HI-TECH

HI-TECH C for 8051

HI-TECH Software.

Copyright (c) 2004 HI-TECH Software.
All Rights Reserved. Printed in Australia.
Produced on: 20th May 2006

HI-TECH Software Pty. Ltd.
ACN 002 724 549
PO Box 103
Alderley QLD 4051
Australia

email: hitech@.htsoft.com
web: http://www.htsoft.com
ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://www.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents iii
List of Figures Xix
List of Tables XXi
1 Introduction 1
1.1 Typographicconventions e e 1

2 HI-TIDE Overview 3
2.1 Layout Overview. o e e e e e 3
2.2 HI-TIDEAreas 0 i e 3
221 TheProjectandBuildAreas., 6

2.2.2 TheWorkspace Area o o i i i i 6

2221 AddingaWorkspaceTab 7

2.2.2.2 RemovingaWorkspaceTah 7

2.2.2.3 RenamingWorkspace Tahs. 9

2.2.3 Workspace VIEWS i e e e e 9

2.2.3.1 DisplayingaView. e 9

2.2.3.2 FocusingViews. 10

2.2.3.3 SplittingViews 11

2234 ClosingViews. 14

2235 ViewPopupMenu 14

2.2.3.6 ChangingFontAndcolour 15

2.3 General Preferences. e 15
2.3.1 General PreferencesDialog. 16

2311 ProjectTab. 16

23.1.2 EditorTab. e 17

CONTENTS CONTENTS

2.4 Third-Party Tools. e 19
241 AddingandDeletingTools. 19
242 ToolOptions. e e 21
2.4.3 Hidingand ShowingButtons. 22
HI-TIDE Menus and Toolbars 25
3.1 MeNnuUS. e 25
3.1.1 FileMenu. e 25
3.1.2 EditMenu e e 26
3.1.3 ViewMenu. 27
3.1.4 ProjectMenu. e e 28
3.15 BuilldMenu. 29
3.1.6 DebuggerMenu. e 30
3.1.7 ToolsMenu. e 31
3.1.8 HelpMenu. e 31

3.2 Toolbars. e e 31
3.2.1 Hiding/ShowingToolbars, 31
3.2.2 Standard Tools Toolbar. 32
3.23 EditorToolbar 32
3.24 BuildToolbar. 33
3.25 ViewsToolbar e 33
3.2.6 ToolsToolbar. e 34
3.27 UserToolsToolbar, 34
3.2.8 DebuggerToolbar. 34

3.3 TheStatusBar. e 35
HI-TIDE Views 37
4.1 TheProjectVIews o 37
4.1.1 FilesView e e e 37
4.1.1.1 OutputFile PopupMenu 38

4.1.1.2 CFilesFolderPopupMenu. 38

4113 CFilePopupMenu. 39

4.1.1.4 Assembler Files Folder PopupMenu 39

4.1.1.5 AssemblerFile PopupMenu 40

4.1.1.6 ObjectFilesFolder. 40

4.1.1.7 ObjectFiles. e 40

4.1.1.8 LibrariesFolder. 41

41.19 LibraryFiles. e 41

4.1.2 File PropertiesDialog. 41

iv

CONTENTS CONTENTS

4.2

4.3

4.4

413 CodeSamplesView. e 41
TheBuildViews e A2
421 ErrorLogVIiew. e 42
422 MemoryUsageView i e e e 43
423 PsectUsage VIeW. e e 44
424 BuildLogView. e 44
TheEditorView. 45
431 EditorGUIErS 45
4.3.1.1 BreakpointGutter 45
4.3.1.2 LineNumberGutter 47
4.3.2 CreatingEditorFiles e 47
433 OpeningEditorFiles 48
4.3.4 SavingEditorFiles 48
435 Closing EditorFiles. 49
4.3.6 PrintingEditorFiles. e 49
4.3.7 Syntax Highlighting. 49
4.3.8 EditorPopupMenu. 49
4.3.9 Setting Source-Level Breakpoints. 50
4.3.10 Removing source-level Breakpoints. 51
4.3.11 Activating/Deactivating source-level Breakpoints 51
4.3.12 SearchingForText i 52
4.3.13 SearchOptions e 52
The Debugger Views. e 54
441 Disassembly View. 54
4411 Disassembly View Layout. 54
4.4.1.2 BreakpointGutter e 55
4.4.1.3 Disassembly View PopupMenu 56
4414 Setting Assembly Level Breakpoints. 57
4415 Removing Assembly Level Breakpoints. 58
4.4.1.6 Activating/Deactivating Assembly Level Breakpoints. 58
4.4.1.7 Displaying Program Counter Location. 58
44.1.8 DisplayingCSourceCode 59
442 DataMemoryVIEW o o i e e 59
4421 DataMemoryViewlLayout 59
4.4.2.2 DataMemory View PopupMenu. 60
4423 TracingMemoryuUsage i i et 61
4.4.2.4 ModifyingMemory. e 62
443 RegistersVIew. L 62
4431 RegistersViewlLayout. 62

CONTENTS CONTENTS

4.4.3.2 RegistersViewPopupMenu 63

4433 TracingRegisterUsage., 63

4.4.3.4 ModifyingMemory. 64

4.4.4 VariableWatchView. e 64
4.4.4.1 Variable Watch View Layout. 64

4.4.4.2 Variable Icons and Tree Representatian. 65

4.4.4.3 Variable Watch View PopupMenu 66

4.4.4.4 Adding and Removing Variables 67

4445 ModifyingVariables 69

445 LocalWatchView e 69
446 Virtual lIOVIew o e e e 70
4461 OVerview oo e 70

4.4.6.2 \Virtual /O ViewPopupMenu. 70

4.4.6.3 AddingComponents. 71

4.4.6.4 RemovingComponent., 72

4.4.6.5 ComponentProperties. 72

4.4.6.6 WiringComponents 72

4.4.6.7 PeripheralComponents. 74

5 HI-TIDE Projects 79
5.1 Toolsuites. e e e 79
5.2 ProjectInformation. 80
53 Creating ANew Project. 80
5.3.1 Projectwizard 80
5.3.1.1 ProjectFilename. L o 81

