will produce an undefined result on many processors. This is non-portable
code and is flagged as having undefined results by the C Standard, e.g.:

int input;
input < <= 33; /* woops -- that shifts the entire value out of input */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.
For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range
from 0 to 3, e.g.:

struct {
unsigned mask : 2; /* mask can hold values 0 to 3 */

} value;
int compare(void)
{

return (value.mask == 6); /* test can
}

(755) division by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by anif, for, while statement etc.) always follows the same path.
This will be some sort of comparison involving a variable and a constant expression. For the code
generator to issue this message, the variable must have local scope (eitherauto or static local) and
the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold
may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during
a function. For C code that compares these variables to constants, the result of the comparison can
be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

458

Error and Warning Messages

{
int a, b;
a = 5;
if(a == 4) /* this can never be false; always perform the true statement */

b = 6;

will produce code that setsa to 5, then immediately setsb to 6. No code will be produced for the
comparisonif(a == 4). If a was a global variable, it may be that other functions (particularly
interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an
expression with missing or badly placed parentheses, causing the evaluation to yield a value different
to what you expected.

This warning may also be issued because you have written something likewhile(1). To produce
an infinite loop, usefor(;;).

A similar situation arises with for loops, e.g.:

{
int a, b;
for(a=0; a!=10; a++) /* this loop must iterate at least once */

b = func(a);

In this case the code generator can again pick up thata is assigned the value 0, then immediately
checked to see if it is equal to 10. Becausea is modified during thefor loop, the comparison
code cannot be removed, but the code generator will adjust the code so that the comparison is not
performed on the first pass of the loop; only on the subsequent passes. This may not reduce code
size, but it will speed program execution.

(758) constant conditional branch: possible use of = instead of == (Code Generator)

There is an expression inside anif or other conditional construct, where a constant is being assigned
to a variable. This may mean you have inadvertently used an assignment= instead of a compare==,
e.g.:

int a, b;
if(a = 4) /* this can never be false; always perform the true statement */

b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can
be omitted and the assignment tob always made. Did you mean:

459

Error and Warning Messages

if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a
function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To
accommodate this, in some instances the code generatordoesproduce code for a statement which
only consists of a variable ID. This may happen for variables which are qualified asvolatile.
Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;
a = b,c; /* “b” has no effect, was that meant to be a comma? */

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly
indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero
length array. In general, pointers to arrays are of little use. If you require a pointer to an array of
objects of unknown length, you only need a pointer to a single object that can then be indexed or
incremented.

(763) constant left operand to ? (Code Generator)

The left operand to a conditional operator? is constant, thus the result of the tertiary operator?:
will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

460

Error and Warning Messages

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in
the range of possible values for that expression, e.g.:

unsigned char c;
if(c > 300) /* woops -- how can this be true? */
close();

(765) degenerate unsigned comparison (Code Generator)

There is a comparison of anunsigned value with zero, which will always be true or false, e.g.:

unsigned char c;
if(c >= 0)

will always be true, because anunsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of asigned value with the most negative value possible for this type, such
that the comparison will always be true or false, e.g.:

char c;
if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are
comparing anunsigned number with a negative value, or comparing a variable with a value greater
than the largest number it can represent, e.g.:

unsigned int a;
if(a == -10) /* if a is unsigned, how can it be -10? */
b = 9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

461

Error and Warning Messages

(770) insufficient memory for macro definition (Assembler)

There is not sufficient memory to store a macro definition.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-
mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files
nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(778) write error on object file (Assembler)

An error was reported when the assembler was attempting to write an object file. This probably
means there is not enough disk space.

(779) bad relocation type 0x* (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(780) too many psects (Assembler)

There are too many psects defined! Boy, what a program!

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

462

Error and Warning Messages

(783) "with=" flags are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no
hierarchy. Thewith flag is an attribute of a psect and indicates that this psect must be placed in the
same memory page as the specified psect.

Remove awith flag from one of the psect declarations. Such an assembler declaration may look
like:

psect my_text,local,class=CODE,with=basecode

which will define a psect calledmy_text and place this in the same page as the psectbasecode.

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of
2000 temporary labels.

(787) copyexpr: can’t handle v_rtype = * (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character ("*") in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) EOF inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

(791) EOF inside macro definition (Assembler)

End-of-file was encountered while processing a macro definition. This means there is a missing
ENDM directive, e.g.:

unterm MACRO
mov r0, #55
mov [r1], r0 ; where is the ENDM?

; end of file

463

Error and Warning Messages

(793) unterminated macro arg (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other
malformed numbers.

(796) local illegal outside macros (Assembler)

TheLOCAL directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directiveLOCAL may not include any of the formal parameters to the
macro, e.g.:

mmm macro a1
move r0, #a1
LOCAL a1 ; woops -- the macro parameter cannot be used with local

ENDM

(799) rept argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */
move r0, [r1]++

endm

(800) undefined symbol * (Assembler)

The named symbol is not defined in this module, and has not been specifiedGLOBAL.

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

464

Error and Warning Messages

(802) invalid address after "end" directive (Assembler)

The start address of the program which is specified after the assemblerEND directive must be a label
in the current file.

(803) undefined temporary label (Assembler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

(808) add_reloc - bad size (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode * (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(810) unknown op in emasm(): * (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(812) unknown op * in emobj (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(813) unknown op * in size_psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

(829) unrecognized line in chipinfo file at line * (Assembler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support
if the INI has not been edited.

465

Error and Warning Messages

(832) empty chip info file * (Assembler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-
TECH Support with details.

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted
listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

(835) form length must be >= 15 (Assembler)

The form length specified using the-Flength option must be at least 15 lines. Setting this length
to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(838) refc == 0 in decref (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably
due to bizarre use of macros or conditional assembly.

(842) bad bit number (Assembler, Optimiser)

A bit number must be an absolute expression in the range 0-7.

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

466

Error and Warning Messages

(845) multiply defined symbol * (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have anunderscoreprepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must
be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form
of operands for this instruction.

(854) DS argument must be a positive constant (Assembler)

The argument to theDS assembler directive must be a positive constant, e.g.:

DS -3 ; you cannot reserve a negative number of bytes

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global
move r0, r1

; elsewhere:
psect text,local,class=CODE
move r2, r4

Theglobal flag is the default for a psect if its scope is not explicitly stated.

467

Error and Warning Messages

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

(864) SIZE= must specify a positive constant (Assembler)

The parameter to thePSECT assembler directive’ssize option must be a positive constant number,
e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect size redefined (Assembler)

Thesize flag to thePSECT assembler directive is different from a previousPSECT directive, e.g.:

psect spdata,class=RAM,size=400
; elsewhere:
psect spdata,class=RAM,size=500

(867) psect reloc redefined (Assembler)

Thereloc flag to thePSECT assembler directive is different from a previousPSECT directive, e.g.:

psect spdata,class=RAM,reloc=4
; elsewhere:
psect spdata,class=RAM,reloc=8

(868) DELTA= must specify a positive constant (Assembler)

The parameter to thePSECT assembler directive’sDELTA option must be a positive constant number,
e.g.:

PSECT text,class=CODE,delta=-2 ; a negative delta value does not make sense

(871) SPACE= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’sspace option must be a positive constant number,
e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

468

Error and Warning Messages

(872) psect space redefined (Assembler)

Thespace flag to thePSECT assembler directive is different from a previousPSECT directive, e.g.:

psect spdata,class=RAM,space=0
; elsewhere:
psect spdata,class=RAM,space=1

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater
than one character or none at all. An assembler specific example:

mov r0, #’12’ ; ’12’ specifies two characters

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(906) bad * memory option specification (Driver)

The arguments to the memory option (e.g.--RAM) were badly formed, e.g.:

--RAM=0-

The high address is missing. Maybe you meant:

--RAM=0-1fffh

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

(916) can’t allocate memory for arguments(Preprocessor, Parser, Code generator, Assembler)

The compiler could not allocate any more memory when trying to read in command-line arguments.