5.3.1.2 ProjectToolsuite. 82

5.3.1.3 DeviceSelection. o 83

5.3.1.4 DevicePackage e 83

5.3.1.5 Compiler Selection. 84

5.3.1.6 DebuggerSelection 85

5.3.1.7 ProjectSourceFiles. o L. 86

5.4 Managing Projects. e e e 87
5.4.1 Opening Existing Projects 87
542 SavingProjects e 88
543 ClosingProjects. e 88

5.5 Managing Project Source Files. 88
55.1 AddingFilesToTheProject 88
5.5.2 Removing Files FromThe Project. 90
5.5.3 Changing CompilerOptions 90

Vi

CONTENTS CONTENTS
5.5.4 FileProperties. 90
5.5.5 Dependency Files (HeaderFiles) 91
5.6 Changing Project Settings 91
5.6.1 Changing Toolsuite 91
5.6.2 ChangingDevice e 92
5.6.3 Changing Device Package. 92
5.6.4 Changing Debugger. 93
6 C-Wiz — The Code Wizard 95
6.1 Startingthe Code Wizard e 95
6.2 The 8051 CodeWizardDialog 95
6.2.1 Peripheral SelectionPanel. 98
6.2.2 ConfigurationPanel. e 98
6.2.3 MessagingPanel e 98
6.2.4 Generated CodeDisplay. 98
6.25 ControlPanel 98
6.2.6 AdvancedOptionsDialog, 99
6.2.6.1 Enable dependency handling v .« v .. 99
6.2.6.2 1Initialisation function name 99
6.3 Selecting Peripherals 99
6.4 Configuring Peripherals. 100
6.5 ViewingGeneratedCode e 101
6.6 SavingtoFiles. e 103
6.7 Accessing the InitializationCode. 105
6.8 Generating Interrupt Service Routines. 105
6.9 Handling Shared Resources i i i 106
6.10 Closingthe Code Wizard i 107
7 HI-TIDE Compiler Options 109
7.1 CompilerOptions. o e 109
7.1.1 Buildoptions. 111
7.1.1.1 WarninglLevel 111
7.1.1.2 StripLocalSymbols oL 111
7.1.2 Global Optimization. 111
7.1.2.1 Enable Global Optimization. 111
7.1.2.2 Optimize For Speed/Space 111
7.1.23 Level. e 111
7.1.3 Assembler Optimization, 111
7.1.3.1 Enable Assembler Optimization 111

Vi

7.2

7.3

7.4

7.5

7.6

CONTENTS CONTENTS

7.1.4 Memory Model Settings 112
7.1.5 BankingOptions. e 112
7.1.6 DebuggingNOPs 112
Preprocessoroptions e e e 112
7.2.1 SpecifyIncludePaths., 112
7.22 AssemblerFiles. 114
7.2.2.1 Preprocessassemblerfiles. 114
7.2.3 Define PreprocessorSymbols. 114
7.2.4 Undefine Preprocessor Symbals 114
Memory options e 114
7.3.1 ProgramMemoryRanges 114
7.3.1.1 Enableonchipranges. 116
7.3.1.2 Enableincludedranges. 116
7313 IncludedRanges. 116
7.3.1.4 Enable excludedranges. 116
7.3.15 ExcludedRanges 116
7.3.2 DataMemoryRanges 116
7.3.2.1 Enableonchipranges. 117
7.3.2.2 Enableincludedranges. 117
7.3.23 IncludedRanges. 117
7.3.2.4 Enableexcludedranges. 117
7.3.25 ExcludedRanges 117
7.3.3 Internal RAM. L 117
7.3.4 Non-volatile RAM 118
Filesoptions e 118
7.4.1 OutputFile Type. e 118
7.4.2 DebugliInformation e 118
7.4.2.1 Generateassemblerlisting. 118
7.4.22 Generatemapfile 118
Linkeroptions. e e 118
7.5.1 Run-time Code Configuration 121
7511 Run-timeSettings 121
7.5.2 VMectorOffset. e 121
7.5.3 Additional LinkerOptions., 121
7.5.3.1 Enable additional linker options. 122
7.5.4 Advanced LinkerOptions. oo 122
7.5.4.1 Enable advanced linkeroptions. 122
Language options e e 122
7.6.1 DefaultCharType. 122

viii

CONTENTS

CONTENTS

7.6.2

Identifier Length
7.6.3 ANSI Conformance
Enable strict ANSI conformance

7.6.3.1

8 HI-TIDE Compilation

8.1 Compiling Project Files
Compiling Source Files
Linking e e
Make e

8.1.1
8.1.2
8.1.3
8.14
8.1.5

Make All

Individual Files
8.2 Compiler Options.

8.2.1 Global Compiler Options

8.2.2 File-Specific Compiler Options
8.3 Build Results
8.3.1 Error and Warnings
8.3.2 Memory Usage
8.3.3 Psect Usage
8.3.4 Build Log

9 HI-TIDE Debugging

9.1 Debugger Functions.
9.1.1 Debugger Initialization
9.1.2 Breakpoints

Breakpoint Restoration

Program execution

Run

9.1.3

9.2 8051 Debuggers
9.2.1 Simulator

9.121

9.1.3.1
9.1.3.2
9.1.3.3
9.1.34
9.1.35

10 C51 Command-line Driver

10.1 Long Command Lines
10.2 Default Libraries
10.3 Standard Runtime Code. 136
10.4 C51 Compiler Options

CONTENTS CONTENTS

10.4.1 -B: Specify MemoryModel 138
10.4.2 -c: Compileto ObjectFile., 139
10.4.3 -pmacro: DefineMacro. L 139
10.4.4 -efile : Redirect Compiler ErrorstoaFile. 140
10.4.5 -cfile : Generate source-level SymbolFile. 141
10.4.6 -Ipath :Include SearchPath 141
10.4.7 -1library :Scanlibrary 142
10.4.8 -1-option : Adjust Linker Options Directly. 142
10.4.9 -Mfile : GenerateMapFile L. 143
10.4.10-nsize : Identifier Length. o Lo 143
10.4.11-ofile : SpecifyQutputFile 143
10.4.12-p: Preprocess Assembly Files. 143
10.4.13-0: QuietMode. e 144
10.4.14-s: Compileto AssemblerCode 144
10.4.15-umacro: UndefineaMacro. 144
10.4.16-v: Verbose Compile. e 144
10.4.17-x: Strip Local Symbols. oo 144
10.4.18--ASMLIST: Generate Assembler .LSTFiles 145
10.4.19--BANK: Specify BankingOptions. 145
10.4.20--cHAR=type : Make Char Type Signed or Unsigned 145
10.4.21--cuip=processor : Define Processor. 146
10.4.22--cHIPINFO: Display a List of Supported Processors 146
10.4.23--COoDEOFFSET=address : Specify an Offset For Program Code 146
10.4.24--cr=file : Generate Cross Reference Listing 146
10.4.25--ERRFORMAT and--WARNFORMAT: Format For Compiler Messages 147

10.4.25.1 Using the-ERRFORMAT and--WARNFORMAT Option 147

10.4.25.2 Modifying the Standard Format. 147
10.4.26--GETOPTION=app,file : Get Command Line Options. 148
10.4.27--#ELP<=0ption >: DisplayHelpo L. 148
10.4.28--1DE=type : Specifythe IDEBeingUsed 148
10.4.29--INTRAM=address : Specify Internal RAM Address. 149
10.4.30--MEMMAP=file : Display MemoryMap 149
10.4.31--NOEXEC: Do Not Execute Compiler. 149
10.4.32--NopPs: Insert Debug NOPs 149
10.4.33--nvRAM=address : Specify Non-volatile RAM Address. 150
10.4.34--0pT<=type> : Invoke Compiler Optimizations 150
10.4.35--0uTDIR=directory : Specify OutputDirectory 150
10.4.36--0UTPUT=type : Specify OutputFile Type 150
10.4.37--pRE: Produce Preprocessed SourceCode 151

CONTENTS CONTENTS

10.4.38--PROTO: Generate Prototypes o i i 151
10.4.39--raM=lo-hi,<lo-hi,...> . Specify Additional RAM Ranges152
10.4.40--roM=lo-hi,<lo-hi,...>|tag . Specify Additional ROM Ranges . 153
10.4.41--RUNTIME=type : Specify Runtime Environment 154
10.4.42--sCANDEP: Scan For Dependencies. 155
10.4.43--seTorTION=app,file : Set the Command Line Options For Applicatidb5
10.4.44--sTRICT: Strict ANSI Conformance. 155
10.4.45--suMMARY=type : Select Memory Summary Output Type. 155
10.4.46--VER: Display the Compiler’s Version Information. 155
10.4.47--wWaARN=level :SetWarninglLevel 156

11 C Language Features 157
110 Files. . .o o o e 157
11.1.1 SourceFiles. 157
11.1.2 Symbolfiles 157
11.1.3 Standard Libraries 158
11.1.4 Run-time StartupModule. o oo 158
11.1.41 Stack Initializationo 159

11.1.4.2 Initialization of DataPsects. 159

11.1.4.3 ClearingtheBssPsects. 160

11.1.4.4 Linkinginthe CLibraries 160

11.1.4.5 Executingthe MainFunction. 161

11.1.5 ThepowerupRoutine. 161

11.2 Processor-related Features. 161
11.2.1 Processor SUPPOrt o v v i i i e 161
11.3 Supported Data TYPES. o v i e e e e e e e e e 161
11.3.1 Radix Specifiersand Constants. 162
11.3.2 BitData TypeS. . . .« v v o o i e e e e 163
11.3.2.1 Using Bit-Addressable Registers. 164

11.3.3 8-BitDataTypes. o v i i e e e e e e 165
11.3.4 16-BitData Types. i i i e 165
11.35 32-BitDataTypes. v v v i i e e e e 165
11.3.6 Floating Point Typesand Variables 166
11.3.7 StructuresandUnions e 167
11.3.7.1 BitFieldsin Structures. 167

11.3.8 Standard Type Qualifiers. 168
11.3.8.1 Const and Volatile Type Qualifiers. 168

11.3.9 Special Type Qualifiers. 168
11.3.9.1 Persistent Type Qualifier 169

Xi

CONTENTS CONTENTS

11.3.9.2 Near Type Qualifier 169

11.3.9.3 Idata Type Qualifier 170

11.3.9.4 FarType Qualifier oo 172

11.3.9.5 Code Type Qualifier. 173
11.3.10PoINter TYPES . . .« v v v e e e e e e e 174
11.3.10.1 Pointersinsmallmodel 174

11.3.10.2 Pointers in the medium, large and huge madels 175

11.3.10.3 FunctionPointers e 177

11.3.10.4 Combining type modifiers and pointers 177

11.3.10.5 Near and Idata pointers. 177

11.3.106 Farpointers. e e 179

11.3.10.7 Xdatapointers e 179

11.3.10.8 Pdatapointers 179

11.3.10.9 Code pointers o o e 179
11.3.10.10Constpointers 180

11.4 Storage Class and ObjectPlacement. 180
11.4.1 Localvariables e 180
11.4.1.1 AutoVariables 181

11.4.1.2 StaticVariables. o 182

11.4.2 Absolute Variables 182
115 FUNCLIONS. o e e e e e e 183
11.5.1 Function Argumentpassing v v o i i e 183
11.5.1.1 Small and medium model argument passing. 183