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

469

Error and Warning Messages

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(921) can’t open chipinfo file * (Driver, Assembler)

The chipinfo file could not be opened. This file normally resides in theLIB directory of the compiler
distribution. If driving the assembler directly (without the command line driver) ensure that the
option to location this file correctly specifies the path, otherwise contact HI-TECH Support with
details.

(941) bad * assignment; USAGE: * (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message
and ensure that that the option has been formed correctly and completely.

(942) unexpected character on line * of file * (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,
an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)
and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)

Sources to Hexmate request differing data to be stored to the same address. To force one data source
to override the other, use the ’+’ specifier. If the two named sources of conflict are the same source,
then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)

The range for this checksum calculation contained a value that could not be resolved. This can
happen if the checksum result was to be stored within the address range of the checksum calculation.

(948) checksum result width must be between 1 and 4 bytes (Hexmate)

The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.
Check the parameters to the -CKSUM option.

470

Error and Warning Messages

(949) start of checksum range must be less than end of range (Hexmate)

The -CKSUM option has been given a range where the start is greater than the end. The parameters
may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)

The -FILL option has been given a range where the start is greater than the end. The parameters may
be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)

Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no
sub-option to list all options.

(954) incomplete -O option; no file specified (Hexmate)

The output filename option did not contain a filename. A filename must follow -O. Make sure the
filename and -O are not separated by a space.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)

The serial number being stored was out of range. Ensure that the serial number can be stored in the
number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)

Too many file arguments have been used. Try merging these files in several stages rather than in one
command.

(960) unexpected record type(*) on line * of “*” (Hexmate)

Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid
record types.

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source
using the ’+’ specifier store data at the same address. The actual data stored there may not be what
you expect.

471

Error and Warning Messages

(963) checksum range includes voids or unspecified memory locations (Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from
the compile-time checksum due to gaps/unused byes within the address range that the checksum is
calculated over. Filling unused locations with a known value will correct this.

(966) no END record for HEX file “*” (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition: * (from line *) (Parser)

The indicatedstatic function was never called in the module being compiled. Being static, the
function cannot be called from other modules so this warning imples the function is never used.
Either the function is redundant, or the code that was meant to call it was excluded from compilation
or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

(972) only modifiers h and l valid with this format (Parser)

Only modifiersh (short) andl (long) are legal with thisprintf format specifier.

(973) only modifier l valid with this format (Parser)

The only modifier that is legal with this format isl (for long).

472

Error and Warning Messages

(974) type modifier already specified (Parser)

This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) this is an enum (Parser)

This identifier following astruct or union keyword is already the tag for an enumerated type, and
thus should only follow the keywordenum, e.g.:

enum IN {ONE=1, TWO};
struct IN { /* woops -- IN is already defined */
int a, b;

};

(979) this is a struct (Parser)

This identifier following aunion or enum keyword is already the tag for a structure, and thus should
only follow the keywordstruct, e.g.:

struct IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(980) this is a union (Parser)

This identifier following astruct or enum keyword is already the tag for aunion, and thus should
only follow the keywordunion, e.g.:

union IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

473

Error and Warning Messages

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data is a structure, not a pointer to a structure */

(982) nxtuse(): unknown op: * (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;
char a; /* woops -- what is the correct type? */

(985) qualifiers redeclared (Parser)

This function has different qualifiers in different declarations.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of
the same function.

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the-C option has been used to specify that a
binary output file is to be created that is mapped to this address. This would mean code from this
module would have to be placed before the beginning of the file! Check for missing psect directives
in assembler files.

(990) modulus by zero in #if, zero result assumed (Preprocessor)

A modulus operation in a#if expression has a zero divisor. The result has been assumed to be zero,
e.g.:

474

Error and Warning Messages

#define ZERO 0
#if FOO%ZERO /* this will have an assumed result of 0 */
#define INTERESTING

#endif

(991) integer expression required (Parser)

In anenum declaration, values may be assigned to the members, but the expression must evaluate to
a constant of typeint, e.g.:

enum { one = 1, two, about_three = 3.12 }; /* no non-int values allowed */

(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1198) too many “*” specifications; * maximum (Hexmate)

This option has been specified too many times. If possible, try performing these operations over
several command lines.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)

All find, replace and mask attributes in this option must be of the same byte width. Check the
parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)
will result in an error, but masking with 00FFh (2 bytes) will be Ok.

(1202) unknown format requested in -FORMAT: * (Hexmate)

An unknown or unsupported INHX format has been requested. Refer to documentation for supported
INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading
zero was omitted. For example the value Fh contains only four bits of significant data and is not a
whole byte. The value 0Fh contains eight bits of significant data and is a whole byte.

475

Error and Warning Messages

(1204) * value must be between 1 and * bytes long (Hexmate)

An illegal legth of data was given to this option. The value provided to this option exceeds the
maximum or minimum bounds required by this option.

(1212) Found * (*h) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

can’t create cross reference file * (Assembler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the
file’s pathname is correct.

couldn’t create error file: * (Driver)

The error file specified after the-Efile or -E+file options could not be opened. Check to ensure
that the file or directory is valid and that has read only access.

duplicate arch for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate lib for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multipleLIB values. Only oneLIB value is allowed.
If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate romsize for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate sparebit for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

476

Error and Warning Messages

duplicate * for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple values for a field. Only one value is allowed
per chip. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate zeroreg for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

no arg to -o (Assembler)

The assembler requires that an output file name argument be supplied after the-O option. No space
should be left between the-O and the filename.

psect * not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a-p option.
For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

absolute expression required (Assembler)

An absolute expression is required as an argument to theIF assembler directive.

bad -A option: * (Driver)

The format of a-A option to shift the ROM image was not correct. The-A should be immediately
followed by a valid hex number, e.g.:

-A

What is the offset? Maybe you meant:

-A200See Section 13.7.2 for more details regarding this option.

bad bit address (Assembler, Optimiser)

The address supplied is not a bit-addressable portion of the XA. Bit addressable portions include the
registers R0 to R15, direct RAM from 20h to 3Fh, and the on-chip SFRs from 400h to 43Fh.

477

Error and Warning Messages

bad bit expression (Optimiser)

There is a bad bit expression in the assembler file.

bad fixup value (Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad operand (Optimiser)

This operand is invalid. Check the syntax.

bad operand to SEG (Assembler, Optimiser)

This can happen if you try to take the segment part of something that is already a segment address.

bit number not absolute (Optimiser)

A bit number must be an absolute number in the range 0-7.

bit range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. This error relates to checks carried on a bit addresses. If there is no hand-written assembler
code in this program, then this may be an internal compiler error and you should contact HI-TECH
support with details of the code that generated this error. Other causes are numerous.

can’t have arrays of bits (Code Generator)

You can’t have an array of bits, because bits can’t be indexed.

can’t have pointer to bit (Code Generator)

Bit variables as implemented in the 8051 compiler are not addressable via pointers, so a pointer to a
bit is not allowed.