11.5.1.2 Reentrantfunctions 185

11.5.1.3 Large and huge model argument passing. 185

11.5.1.4 Variable argumentlists 186

11.5.1.5 Small and medium model variable argumentlists 186

11.5.2.6 Indirectfunctioncalls 187

11.5.1.7 Small and medium model indirect functioncalls 187

11.5.2 Functionreturnvalues o 189
11.5.2.1 8Bitreturnvalues oo 189

11.5.2.2 16Bitreturnvalues 189

11.5.2.3 32Bitreturnvalues 189

11.5.2.4 Structurereturnvalues oL 190

11.5.3 Function Calling Conventions for Huge Model. 190
11.5.3.1 Near and Basenear Functions in Huge Model 190

11.5.4 Thecallgraph. e 191
11.6 Memory Modelsand Usage. 192
11.7 RegiSterusage. o v v o i e e e e e e 193

Xii

CONTENTS

CONTENTS

11.8 Compiler generated psects
11.9 Using memory mapped I/O and SFRs
11.10Interrupt handling in C
11.10.1 Bank2 an8ank3interrupts
11.10.2 Interrupt Levels in small and medium model
11.10.3 Interrupt handling macros
11.10.4 The ei() and di() macros
11.10.5 ROM_VECTOR and set_vectar
11.10.6 RAM based interrupt vectors.
11.10.7 RAM_VECTOR
11.10.8 CHANGE_VECTOR
11.10.9 READ_RAM_VECTOR
11.10.1CPre-defined interrupt vector names
11.11Mixing C and 8051 assembler cade
11.11.1 External Assembly Language Functions
11.11.2 Accessing C objects from within assembler
11.11.3 #asm, #endasm and asm()
11.12Preprocessing
11.12.1 Preprocessor Directives
11.12.2 Predefined Macros
11.12.3 Pragma Directives
11.12.3.1 The #pragma jis and nojis Directives

11.12.3.2 The #pragma printf_check Directive

11.12.3.3 The #pragma psect Directive

11.12.3.4 The #pragma regsused Directive

11.12.3.5 The #pragma strings Directive

11.12.3.6 The #pragma switch Directive

11.13Linking programs

11.13.1 Replacing Library Modules
11.13.2 Signature checking
11.13.3 Linker-Defined Symbols
11.14Standard I/O Functions and Serial /0
11.150ptimizing Code for the 8051

12 Macro Assembler

12.1 Assembler Usage
12.2 Assembler options

12.3 8051 Assembly language
12.3.1 Character set

CONTENTS CONTENTS

12.3.2 Numbers. e e e 222
12.3.3 Delimiters e e e e e 222
12.3.4 Identifiers. e 222
12.3.4.1 Assembler generated identifiers 222
12.3.4.2 Locationcounter. e 223
12.3.4.3 Predefined Identifiers 223
12.35 StINGS o o e e 223
12.3.6 Temporarylabels 223
12.3.7 EXPressions o i i e e e e 224
12.3.8 Statementformat 224
12.3.9 Addressingmodes e 224
12.3.10Program Sections. it e e e e e 224
12.3.11 Assemblerdirectives e 226
12.3.11.1 PUBLIC. e 226
12.3.11.2 EXTRN . . o o e e e e e 226
12.3.11.3 GLOBAL o e 226
12.3. 114 END. e e 226
123115 PSECT e 226
123116 ORG. o e 229
12311 7EQUandSET 230
12.3.11.8 DBand DW. e e 230
12.3.11.9DF. . . . e 230
12.3.11.10DS. . . . e 230
12.3.11.11FNADDR e 231
12.3.11.12FNARG e 231
12.3.11.13FNBREAK 231
12.3.11.14FNCALL o o e e 231
12.3.11.15FNCONF e 232
12.3.11.16FENINDIR 232
12.3.11.17FNSIZE. o e e e e 233
12.3.11.18FNROOT . . . o o e e e e e e 233
12.3.11.19F, ELSEandENDIF. 233
12.3.11.20MACROand ENDM. v 234
12.3.11.2ILOCAL . . . o o e e e e 234
12.3.11.22REPT o o e e e e 235
12.3.11.23RPandIRPC 236
12.3.11.24SIGNAT. . . . o e e e e e 237
12.3.12Macroinvocations. e e e e e e e e e e 237
12.3.13Assemblercontrols. o 237

Xiv

CONTENTS CONTENTS

12.3.13.1 PAGELENGTH() v v o v v o e e e e 237

12.3.13.2 PAGEWIDTHf) 238

123133 XREF e 238

12.313.4 COND. e e 238

123135 EJECT. e 238

123136 GEN. e 238

12.3.13.7 INCLUDE(pathname) 239

123138 LIST. o e 239

12.3.139 SAVEand RESTORE 239
12.3.1320TITLEStriNG) o o o o e e 239

13 Linker and Utilities 241
13.1 Introduction. e e e 241
13.2 Relocationand PSects. e 241
13.3 Program Sections o e e 242
134 Local Psects e 242
13.5 Global Symbols 242
13.6 Linkandload addresses 243
13.7 Operation. o 243
13.7.1 Numbersinlinkeroptions 244
13.7.2 -Aclasslow-high... 245
13.7.3 -&X . o e 245
1374 -@sect=class e 245
13.75 -Ixlass=delta. 245
13.7.6 -Dsymfile 246
13.7.7 -Eerrfile 246
13.7.8 -F . . e 246
13.7.9 -BPEC v i e e 246
13.7.10-kymfile L 247
13.7.11-Heymfile 247
13.7.12-8rrcount. L e e e e e e e e 247
13.7.13-K. o e 247
13.7.04-1 L . e 247
13.7.05-L . . o e 248
13.7.16-LM. . . . o e 248
13.7.27-Mmapfile. 248
13.7.18-N,-Nsand-Nc e 248
13.7.19-utfile 248
13.7.20-BpecC. . . . o o e 248

XV

CONTENTS CONTENTS

13.7.21-QOrOCESSOL. . v v v v e e e e e e e e e e e e e e 250
13.7.22-S. . 250
13.7.23-8lass limit[, bound] o 250
13.7.24-ymbol 251
13.7.25-\AVvMap o e e e e e e e e 251
13.7.26-Whum . . . L 251
13.7.27-X. o 251
13.7.28-Z. . . e 251
13.8 Invokingthe Linker. e e 251
139 MapFiles. o 252
13.9.1 Call GraphInformation. 253
13.10Librarian e e 255
13.10.1 The Library Format. o 255
13.10.2Usingthe Librarian 256
13.10.3Examples e 257
13.10.4 Supplying Arguments. e e e 257
13.10.5Listing Format. 258
13.10.6 Ordering of Libraries 258
13.10.7Ermor MeSSagesS. . . . v v v v vt e e e e e e e e e 258
13.110DbJt0hexX . . . v o e 258
13.11.1 Checksum Specifications 260
13.12Cref . . . e 260
13.12.1-Frefix e e e 261
13.12.2-Hheading 261
13.12.3-llen e e e 261
13.12.4-utfile 261
13.125-Rvidth o e 262
13.12.6-Stoplist 262
13.12.7-refix . . . o o e e 262
13.213Cromwell e 262
13.13.1-Pname. e 262
13.13.2-D. . . e 264
13.13.3-C. . o e 264
13.13.4-F . . 264
13.13.5-0K8Y. .« v v v o e e e e 264
13.13.6-1key 264
13.03.7-L . o o e 264
13.13.8-E. . . . e e 264
13.13.9-B. 264