478

Error and Warning Messages

can’t open include file * (Assembler)

The named assembler include file could not be opened. Confirm the spelling and path of the file
specified in theINCLUDE directive, e.g.:

INCLUDE “misspilt.h” ; is the filename correct?

chip name * not found in chipinfo file (Driver)

The chip type specified on the command line was not found in the chipinfo INI file. The compiler
doesn’t know how to compile for this chip. If this is a device not yet supported by the compiler, you
might be able to add the memory specifications to the chipinfo file and try again.

def[bmsf] in text psect (Optimiser)

The assembler file supplied to the optimizer is invalid.

delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using thed key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

direct range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. If there is no hand-written assembler code in this program, then this may be an internal
compiler error and you should contact HI-TECH support with details of the code that generated this
error. Other causes are numerous.

duplicate banks for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple BANKS values. Only one BANKS value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

479

Error and Warning Messages

end statement inside include file or macro (Assembler)

An END statement was found inside an include file or a macro.

expression error (Assembler, Optimiser)

There is a syntax error in this expression.

flag * unknown (Assembler)

This option used on aPSECT directive is unknown to the assembler.

floating number expected (Assembler)

The arguments to theDEFF pseudo-op must be valid floating point numbers.

function’s local data too large (Code Generator)

The size of the stack frame for this function is greater than that allowable. The size is limited by the
size of the internal RAM on the 8051.

garbage after operands (Assembler)

There is something on this line after the operands other than a comment. This could indicate an
operand error.

garbage on end of line (Assembler)

There were non-blank and non-comment characters after the end of the operands for this instruction.
Note that a comment must be started with a semicolon.

identifier expected (Parser)

Inside the braces of anenum declaration should be a comma-separated list of identifiers, e.g.:

enum { 1, 2}; /* woops -- maybe you mean enum { one = 1, two }; */

incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

480

Error and Warning Messages

incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

invalid bit address: * ? (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

invalid qualifier combination on * (Code Generator)

This qualifier combination is illegal, perhaps because it is contradictory.

label not followed by : (Optimiser)

The optimizer has encountered a syntax error in its input.

library file names should have .lib extension: * (Libr)

Use the.lib extension when specifying a library filename.

line too long (Optimiser)

This line is too long. It will not fit into the compiler’s internal buffers. It would require a line over
1000 characters long to do this, so it would normally only occur as a result of macro expansion.

module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean
that part of the code was inadvertently removed or commented.

no RAM areas defined (Driver)

The-RAM options was invoked but no valid bank address ranges were present.

no ROM banks defined (Driver)

The-ROM options was invoked but no valid bank address ranges were present.

oops! -ve number of nops required! (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

481

Error and Warning Messages

phase error in macro args (Assembler)

The assembler has detected a difference in the definition of a symbol on the first and a subsequent
pass.

psect limit redefined (Assembler)

The psect limit has already been defined using the psectlimit flag elsewhere, e.g.:

psect text,class=CODE,limit=1ffh
move r0, r1

; elsewhere:
psect text,class=CODE,limit=2ffh

move r2, r4

RAM area * low bound greater than high bound (Driver)

An additional memory bank has been defined which has a lower address bound greater than the high
address bound.

RAM area * out of range for chip * (Driver)

An additional memory bank has been defined which does not fall into the available valid ranges for
this chip.

replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using ther key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.

reserved * area and reserved ICD * range overlap in region * (Driver)

The -ICD option has been used which reserves memory locations for the debugger. Additional
memory areas have been reserved with the-RESROM or -RESRAM option and these address ranges
overlap those required by the ICD.

482

Error and Warning Messages

restore without matching save (Assembler)

The RESTORE assembler control directive has been used without a preceding SAVE assembler
control directive.

save/restore too deep (Assembler)

Too manySAVE assembler control directives have been used.

symbol has been declared extern (Assembler)

A symbol has been declared in the current module, but has previously been declared extern. A
symbol cannot be both local and extern, e.g.:

extern _foo ; this shouldn’t be specified if the symbol is defined here
foo:
goto start

too many object files (Driver)

A maximum of 128 object files may be passed to the linker. The driver exceeded this amount when
generating the command line for the linker.

too many operands (Optimiser)

There are too many operands to this instruction.

too many symbols in * (Optimiser)

There are too many symbols in the specified function. Reduce the size of the function.

undefined public symbol * (Assembler)

A symbol has been declaredPUBLIC but has not been defined.anywhere in the module.

unknown directive (Assembler)

An unknown assembler control directive was used.

483

Error and Warning Messages

unknown psect (Optimiser)

The assembler file read by the optimizer has an unknown psect.

too many common lines in chipinfo file for * (Assembler, Driver)

The chipinfo file contains a processor section with too manyCOMMON fields. Only oneCOMMON field
is allowed per processor.

484

Appendix C

Chip information

Couldn’t open input file: ../../lib/8051-c.ini

485

Chip information

486

Appendix D

Regular Expressions

Expression Matches
Characters
x The characterx
\\ The backslash character
\0n The character with octal value 0n (0 <= n <= 7)
\0nn The character with octal value 0nn (0 <= n <= 7)
\0mnn The character with octal value 0mnn(0 <= m <= 3, 0 <=n <= 7)
\xhh The character with hexadecimal value 0xhh
\uhhhh The character with hexadecimal value 0xhhhh
\t The tab character (’\x09’)
\n The newline (line feed) character (’\x0A’)
\r The carriage-return character (’\x0D’)
\f The form-feed character (’\x0C’)
\a The alert (bell) character (’\x07’)
\e The escape character (’\x1B’)
\cx The control character corresponding tox
Character classes
[abc] a, b, or c (simple class)
[^abc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
continued. . .

487

Regular Expressions

Expression Matches
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)
[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)
Predefined character classes
. Any character (may or may not match line terminators)
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]
POSIX character classes (US-ASCII only)
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]
\p{ASCII} All ASCII:[\x00-\x7F]
\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~
\p{Graph} A visible character: [\p{Alnum}\p{Punct}]
\p{Print} A printable character: [\p{Graph}]
\p{Blank} A space or a tab: [\t]
\p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [\t\n\x0B\f\r]
Classes for Unicode blocks and categories
\p{InGreek} A character in the Greek block (simple block)
\p{Lu} An uppercase letter (simple category)
\p{Sc} A currency symbol
\P{InGreek} Any character except one in the Greek block (negation)
[\p{L}&&[^\p{Lu}]] Any letter except an uppercase letter (subtraction)
Boundary matchers
^ The beginning of a line
$ The end of a line
\b A word boundary
continued. . .

488

Regular Expressions

Expression Matches
\B A non-word boundary
\A The beginning of the input
\G The end of the previous match
\Z The end of the input but for the final terminator, if any
\z The end of the input
Greedy quantifiers
X? X, once or not at all
X* X, zero or more times
X+ X, one or more times
X{ n} X, exactlyn times
X(n,} X, at leastn times
X{ n,m} X, at leastn but not more thanm times
Reluctant quantifiers
X?? X, once or not at all
X*? X, zero or more times
X+? X, one or more times
X{ n}? X, exactlyn times
X(n,}? X, at leastn times
X{ n,m}? X, at leastn but not more thanm times
Possessive quantifiers
X?+ X, once or not at all
X*+ X, zero or more times
X++ X, one or more times
X{ n}+ X, exactlyn times
X(n,}+ X, at leastn times
X{ n,m}+ X, at leastn but not more thanm times
Logical operators
XY X followed byY
X|Y EitherX or Y
(X) X, as a capturing group
Back references
\n Whatever thenth capturing group matched
Quotation
\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
continued. . .

489

Regular Expressions

Expression Matches
\E Nothing, but ends quoting started by \Q
Special constructs (non-capturing)
(?:X) X, as a non-capturing group
(?idmsux-idmsux) Nothing, but turns match flags on - off
(?idmsux-idmsux:X) X, as a non-capturing group with the given flags on - off
(?=X) X, via zero-width positive lookahead
(?!X) X, via zero-width negative lookahead
(?<=X) X, via zero-width positive lookbehind
(?<!X) X, via zero-width negative lookbehind
(?>X) X, as an independent, non-capturing group

490

Index

. psect address symbol,248

.cmd files,257

.crf files,146

.ini files,161

.lib files,158, 255, 257

.lnk files,252

.lst files,145

.obj files,248, 257

.pro files,151

.sym files,247, 250
/ psect address symbol,248
<conio.h>,217
<stdio.h>,217
?_xxxx type symbols,253
?a_xxxx type symbols,253
#define,139
#pragma directives,209
#undef,144
& symbol,234
80C751,220

abs function,274
absolute object files,248
acos function,275
adding files to project,29
adding workspace tab,27
addresses

link, 243, 248
load,243, 248

alignment

psects,229
All code button,102
ANSI standard

conformance,155
as files

adding to project,29, 39
compiling,40
creating new,39
opening,48
properties,40

as51
assembler,219
assembler controls,237

as51 control
COND,238
EJECT,238
GEN,238
INCLUDE, 239
LIST, 239
PAGELENGTH,237
PAGEWIDTH,238
RESTORE,239
SAVE, 239
TITLE, 239
XREF,238

as51 directives
ABS psect type,228
BIT psect type,228
DB, 230
DF, 230

491

INDEX INDEX

DS,230
DW, 230
ELSE,233
END, 226
ENDIF, 233
ENDM, 234
EQU,230
FNADDR, 231
FNARG,231
FNCALL, 231
FNCONF,232
FNINDIR, 232
FNROOT,233
FNSIZE,233
GLOBAL psect type,228
IF, 233
IRP,236
IRPC,236
LOCAL, 234
LOCAL psect type,228
MACRO, 234
NUL, 234
OVRLD psect type,228
PSECT,226
psect flags

reloc,229
space,229

PURE psect type,228
REPT,235
SET,230
SIGNAT, 216, 237
SIZE psect flag,228

asctime function,276
asin function,278
ASPIC18 directives

fnbreak,231
assembler

accessing C objects,206
generating from C,144

in-line, 206
assembler files

preprocessing,151
assembler listings,145
assembly language functions,205
assembly view,54
assert function,279
atan function,280
atof function,281
atoi function,282
atol function,283
Avocet symbol file,251

bases
C source,162

batch files,148
bcall routine,190
biased exponent,167
big endian format,267
binary constants

C, 162
binary files,214
bit fields,167
boolean types,162
bootloader,153, 265, 269

compiling code for,146
breakpoints

disabling,30, 31
removing,30
temporary,31

bsearch function,284
bss psect,154, 160, 242

clearing,242
build area,42
build log,44
build menu,29

clean,30
make,29
make all,29

492

INDEX INDEX

build results,42
build toolbar,33

c files
adding to project,29, 38
create new,47
creating new,38
opening,48
properties,39

c source step,30, 35
C-Wiz, 95

accessing generated code,105
advanced options,99
All code button,102
Cancel button,107
closing,107
comments,101
common code,102, 104
configuration panel,98
configuring peripherals,100
Core module,100
Current module code button,102
deactivated,95
deactivated peripheral,100
deactivated settings,101, 106
dependency handling,107

disabling,99, 107
enabling,99, 107
toggling,99, 107

dialog,95
advanced options,99
configuration panel,98
control panel,98
generated code display,98
messaging panel,98, 106, 107
peripheral selection panel,98

executing generated code,105
fixing peripheral conflicts,107
floating text,101

generated code display,98
generated code sample,103
init function,103
init function prototype,105
interrupt functions,105
interrupt vectoring,105
messages,98, 106, 107
messaging panel,98, 106, 107
multiplexed pins,106
Ok button,107
overriding message,106
peripheral conflicts,106, 107
peripheral selection panel,98
peripheral settings,100
running generated code,105
sample code,103
saving files,98
selecting peripherals,98, 99
starting,95
surrendering message,107
unavailable,95
unavailable settings,101, 106
understanding messages,106, 107
unsupported microcontrollers,95
viewing generated code,101

C51
command format,135
file types,135
long command lines,136
options,136
predefined macros,209
version number,155

C51 console I/O, configuring,217
C51 options

–ASMLIST, 145
–BANK, 145
–CHAR=type,145, 165, 196
–CHIP=processor,146
–CHIPINFO,146

493

INDEX INDEX

–CODEOFFSET,146
–CR=file,146
–ERRFORMAT=format,147
–GETOPTION=app,file,148
–HELP,148
–IDE=type,148
–INTRAM, 149
–MEMMAP, 149
–NOEXEC,149
–NOPS,149
–NVRAM, 150
–OPT=type,150
–OUTDIR=directory,150
–OUTPUT=type,150, 214
–PRE,151
–PROTO,151
–RAM=lo-hi, 152
–ROM=lo-hi,153
–RUNTIME=type,154, 159
–SCANDEP,155
–SETOPTION=app,file,155
–STRICT,155, 198
–SUMMARY=type,155, 215
–VER,155
–WARN=level,156
–WARNFORMAT=format,147
-B, 138
-C, 139, 214
-D, 139
-Efile, 140
-G, 141, 157
-H, 157
-I, 141
-L, 142, 212
-M, 143
-Nsize,143
-O, 143, 214
-P,143
-S,144, 214, 216

-U, 144
-V, 144
-X, 144
-q, 144

call graph,199, 253
caret position,35
ceil function,286
cgets function,287
change_vector function,330
Chapter Title

C-Wiz - The Code Wizard,95
char types,145
char variables,145
character set,221
checksum endianism,267
checksum specifications,260
checksums,265, 267
chipinfo files,161
classes,245

address ranges,245
boundary argument,250
upper address limit,250

Clear messages button,98
close files,49
close view,27
closing project,28, 88
closing the code wizard,107
code

qualifier,213
code wizard,95

accessing generated code,105
advanced options,99
All code button,102
Cancel button,107
closing,107
comments,101
common code,102, 104
configuration panel,98
configuring peripherals,100