XVi

CONTENTS

CONTENTS

1313 10M.o
13131V, .o oo
13.14Hexmate
13.14.1 Hexmate Command Line Options
13.14.1.1 + Prefix
13.14.1.2 -CK
13.14.1.3 -FILL
13.14.1.4 -FIND
13.14.1.5 -FIND...,REPLACE
13.14.1.6 -FORMAT
13.14.1.7 -HELP
13.14.1.8 -LOGFILE
13.14.1.9 -Qile
13.14.1.10-SERIAL
13.14.1.11-STRING

Library Functions

Error and Warning Messages

A
B
C Chip information
D Regular Expressions

Index

377

485

487

491

XVii

CONTENTS CONTENTS

XViii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13

HI-TIDE without a projectloaded. 4
Layout overview with projectloaded. 5
Workspace areao e e e e 7
Workspacetab. 8
Unsplit view showing splitbuttons o L. 11
View splitleft/right e 12
View splittop/bottom. 13
Font/colour selectdialog 15
General preferences dialog — projecttab. 16
General preferences dialog—editar. 18
Toolsetupdialog. e 20
Thestatusbar 36
Projectarea. e 38
File propertiesdialog 42
Buildarea. e 43
Errorlog. o o e 44
Memory usage output. e e e e A5
Psectusageoutput 46
Editorviewlayout 46
Find and Replace dialog—find, 52
Find and Replace dialog—replace 53
Assemblerview 55
Breakpointsinassemblerview. L o 57
Sourcecodeinassemblyview. Lo 60
Datamemory VIEW. e 61

XiX

LIST OF FIGURES LIST OF FIGURES

414 ReQIStErS VIEW o i e i e e e e e e e e e e e 63
4.15 Variable Watchview. 65
4.16 Add/remove variablesdialog. 67
4.17 Edit IO Components dialog — Select component 71
4.18 LCD propertiesdialog. e 75
419 LED propertiesdialog. e 76
4.20 Push button propertiesdialog. e 77
5.1 Projectwizard —projectdetails Lo 81
5.2 Project wizard —toolsuite selection. 82
5.3 Projectwizard —targetdevice. e 83
5.4 Projectwizard —devicepackage 84
5.5 Project wizard — compiler selection.o oo 85
5.6 Projectwizard —debugger selection L 86
5.7 Projectwizard — source fileselection. 87
6.1 Starting the Code wizard from within HI-TIDE 96
6.2 Atypical Codewizarddialog L o 97
6.3 The Advanced Optionsdialog 99
6.4 Peripheral selectionpanelof C-Wiz 100
6.5 Typical I/O port configurationpanel 101
6.6 Comparison of generated code display modes. 102
6.7 Controlpanelof C-Wiz. 103
6.8 Messagepanel of C-Wiz e 106
7.1 Compiler options dialog — compileroptions 110
7.2 Compiler options dialog — preprocessoroptions. 113
7.3 Compiler options dialog — memory options. 115
7.4 Compiler options dialog —fileoptions. 119
7.5 Compiler options dialog — linkeroptions 120
7.6 Compiler options dialog — language options. 123

XX

List of Tables

7.1 Memory modeltypes e e 112
8.1 Recompile Conditions. 127
10.1 ChLlfiletypes. o o e e 135
10.2 C51 command-line options e 137
10.3 Memory modeloptions 139
10.4 Errorformatspecifiers. e 148
10.5 Supported IDES o 149
10.6 Outputfileformats. 151
10.7 Runtime environmentsuboptions 154
11.1 Basicdatatypes. e 162
11.2 Radixformats. e e 163
11.3 Floating-pointformats. e 166
11.4 Floating-point formatexample IEEE 754 166
11.5 Pointerclasses—smallmodel.o oL 175
11.6 Pointer classes — medium, large and hugemodels. 176
11.7 Interrupt handlingmacras. 200
11.8 Interrupt veCtor NAMeS o i e e e e e e e e 205
11.9 Preprocessordirectives e 208
11.10Predefined CPPsymbols. 210
11.11Pragmadirectives e e 212
11.12Valid regsused registernames..o 213
11.13Console l/Ofunctions e 217
12.1 AS51 command-lineoptions L Lo 220
12.2 AS51 numbersandbases. L L 222

XXi

LIST OF TABLES LIST OF TABLES

12.3 ASSl operators o e e e e e 225
12.4 AS51 statementformats. 225
125 ASB1directives. e 227
12.6 Psectflags o o 228
12.7 as51 assemblercontrols. 238
13.1 Linker command-lineoptions. 243
13.1 Linker command-lineoptions. L Lo 244
13.2 Librarian command-lineoptions 0. 256
13.3 Librarian key lettercommands. 256
13.4 OBJTOHEX command-lineoptions 259
13.5 cREF command-lineoptions. e 261
13.6 CROMWELL formattypes. o o o 263
13.7 CROMWELL command-line options oo 263
13.8 Hexmate command-lineoptions. 266
13.9 INHXtypesused in-FORMAT option 270

XXii

Chapter 1

Introduction

1.1 Typographic conventions

Different fonts and styles are used throughout this manual to indicate special words or text. Com-
puter prompts, responses and filenames will be printedoitstant-spaced type When the
filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.
<stdio.h>. These header files can be found in thieL.UDE directory of your distribution.
Samples of code, C keywords or types, assembler instructions and labels will also be printed in
aconstant-space type. Assembler code is printed in a font similar to that used by C code.
Particularly useful points and new terms will be emphasized ugitigized type When part of
a term requires substitution, that part should be printed in the appropriate font, ilalids: For
example#include <filename.h >.

Typographic conventions Introduction

Chapter 2

HI-TIDE Overview

This chapter details the different regions displayed in HI-TIDE’s main window as well as general
preferences relating to HI-TIDE and its operation.