494

INDEX INDEX

control panel,98
Core module,100
Current module code button,102
deactivated,95
deactivated peripheral,100
deactivated settings,101, 106
dependency handling,107

disabling,99, 107
enabling,99, 107
toggling,99, 107

dialog,95
advanced options,99
configuration panel,98
control panel,98
generated code display,98
messaging panel,98, 106, 107
peripheral selection panel,98

executing generated code,105
fixing peripheral conflicts,107
floating text,101
generated code display,98
generated code sample,103
init function,103
init function prototype,105
interrupt functions,105
interrupt vectoring,105
messages,98, 106, 107
messaging panel,98, 106, 107
multiplexed pins,106
Ok button,107
overriding message,106
peripheral conflicts,106, 107
peripheral selection panel,98
peripheral settings,100
running generated code,105
sample code,103
saving files,98
selecting peripherals,98, 99
starting,95

surrendering message,107
unavailable,95
unavailable settings,101, 106
understanding messages,106, 107
unsupported microcontrollers,95
viewing generated code,101

command line driver,135
command lines

HLINK, long command lines,252
long,136, 257
verbose option,144

comments in generated code,101
common code,104
compilation

compile,125
compiler options

change,90
file specific,39, 40, 128
global,38, 128

errors and warnings
build log,44, 130
error log,42
memory usage,43, 129
psect usage,44, 130

link, 126
make,126
make all,128

compiled stack,253
compiler

options,136
compiler errors

format,147
compiler options

change,29, 90
displaying,38

compiler results,44
compiling

as files,40
current file,30

495

INDEX INDEX

project,29
to assembler file,144
to object file,139

compiling source files,125
concatenation

macro arguments,234
COND,238
configuring peripherals,100
constants

C specifiers,162
context saving

in-line assembly,213
copy,26, 33
copyright notice,144
Core,100
Core module,100
cos function,289
cosh function,290
cputs function,291
create new editor files,47
creating

libraries,256
creating new project,28, 80
CREF application,260
CREF option

-Fprefix,261
-Hheading,261
-Llen, 261
-Ooutfile,261
-Pwidth,262
-Sstoplist,262
-Xprefix, 262

CREF options,260
cromwell application,262
cromwell option

-B, 264
-C, 264
-D, 264
-E, 264

-F, 264
-Ikey, 264
-L, 264
-M, 265
-Okey,264
-Pname,262
-V, 265

cromwell options,262
cross reference

generating,260
list utility, 260

cross reference listings,146
excluding header symbols,261
excluding symbols,262
headers,261
output name,261
page length,261
page width,262

ctime function,292
Current module code button,102
cursor position

editor caret,35
cut,26, 33

data
types,161

data memory view,59
data psect,154, 160, 242

copying,243
data types

floating point,166
deactivated peripheral,100
debug information,141

assembler,141
debugger,35

animate,30, 35, 133
assembler step,30, 35
assembly step,133
breakpoints,45

496

INDEX INDEX

disable,50
enable,50
remove,49
set,49, 50

c step,30, 35
c-step,133
change,85, 93
changing,29
load hex file,31
program execution,133
reset,30, 34, 134
run,30, 34, 133
simulator,134
stop,30

debugger menu
animate,30
assembler step,30
c step,30
load hex file,31
reset,30
run,30
stop,30

debugger status,36
debugger toolbar,34
debugger views,54
debugging

breakpoint management,132
hex file loading,131

default libraries,136
default output file,118

properties,38
delta psect flag,245
dependencies,155
dependency files,91
device selection,146
DI macro,293
div function,295

edit menu

close view,27
copy,26
cut,26
find, 26, 27
find again,27
paste,26
redo,26
undo,26

editor,45
add current file to project,29
add files to project,29
breakpoints,45

disable,50
enable,50
remove,49
set,49, 50

close file,49
copy,26, 33
create new file,25, 47
cut,26, 33
find, 26, 27
find again,27
line numbers,47
open file,48
paste,26
print file, 49
redo,26, 33
save file,48
syntax highlighting,49
undo,26, 33

editor toolbar,32
EI macro,293
EJECT,238
embedding serial numbers,270
ENDM, 234
enhanced symbol files,247
environment variable

HTC_ERR_FORMAT,147
HTC_WARN_FORMAT,147

497

INDEX INDEX

error files
creating,246

error log,42
error messages,140

formatting,147
LIBR, 258

eval_poly function,296
execute program memory,30, 34
exit hitide,26
exp function,297
exponent,166
external data memory,179
extram,145

fabs function,298
file

hex,214
file formats

assembler listing,145
Avocet symbol,251
command,257
creating with cromwell,262
cross reference,260
cross reference listings,146
dependency,155
DOS executable,248
enhanced symbol,247
library, 255, 257
link, 252
object,139, 248, 257
preprocessor,151
prototype,151
specifying,150
symbol,247
TOS executable,248

file menu
exit, 26
new file,25
open,25

open recently opened file,25
preferences,26
print, 26
save all,26
save file,25
save file as,26

file properties,90
as files,40
c files,39
library files,41
object files,41
output file,38

file specific options
as files,40

Files
importing from code wizard,98, 103
saved from code wizard,98
saved from peripheral wizard,103

files
adding to project,29, 38, 39, 88
close,49
create new,25, 47
new,32
open,25, 32
print, 26, 49
project files,80
remove as file from project,40
remove from,90
remove library file from project,41
remove object file from project,40
save,25, 32, 48
save all,26, 32
save as,26

fill memory,265
filling unused memory,267
find, 26, 27
find again,27
fixing peripheral conflicts,107
floating point

498

INDEX INDEX

IEEE,222
floating point data types,166

biased exponent,167
exponent,167
format,166
mantissa,166

floor function,299
fnbreak directive,231
fnconf directive,254
fnroot directive,254
frexp function,300
function pointers,177
functions

near, basenear,190

GEN,238
getch function,301
getch(),217
getchar function,302
getche function,301
getche(),217
gets function,303
gets(),217
global options,29

change,90
displaying,38

global symbols,242
gmtime function,304

hardware
initialization,161

header files
problems in,155

help menu
about,31

hex file
load into debugger,31

HEX file format,269
HEX file map,270

hex files
address map,265
calculating check sums,265
converting to other Intel formats,265
detecting instruction sequences,265
embedding serial numbers,265
filling unused memory,265
find and replacing instructions,265
merging multiple,265
multiple,246
record length,265, 269

hexmate application,265
hexmate option

+prefix,267
-CK, 267
-FILL, 267, 269
-FIND, 268
-FIND...,REPLACE,268
-FORMAT, 269
-HELP,269
-LOGFILE, 270
-O, 270
-SERIAL, 270
-STRING,270

hexmate options,266
hide build view,27
hide project view,27
highlighting syntax,49
HLINK options,243

-Aclass=low-high,245
-Cpsect=class,245
-Dsymfile,246
-Eerrfile,246
-F, 246
-Gspec,246
-H+symfile,247
-Hsymfile,247
-Jerrcount,247
-K, 247

499

INDEX INDEX

-L, 248
-LM, 248
-Mmapfile,248
-N, 248
-Nc, 248
-Ns,248
-Ooutfile,248
-Pspec,248
-Qprocessor,250
-Sclass=limit[,bound],250
-Usymbol,251
-Vavmap,251
-Wnum,251
-X, 251
-Z, 251

HTC_ERR_FORMAT,147
HTC_WARN_FORMAT,147

identifier length,143
IEEE floating point,222
IEEE floating point format,166
Import source file to project,103, 107
in-line assembly,206
INCLUDE, 239
INHX32, 265, 269
INHX8M, 265, 269
init function prototype,105
init_uart(),217
inline assembler code,206
Intel hex,214
interrupt functions,197

calling from main line code,198
context saving,213

interrupt level,198
interrupt_level directive,198
interrupts,196, 200

<intrpt.h>,200
CHANGE_VECTOR,200–202
di(), 200

ei(), 200
generating functions in code wizard,105
handling in C,196
RAM_VECTOR,200–202
READ_RAM_VECTOR,200, 201, 203
ROM_VECTOR,200
set_vector,200
vectoring in code wizard,105

isalnum function,306
isalpha function,306
isdigit function,306
islower function,306