2.1 Layout Overview

There are several different regions in the HI-TIDE main window. Apart from the window decorations
supplied byWindowsor the window manager you are running, the regions includertbeus the
toolbar, and thestatus bar These are discussed in Secti@ng 3.2and3.3, respectively.

Figure2.1shows the appearance of HI-TIDE und®indowswith no project loaded. The menus
and toolbar are at the top of the window and the status bar is located along the lower edge of the
window. The remainder of the HI-TIDE window is left blank. Most of the functionality of these
components is disabled until a project is loaded.

Once a project has been loaded (see Se@iar) the toolbar and status bar activate and HI-
TIDE’s window is populated with graphical regions, callr@as,whose state has been read in from
the project file. Areas are described in SectioR Figure2.2 shows how HI-TIDE may typically
appear after a project is loaded.

2.2 HI-TIDE Areas

An areais a graphical region of the main HI-TIDE window. There are three HI-TIDE areas which
can be displayed: throject area theBuild areaand theWorkspace areaThese areas are visible
in Figure2.2and have been individually highlighted in Figureg, 4.3and2.3.

3

HI-TIDE Areas HI-TIDE Overview

Figure 2.1: HI-TIDE without a project loaded

L HI-TIDE

BB] | BB || ¢ [ew(eB]] o b w] 3| BE|&) 6 &

HI-TIDE Overview

HI-TIDE Areas

Figure 2.2: Layout overview with project loaded

51 HI-TIDE - aaa.hprj

=lax|

Fle Edt Wew Project Buld Debugger Tools Hep
| k@

NEE D e R

Build Results

1 Address Data Label Oncode
FR Delay functions =l 10FE nonn illegal T‘
ERS See delay.h for details > 1100 DA004031 start wov. W
a = 1104 FOFA4380 startup mowv. W B
(88l assembler Files - Make sure this code is somr 1108 FOFS4380 wov.w
@] Object Files 5 1100 11324030 br.w
(il Librariss 5 {
1110 3008 Delayl: 3
& ginclude “delay.h” - Spelails - Jup
s : i
- char @ @111z 4267 nov.h
veid while(i--) {
11 DelayMsunsigned char ent) 1118 3coa Jup
1i - DelayUs{us ...
13 unsigned char i: 1116 00774076 wov.b
1 | while [ent--) { 111k 6356 sub.b
& 15 i=4; 1110 2005 inz
18 while(i--}) (while(i--) { _
[T L _>l_I | _’l_I
Fies | Code Samples _delay.c | Disassembly | Data Memary

Etror Log | Memory Usage | Psect Usage | Buid Log

n14 col0 [[MSP430 Simulstor MSP430F44a 1100 Ftopped System reset

HI-TIDE Areas HI-TIDE Overview

These areas consume the remainder of HI-TIDE’s main window. Borders separate the areas and
can be dragged to resize the area’s display. As the mouse is moved over the draggable area border,
it changes shape to a double-ended arrow. For example, the Project area can be resized by clicking
and dragging the divider that separates it from the Workspace area. Changing the size of the Project
area will also change the width of the Workspace area.

All areas use a tab viewer to be able to display and manage different contents and its operation
is similar to tabbed viewers in other applications. The tabs are located along the bottom of the area.
Clicking a tab replaces what is displayed in the area with the new tab pane.

Each tab pane contains one or morews A view is further subdivision of a pane. In some
cases a tab may show ampty view This is a view with no contents and it appears as a blank, grey
area.

2.2.1 The Project and Build Areas

The Project area and Build area have similar operation. They are static areas, in that their tabbed
panes and views are managed by HI-TIDE and cannot be changed by the user.

These areas can be hidden from display to allow the other area(s) to expand. The size of the
remaining area(s) automatically adjust as an area is hidden or re-shown. For example, to hide the
Project area either click on the close button in the top right corner of the area, or ¢tidederoject
View from theView menu. To display the project view selesiiow Project Viewfrom theView
menu. The Build area can be hidden and shown again in a similar way.

2.2.2 The Workspace Area

TheWorkspace areéoften referred to just thevorkspacgis the main area in which program devel-
opment and debugging takes place. This is the area where the editor and memory displays etc. are
shown. The Workspace area is shown circled in Figugelts operation is similar to the other areas,

but with some notable differences.

The Workspace area cannot be hidden. There is no close button, nor menu items, which will
completely remove it from display.

The Workspace area has tabs for showing multiple panes like the other areas, but these tabs can
be managed by the user. The user may add or remove workspace tabs, and tabs may be renamed
so that their contents are easily identified. These operations are further described in the following
sections.

Figure2.4 shows a typical Workspace tab, labeléelay.c with an Editor view showing on the
left side and an assembly view showing on the right side.

6

HI-TIDE Overview HI-TIDE Areas

Figure 2.3: Workspace area

S HI-TIDE - aaa.hpri =l=ix]

File Edt View Frojsct Buld Debugger Toos Help

NEEEEE == o EE E= |
Disassembly IDEVICE_MEMORY ¥
1 — Addiress Data Label Opcode
Y Delay Functions =1 10FE 0000 illegal zll
I See delay.h for details P> 1100 0ADD405L start nov.w
Fa 1104 FOFA4380 startup wov.w
(€81 Assembler Files 5 o Make sure this cods is comp 1108 FOF84380 nov.w
& Object Files 6+ 1100 11324030 br.w
(] Libraries 5 {
& ginclude "delay.h” e iz:? pelaylts Sup
E] : ;
T char a; @111z 4267 nov.b
woid while(i--) {
11 DelayMs (unsigned char cnt) 1114 aC04 Jup
1 - Delaylis(us ...
1 unsigmed char 17 1116 00774076 nov.b
614| while (ent--) { 1114 8356 sub.b
i@ 15 i=4; 111C 2005 nz
18 while(i--] { 5 while(i--} { B
I | i _>l_I | - _>l_I
Files | Code Samples celay.c | Disassembly | Data Wemary

—_————————————————————
Build Results E

| Error Log | Memory Ussge | Psect Usage | Buid Log

2.2.2.1 Adding a Workspace Tab

Views which can be displayed in the Workspace area will generally create and add a tabbed pane
themselves. This is described in more detail in Secti@n2.1
Another way to add a tabbed workspace is to selechNi@ Tab menu item in the/iews menu
or theNew Tabtoolbar button from the standard toolbar.
A new tab can also be created and added in by right-clicking on the tabs and selNstintab
from the popup menu.

2.2.2.2 Removing a Workspace Tab

The Workspace tabs can be removed in a number of ways. The first way is to close the view using
the Close Viewbutton located in the top right corner of each view, @lese Viewmenu item from 2
theViews menu or selecting th€lose Viewbutton from the standard toolbar. If this is the only view
in the tab, then the tab will be closed along with the view.

The tabbed workspace can also be closed via the tab workspace popup menu. To close the tab,
right-click over the tab and sele€@ose Tabfrom the popup menu. When a tab is closed in this
fashion, all the views it contains will be closed as well.

HI-TIDE Areas HI-TIDE Overview

Figure 2.4: Workspace tab

il

Fle Edt WYew Project Buld Debugger Tools Help

DisEE= cERE <o = 8 @ w28 55858

1o — Address Dete Label Oncade

PR Delay functions Bl 0000 illegal ox000—]

1w See delay.h For details I> 4000 04004031 start wov.w |

a = ann4 C1FA4380 startup mov.w #0,_

5 Make sure this code is compiled with 4008 C1F84380 uov.w #0,_q

5 oy 4000 40324030 br.w # nai)

B

9 ginclude "delay.h” 010 i:a Delagils mp 02z

g . i —

. char a; @a01z 4267 nov.b #4,R7

veld while(i--) {

11 DelayMsjunsigned char ent) anla 3coa Jup AD1E

1i DelayUs(uS ...

13 unsigned char i: 4016 00774076 wov.b #0077
12 while ([ent--) { 4014 8356 sub.b #1,R6
@15 i=a; 4010 2008 inz 028

16 whilefi--} { while(i--) {

17 | DelayUs {ug_CHT) : A01E 6357 sub.b #1,R7

18 Vs a0z0 2ZFFA ic 4016

13 1 while {cnt-...

200y @ a0zz 8354 sub.b #1,R4

2 4024 ZFFs ic 401z

22 }

026 4130 ret
DelayUs(us ...
@aozs 4303 uov.w #0,F3
S| 4022 as03 wov.w #0,R3
da _I_I 1] | _I_I
delay.c
Initisizing project MSP430 Simulstor - MSP430F443 04000 [topped [System reset

HI-TIDE Overview HI-TIDE Areas

2.2.2.3 Renaming Workspace Tabs

Generally, when a new tab is created by a view, it is labelled with the name of that view. For example,
if the tab was created for a file, it will be labelled with the name of the file. Or if it was created for
the assembly view, it will be labelled Assembly view. However, if the tab is created from selecting
the New Tab menu item (from either thg¥iews menu or a Workspace view’s popup menu), the tab
will be labelledNew Tab.

At times, these tab labels may need to be renamed to better identify the view. This might be the
case if the tab workspace contains more than one view.

The tab can be renamed in one of two ways. The first is to right-click on the tab that is to be
renamed and seleBename Tab The label of the tab will turn into a text box where the name of
the tab can be changed. Presdifrgerwill apply the changes. Pressing tBscapekey or clicking
outside the text box will cancel the action.

Alternatively, to change the name of the tab, double-click on the label of the tab. The label of
the tab will turn into a text box to allow editing of the name of the tab. Predsimgrwill apply the
changes. Pressirigscapeor clicking outside the text box will cancel the action.

2.2.3 Workspace Views

Workspace vieware the views that can be displayed inside the tabbed Workspace area. They mostly
share common properties and functionalities. The following section detail how the Workspace views
behave and how they can be adjusted to suite the requirements of the project.

2.2.3.1 Displaying a View

There are several ways in which a Workspace view may be displayed:

e Selecting the view’'s namesake from tiew menu.
e Clicking the view's toolbar icon.

e Dragging the view's toolbar icon to the Workspace area.

These methods apply to all Workspace views, except the Editor view which is discussed separately
below.

When selecting from th&¥iew menu or clicking the toolbar icon, the new view will be assigned
a new tab in the Workspace area and the contents of that view displayed in this tab. The tab’s name
will set to the name of the view when the tab is created, but can be changed as described in Section
2.2.2.3

Dragging the toolbar icon allows for more specific configuration of the Workspace area. A
toolbar view icon dragged to an existing view will replace that view with the new contents. Thus,

9

HI-TIDE Areas HI-TIDE Overview

if a existing view is split (see Sectioh2.3.3 and a view toolbar icon dragged onto the resulting
empty view, more than one view can be displayed per Workspace tab.

If a toolbar icon is dragged over an region that cannot display the view, a “no drop” circular
symbol with a line through it, will be shown for the mouse pointer while it is over that region. If the
mouse is over an region which can accept the view, the mouse pointer will become the file transfer
icon. This icon is platform dependent.

Displaying the Editor View The Editor view has neither an entry in tiieew menu, nor a toolbar
icon. A new Editor view may be displayed using one of several methods:

e Double-clicking a source file icon in tHéles or Code samplesriew in the Project area.
e SelectingOpenfrom theFile menu and choosing a file.
e Clicking theFile Open button from toolbar button and choosing a file.

e Dragging a source file icon from th&les or Code samplessiew in the Project area.

In all methods, except when dragging a source file, a new Workspace tab is created for the view,
however if there is an existing Editor view of the same file this view will be displayed rather than
a new view. This applies regardless of whether the existing Editor view is in a Workspace tab by
itself, or is one of several views within a Workspace tab. If more than one Editor view of the same
file exists and the currently selected tab doesn’t contain one of these views, the first tab (from left to
right) in the Workspace area with the Editor view is selected and shown.

In a similar way to other views, if a source file icon is dragged to an existing view that view will
be replaced with the new contents. If a existing view is split and a source file icon icon is dragged
onto the resulting empty view, an Editor view can be shown with other views within a Workspace
tab.

If a file icon is dragged over an region that cannot display the view, the “no drop” mouse pointer
is displayed.

2.2.3.2 Focusing Views

A view is in focus if it is showing on the screen and it can accept input from the keyboard. This is
indicated by the titlebar of the view being highlighted in a system-dependent colour.