Japanese character handling,209
JIS character handling,209
jis pragma directive,209

kbhit(), 217
keyword

bank2,198
bank3,198
code,168, 173
const,168
extern,205
far, 168
idata,168, 170
interrupt,197
near,168, 169
volatile,168

keywords
disabling non-ANSI,155

ldexp function,308
ldiv function,309
LIBR, 255, 256

command line arguments,256
error messages,258
listing format,258
long command lines,257
module order,258

500

INDEX INDEX

librarian,255
command files,257
command line arguments,256, 257
error messages,258
listing format,258
long command lines,257
module order,258

Libraries,160
libraries

adding files to,256
creating,256
default,136
deleting files from,257
excluding,154
format of,255
linking, 251
listing modules in,257
module order,258
naming convention,158
scanning additional,142
used in executable,248

library
difference between object file,255
manager,255

library files
adding to project,41
properties,41
standard library file,41

library function
abs,274
acos,275
asctime,276
asin,278
assert,279
atan,280
atof,281
atoi,282
atol,283
bsearch,284

ceil, 286
cgets,287
change_vector,330
cos,289
cosh,290
cputs,291
ctime,292
div, 295
eval_poly,296
exp,297
fabs,298
floor, 299
frexp,300
getch,301
getchar,302
getche,301
gets,303
gmtime,304
isalnum,306
isalpha,306
isdigit, 306
islower,306
ldexp,308
ldiv, 309
localtime,310
log, 312
log10,312
longjmp,313
memcmp,315
modf,317
persist_check,318
persist_validate,318
pow,320
printf, 321
putch,324
putchar,325
puts,327
qsort,328
ram_vector,330

501

INDEX INDEX

rand,332
read_ram_vector,330
realloc,334
rom_vector,336
scanf,337
set_vector,341
setjmp,339
sin,343
sinh,290
sprintf,344
sqrt,345
srand,346
strcat,347
strchr,348
strcmp,350
strcpy,352
strcspn,353
strdup,354
strichr,348
stricmp,350
stristr,365
strlen,355
strncat,356
strncmp,358
strncpy,360
strnicmp,358
strpbrk,362
strrchr,363
strrichr,363
strspn,364
strstr,365
strtok,366
tan,368
tanh,290
time,369
toascii,371
tolower,371
toupper,371
ungetch,372

va_arg,373
va_end,373
va_start,373
vprintf, 321
vscanf,337
vsprintf,344
xtoi, 375

library macro
DI, 293
EI, 293

line number
editor caret,35

link addresses,160, 243, 248
linker, 241

command files,251
command line arguments,243, 251
defined symbols,216
invoking,251
long command lines,251
options from C51,142
passes,255
symbols handled,242

linker errors
aborting,247
undefined symbols,247

linker option
-Aclass=low-high,245, 249
-Cpsect=class,245
-Dsymfile,246
-Eerrfile,246
-F, 246
-Gspec,246
-H+symfile,247
-Hsymfile,247
-I, 247
-Jerrcount,247
-K, 247
-L, 248
-LM, 248

502

INDEX INDEX

-Mmapfile,248
-N, 248
-Nc, 248
-Ns,248
-Ooutfile,248
-Pspec,248
-Qprocessor,250
-Sclass=limit[, bound],250
-Usymbol,251
-Vavmap,251
-Wnum,251
-X, 251
-Z, 251

linker options,243
numbers in,244

linking, 126
LIST, 239
list files

assembler,145
little endian format,267
load addresses,160, 243, 248
load hex file,31
LOCAL, 234
local psects,242
local symbols,144

suppressing,251
local watch view,69
localtime function,310
location counter,229
log function,312
LOG10 function,312
longjmp function,313

MACRO, 234
macro

invoke,237
macros

predefined,209
undefining,144

make project,29
making,126
mantissa,166
map files,248

call graphs,253
generating,143
processor selection,250
segments,252
symbol tables in,248
width of, 251

memcmp function,315
memory

reserving,152, 153
specifying,152, 153
specifying ranges,245
unused,248

memory model
huge,192
large,192
medium,192
small,192
specifying,138

memory summary,155
memoy usage,43
merging hex files,267
messages,98, 106, 107
modf function,317
modules

in library, 255
list format,258
order in library,258
used in executable,248

multiple hex files,246

names of pins,106
nojis pragma directive,209
numbers

in C source,162
in linker options,244

503

INDEX INDEX

object code, version number,248
object files,139

absolute,248
adding to project,40
properties,41
relocatable,241
standard object file,40
symbol only,246

OBJTOHEX,258
command line arguments,258

open
project file,87

open files,48
open project,28
open recent file,25
open recent project,28
opening files,25, 32
optimizing code,217
output directory

specifying,150
output file formats,248

specifying,150, 258
overlaid memory areas,247

package
changing,29

PAGELENGTH,237
PAGEWIDTH,238
paste,26
pening files,32
peripheral initialisation wizard,31
peripheral wizard,95

advanced options,99
control panel,98

peripherals
configuring,98, 100
conflicting resources,106
deactivated,100
default state,100

displaying settings,100
fixing conflicts,107
multiplexed pins,106
selecting in C-Wiz,99
settings,98, 100
shared pins,106
uninitialized,100

persist_check function,318
persist_validate function,318
Philips/Signetics 80C751,220
pin names,106
pointers,174

code,179
const,180
function,177
idata,177
near,177

pow function,320
powerup routine,136, 161
pragma directives,209

strings,213
predefined symbols

preprocessor,209
preferences,26
preprocessing,143

assembler files,143
preprocessor

macros,139
path,141

preprocessor directives,208
preprocessor symbols

predefined,209
print files,49
printf

format checking,209
printf function,321
printf(), 217
printf_check pragma directive,209
processor selection,146, 250

504

INDEX INDEX

processor selections,161
processors

adding new,161
program counter,36
project

adding files to,88
build, 29
change compiler,84
change debugger,93
change options,90
change toolsuite,91
close,28, 88
creating new,80
device package,83, 92
device selection,83
display options,38
filename,81
open existing project,28
open file,48
open from file,87
project wizard,80
rebuild,29
remove files from,90
save as,28
save to file,28
saving to file,88
toolsuite,82

project area,37
project files,80
project menu

add file to project,29
add files to project,29
change debugger,29
change package,29
change target,29
change toolsuite,29
close project,28
compile to object file,30
new project,28

open project,28
open recent project,28
project options,29
save project,28
save project as,28

project options,29
project resources area,37
project view,27
psect,224

bss,154, 160, 242
compiler generated,182, 193
data,154, 160, 242
usage map,44

PSECT directive flag
limit, 250

psect pragma directive,214
psects,242

alignment,229
basic kinds,242
class,245, 250
delta value of,245
differentiating ROM and RAM,229
linking, 241
listing, 155
local,242
renaming,214
specifying address ranges,249
specifying addresses,245, 248
user defined,214

pseudo-ops,226
putch function,324
putch(),217
putchar function,325
puts function,327
puts(),217

qsort function,328
qualifiers

code,213

505

INDEX INDEX

strings,213
quiet mode,144
quit hitide,26

radix specifiers
C source,162

ram_vector function,330
rand function,332
read_ram_vector function,330
realloc function,334
redirecting errors,140
redo last editor action,26, 33
reentrant function,181
Reference,244, 252
registers view,62
regsused pragma directive,213
RELOC,246, 248
reloc psect flag,229
relocatable

object files,241
relocation,241
relocation information

preserving,248
removing temporary files,30
renaming psects,214
replace,26, 27
reserving memory,152, 153
reset,34, 161

code executed after,161
reset debugger,30, 34
reset vector,161
RESTORE,239
RETI, 197
rom_vector function,336
run to cursor,31
runtime environment,154
runtime module,136
runtime startup

stack pointer,159

variable initialization,159
runtime startup code,158
runtime startup module,154

S1 format,214
SAVE, 239
save

editor files,48
project,28, 88

saving files,25, 32, 48
saving files from code wizard,103
scanf function,337
scanf(),217
search path

header files,141
segment selector,246
segments,246, 252
selecting peripherals,98, 99
serial numbers,270
set_vector function,341
setjmp function,339
show build view,27
show project view,27
signature checking,215
sin function,343
sinh function,290
source files,157
space psect flag,229
sprintf function,344
sqrt function,345
srand function,346
stack pointer,154, 159
standard toolbar,32
startup module,136, 154

clearing bss,242
data copying,243
debugging,141

status bar,35
stop debugger,30

506

INDEX INDEX

strcat function,347
strchr function,348
strcmp function,350
strcpy function,352
strcspn function,353
strdup function,354
strichr function,348
stricmp function,350
string,223
string literals,270
strings

qualifiers,213
storage location,270

strings pragma directive,213
stristr function,365
strlen function,355
strncat function,356
strncmp function,358
strncpy function,360
strnicmp function,358
strpbrk function,362
strrchr function,363
strrichr function,363
strspn function,364
strstr function,365
strtok function,366
structures,167
Symbol files

Avocet format,251
symbol files,141

enhanced,247
generating,247
local symbols in,251
old style,246
removing local symbols from,144
removing symbols from,250
source level,141

symbol tables,248, 251
sorting,248

symbols
global,242, 257
undefined,251

syntax highlighting,49

tab
add,7, 14
adding workspace,27
new,32
remove,7
rename,9
workspace,6

taget device
changing,29

tan function,368
tanh function,290
target device,36

changing,92
temporary breakpoints,31
temporary labels,223
time function,369
TITLE, 239
toascii function,371
tolower function,371
toolbar

animate button,35
assembler step button,35
c step button,35
copy button,33
cut button,33
new file button,32
new tab button,32
open file button,32
redo button,33
reset button,34
run button,34
save all button,32
save file button,32
split left/right button,32

507

INDEX INDEX

split top/bottom button,32
undo button,33

toolbars
hiding/showing,31
selecting toolbars,27

tools menu
peripheral wizard,31
setup user tools,31

toolsuite,79, 82
change,29, 91

toupper function,371
type modifiers

code,168
const,168
far, 168
idata,168
near,168
volatile,168

typographic conventions,1

undo last editor action,26, 33
ungetch function,372
unions,167
unused memory

filling, 265
user tools,31
utilities, 241

va_arg function,373
va_end function,373
va_start function,373
variable initialization,159
variable watch view,64
variables

absolute,182
accessing from assembler,206
floating point types,166
static,182
unique length of,143

vectors
reset,161

verbose,144
version number,155
view

adding workspace tab,14, 27
assembly,54
build area,42
build log,44
build view,27
close,14
close view,27
creating view,9
data memory,28, 33
editor,45
error log,42
executable memory,28, 33
focus,10
memory usage,43
project area,37
project resources area,37
project view,27
psect usage map,44
registers,28, 33
split, 11, 14, 27, 32
splitting,11
watch variables,28, 34
workspace area,6
workspace views,9

view menu
add tab,27
show/hide build view,27
show/hide project view,27
split view,27
toolbar items selection,27

viewing initialization code,98
Views

generated code,98
initialization code,98

508

INDEX INDEX

views
data memory,59
debugger,54
generated code,101
initialization code,101
registers,62
watch,64, 69

views toolbar,33
vprintf function,321
vscanf function,337
vsprintf function,344

warning level,156
setting,251

warnings
level displayed,156
suppressing,251

watch view,64, 69
wizards

C-Wiz, 95
code,95
peripheral,95

word boundaries,229
workspace area,6
workspace views,9

XREF,238
xtoi function,375

509

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Typographic conventions

	HI-TIDE Overview
	Layout Overview
	HI-TIDE Areas
	The Project and Build Areas
	The Workspace Area
	Adding a Workspace Tab
	Removing a Workspace Tab
	Renaming Workspace Tabs

	Workspace Views
	Displaying a View
	Focusing Views
	Splitting Views
	Closing Views
	View Popup Menu
	Changing Font And colour

	General Preferences
	General Preferences Dialog
	Project Tab
	Editor Tab

	Third-Party Tools
	Adding and Deleting Tools
	Tool Options
	Hiding and Showing Buttons

	HI-TIDE Menus and Toolbars
	Menus
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Build Menu
	Debugger Menu
	Tools Menu
	Help Menu

	Toolbars
	Hiding / Showing Toolbars
	Standard Tools Toolbar
	Editor Toolbar
	Build Toolbar
	Views Toolbar
	Tools Toolbar
	User Tools Toolbar
	Debugger Toolbar

	The Status Bar

	HI-TIDE Views
	The Project Views
	Files View
	Output File Popup Menu
	C Files Folder Popup Menu
	C File Popup Menu
	Assembler Files Folder Popup Menu
	Assembler File Popup Menu
	Object Files Folder
	Object Files
	Libraries Folder
	Library Files

	File Properties Dialog
	Code Samples View

	The Build Views
	Error Log View
	Memory Usage View
	Psect Usage View
	Build Log View

	The Editor View
	Editor Gutters
	Breakpoint Gutter
	Line Number Gutter

	Creating Editor Files
	Opening Editor Files
	Saving Editor Files
	Closing Editor Files
	Printing Editor Files
	Syntax Highlighting
	Editor Popup Menu
	Setting Source-Level Breakpoints
	Removing source-level Breakpoints
	Activating/Deactivating source-level Breakpoints
	Searching For Text
	Search Options

	The Debugger Views
	Disassembly View
	Disassembly View Layout
	Breakpoint Gutter
	Disassembly View Popup Menu
	Setting Assembly Level Breakpoints
	Removing Assembly Level Breakpoints
	Activating/Deactivating Assembly Level Breakpoints
	Displaying Program Counter Location
	Displaying C Source Code

	Data Memory View
	Data Memory View Layout
	Data Memory View Popup Menu
	Tracing Memory Usage
	Modifying Memory

	Registers View
	Registers View Layout
	Registers View Popup Menu
	Tracing Register Usage
	Modifying Memory

	Variable Watch View
	Variable Watch View Layout
	Variable Icons and Tree Representation
	Variable Watch View Popup Menu
	Adding and Removing Variables
	Modifying Variables

	Local Watch View
	Virtual I/O View
	Overview
	Virtual I/O View Popup Menu
	Adding Components
	Removing Component
	Component Properties
	Wiring Components
	Peripheral Components

	HI-TIDE Projects
	Toolsuites
	Project Information
	Creating A New Project
	Project wizard
	Project Filename
	Project Toolsuite
	Device Selection
	Device Package
	Compiler Selection
	Debugger Selection
	Project Source Files

	Managing Projects
	Opening Existing Projects
	Saving Projects
	Closing Projects

	Managing Project Source Files
	Adding Files To The Project
	Removing Files From The Project
	Changing Compiler Options
	File Properties
	Dependency Files (Header Files)

	Changing Project Settings
	Changing Toolsuite
	Changing Device
	Changing Device Package
	Changing Debugger

	C-Wiz --- The Code Wizard
	Starting the Code Wizard
	The 8051 Code Wizard Dialog
	Peripheral Selection Panel
	Configuration Panel
	Messaging Panel
	Generated Code Display
	Control Panel
	Advanced Options Dialog
	 Enable dependency handling
	Initialisation function name

	Selecting Peripherals
	Configuring Peripherals
	Viewing Generated Code
	Saving to Files
	Accessing the Initialization Code
	Generating Interrupt Service Routines
	Handling Shared Resources
	Closing the Code Wizard

	HI-TIDE Compiler Options
	Compiler Options
	Build options
	Warning Level
	Strip Local Symbols

	Global Optimization
	Enable Global Optimization
	Optimize For Speed / Space
	Level

	Assembler Optimization
	Enable Assembler Optimization

	Memory Model Settings
	Banking Options
	Debugging NOPs

	Preprocessor options
	Specify Include Paths
	Assembler Files
	Preprocess assembler files

	Define Preprocessor Symbols
	Undefine Preprocessor Symbols

	Memory options
	Program Memory Ranges
	Enable on chip ranges
	Enable included ranges
	Included Ranges
	Enable excluded ranges
	Excluded Ranges

	Data Memory Ranges
	Enable on chip ranges
	Enable included ranges
	Included Ranges
	Enable excluded ranges
	Excluded Ranges

	Internal RAM
	Non-volatile RAM

	Files options
	Output File Type
	Debug Information
	Generate assembler listing
	Generate map file

	Linker options
	Run-time Code Configuration
	Run-time Settings

	Vector Offset
	Additional Linker Options
	Enable additional linker options

	Advanced Linker Options
	Enable advanced linker options

	Language options
	Default Char Type
	Identifier Length
	ANSI Conformance
	Enable strict ANSI conformance

	HI-TIDE Compilation
	Compiling Project Files
	Compiling Source Files
	Linking
	Make
	Make All
	Individual Files

	Compiler Options
	Global Compiler Options
	File-Specific Compiler Options

	Build Results
	Error and Warnings
	Memory Usage
	Psect Usage
	Build Log

	HI-TIDE Debugging
	 Debugger Functions
	Debugger Initialization
	Breakpoints
	Breakpoint Restoration

	Program execution
	Run
	Animate
	Assembly Step
	C Step
	Reset

	8051 Debuggers
	Simulator

	C51 Command-line Driver
	Long Command Lines
	Default Libraries
	Standard Runtime Code
	C51 Compiler Options
	-B: Specify Memory Model
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--BANK: Specify Banking Options
	--CHAR=type: Make Char Type Signed or Unsigned
	--CHIP=processor: Define Processor
	--CHIPINFO: Display a List of Supported Processors
	--CODEOFFSET=address: Specify an Offset For Program Code
	--CR=file: Generate Cross Reference Listing
	--ERRFORMAT and --WARNFORMAT: Format For Compiler Messages
	Using the --ERRFORMAT and --WARNFORMAT Option
	Modifying the Standard Format

	--GETOPTION=app,file: Get Command Line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE Being Used
	--INTRAM=address: Specify Internal RAM Address
	--MEMMAP=file: Display Memory Map
	--NOEXEC: Do Not Execute Compiler
	--NOPS: Insert Debug NOPs
	--NVRAM=address: Specify Non-volatile RAM Address
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTDIR=directory: Specify Output Directory
	--OUTPUT=type: Specify Output File Type
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan For Dependencies
	--SETOPTION=app,file: Set the Command Line Options For Application
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--VER: Display the Compiler's Version Information
	--WARN=level: Set Warning Level

	C Language Features
	Files
	Source Files
	Symbol files
	Standard Libraries
	Run-time Startup Module
	Stack Initialization
	Initialization of Data Psects
	Clearing the Bss Psects
	Linking in the C Libraries
	Executing the Main Function

	The powerup Routine

	Processor-related Features
	Processor Support

	Supported Data Types
	Radix Specifiers and Constants
	Bit Data Types
	Using Bit-Addressable Registers

	8-Bit Data Types
	16-Bit Data Types
	32-Bit Data Types
	Floating Point Types and Variables
	Structures and Unions
	Bit Fields in Structures

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	Near Type Qualifier
	Idata Type Qualifier
	Far Type Qualifier
	Code Type Qualifier

	Pointer Types
	Pointers in small model
	Pointers in the medium, large and huge models
	Function Pointers
	Combining type modifiers and pointers
	Near and Idata pointers
	Far pointers
	Xdata pointers
	Pdata pointers
	Code pointers
	Const pointers

	Storage Class and Object Placement
	Local variables
	Auto Variables
	Static Variables

	Absolute Variables

	Functions
	Function Argument passing
	Small and medium model argument passing
	Reentrant functions
	Large and huge model argument passing
	Variable argument lists
	Small and medium model variable argument lists
	Indirect function calls
	Small and medium model indirect function calls

	Function return values
	8 Bit return values
	16 Bit return values
	32 Bit return values
	Structure return values

	Function Calling Conventions for Huge Model
	Near and Basenear Functions in Huge Model

	The call graph

	Memory Models and Usage
	Register usage
	Compiler generated psects
	Using memory mapped I/O and SFRs
	Interrupt handling in C
	Bank2 and Bank3 interrupts
	Interrupt Levels in small and medium model
	Interrupt handling macros
	The ei() and di() macros
	ROM_VECTOR and set_vector
	RAM based interrupt vectors
	RAM_VECTOR
	CHANGE_VECTOR
	READ_RAM_VECTOR
	Pre-defined interrupt vector names

	Mixing C and 8051 assembler code
	External Assembly Language Functions
	Accessing C objects from within assembler
	#asm, #endasm and asm()

	Preprocessing
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma jis and nojis Directives
	The #pragma printf_check Directive
	The #pragma psect Directive
	The #pragma regsused Directive
	The #pragma strings Directive
	The #pragma switch Directive

	Linking programs
	Replacing Library Modules
	Signature checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O
	Optimizing Code for the 8051

	Macro Assembler
	Assembler Usage
	Assembler options
	8051 Assembly language
	Character set
	Numbers
	Delimiters
	Identifiers
	Assembler generated identifiers
	Location counter
	Predefined Identifiers

	Strings
	Temporary labels
	Expressions
	Statement format
	Addressing modes
	Program sections
	Assembler directives
	PUBLIC
	EXTRN
	GLOBAL
	END
	PSECT
	ORG
	EQU and SET
	DB and DW
	DF
	DS
	FNADDR
	FNARG
	FNBREAK
	FNCALL
	FNCONF
	FNINDIR
	FNSIZE
	FNROOT
	IF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	REPT
	IRP and IRPC
	SIGNAT

	Macro invocations
	Assembler controls
	PAGELENGTH(n)
	PAGEWIDTH(n)
	XREF
	COND
	EJECT
	GEN
	INCLUDE(pathname)
	LIST
	SAVE and RESTORE
	TITLE(string)

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Call Graph Information

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	+ Prefix
	-CK
	-FILL
	-FIND
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-Ofile
	-SERIAL
	-STRING

	Library Functions
	Error and Warning Messages
	Chip information
	Regular Expressions
	Index