When a view has lost focus, it will be coloured differently (typically grey) to when it was focused.
Figure2.4 shows a Workspace tab with two views inside it. The Editor view on the left is in focus
and has its titlebar coloured. The assembly view on the right is not in focus and has a greyed out
titlebar.

10

HI-TIDE Overview HI-TIDE Areas

Figure 2.5: Unsplit view showing split buttons

% HI-TIDE - aaa.hprj =151 x]

File Edit Wew FProject Buid Debugger Tools Help

Do 8|5] | BRI [~ ¢ [FoleB| 8] wi] v[w|| 23] RISIR|5 &

1w =i
z Delay functions
ER see delay.h for details
FI
5 % Make sure this codes is compiled with full oprimizacion!!!
& ay
7
2 ginclude "delay.h”
4 char a:
10 goid
11 DelayMs (unsigmed char cnt)
12
12 unsigned char i;
12 while (cnt--) i
is i=4;
16 whileji--) {
17 Delayls(us CNT) /% djust for error */
12 yoi
19 B
200y
21
22
0 L
delay.C

[ntacats | MSF430 Simulator | MSP430F443 jo:0x1100 [Stopped [System reset

The colours of the focused and unfocused titlebar is usually user-customizable through
the user’s desktop settings.

Left-clicking anywhere in the view or on its titlebar will give the view focus and all keyboard input
will then be passed to that view. Right-clicking on a view will also give that view focus. With some
views, right-clicking will also trigger the view’s popup menu.

2.2.3.3 Splitting Views

Workspace views can be split into two smaller views, allowing more then one view to be displayed
on a Workspace tab at a time. Splitting is performed by a number of ways.

One way is by dragging one of the two split buttons. One split buttons is located at the far left of
the horizontal scroll bar; the other is located at the top of the vertical scroll bar in each Workspace
view, as shown in Figurg.5. The view shown has not yet been split.

The split button on the horizontal scroll bar will split the current view into a left and right view,
i.e. after the split, there will be two views side by side (see FiguB The split button on the

11

HI-TIDE Areas HI-TIDE Overview

Figure 2.6: View split left/right

=lzlx

Fle Edt Wew Project Buld Debugger Tools Help

e s e B e A A e N Y

|
Delay functions Bl B

See delay.h for details

Make sure thiz code is compiled with f
s

© #include “delay.h”
9 char a:
10 yoid
11 pelayMs (unsigned char ont)
1
12 unsiqned char i;
& 12 while (ent--] {
@ 15 i=d;
16 whileji--} {
17 DelayTs {us_CNT) ;
e P
L b

20}
21
2z

U LlLIJﬂ Llll
seley e

| Initializing project MSP430 Simulstor MSP430F449 pe0x1100 [Stopped [Gystem reset

vertical scroll bar will split the view into a top and bottom view, i.e. after the split, there will be
two views one on top of the other (see Figir&). This method of splitting will place the divider
between the two views at the location where the user releases the slit button.

Views may also be split by selecting the one of two split view menu itemsVidwes menu has
menu items to split the currently focused view left/right or top/bott@ptit View Left/Right and
Split View Top/Bottom, respectively.

A view can also be split by right-clicking in the view and selecting the splitting of the view
options from its popup menu. The popup menu may contain options specific to that view, but will
also have th&plit View Left/Right andSplit View Top/Bottom options, which will split the views
accordingly.

Two toolbar buttons can also be used to split the view in either the horizontal or vertical direction.

After a view has been split, one of the new smaller views will beeapty view The original
view is placed either on the left or on the top of the two views, depending on which way the view
was split. The empty view can be loaded with another view by dragging a view’s toolbar icon as
described ir2.2.3.1

The new views that are formed after splitting can be split themselves, to form more views. This

12

HI-TIDE Overview HI-TIDE Areas

Figure 2.7: View split top/bottom

=151

Fle Edt Wew Project Buld Debugger Tools Hep
D/ 2B S| B RE =] 4= 8 e pe] 23 26850 &

delay.c

» L

1o
* Delay funcrions
* See delay.h for details

H
3
4
5 * Make sure this code is compiled with full optimization!!!
F

B

¢ ginclude "delay.h”

9 char a:

10 woid

11 Delayfls (unsigmed char ent)

1%y .

KT}

<Empty>

-

!

=

1
delay.c

Intislizing project MSPA430 Simulstar MSP430F43 1100 Ftopped System reset

HI-TIDE Areas HI-TIDE Overview

process can be repeated until HI-TIDE deems the views too small to be split. This is usually when
the scrollbars and split buttons cannot fit into the view’s length or width.

2.2.3.4 Closing Views

Each view that can be closed has a close button in the right corner of its titlebar. Clicking the button
will close the view. If the view is the only view in a Workspace tab, the tab will be closed as well. If
there is more than one view in the tabbed workspace, the view will be closed and the views around
the closed view are resized to fill the space that becomes available. Closing a tabbed workspace will
close all the views inside it.

The view can also be closed by selecting eitheiGhase Viewmenu item in thé/iews menu or
the Close Viewbutton in the standard toolbar.

Right-clicking on a view will display its view-specific popup menu. In addition to the view-
specific options, the popup menu will also contain@lese Viewoption. Selecting this option will
close the view.

A view is also closed when it is replaced by another view. If a view’s toolbar is dragged onto an
existing view, the view will be closed and replaced with the new view. Refer to Seztio. 1for
more details on creating views from dragging view toolbar icons.

2.2.3.5 View Popup Menu

Right-clicking on Workspace views will display its popup menu. Workspace views may have their
own uniqgue menu options, but will always have view-control menu items. The view-control menu
items have the following meanings.

Split View Top/Bottom Selecting this option will split the current view into two views, one on top
of the other. The original view will be placed in the top view space and an empty view will be
placed in the bottom view space. The two views will be approximately equal in height.

Split View Left/Right Splits the current view into two views, one beside the other. The original
view will be placed on the left and an empty view will be added to the right. The two views
will be approximately equal in width.

Close View Closes the current view. If the view is the only view in the tabbed workspace, the tabbed
workspace will be closed as well. If there are other views in the tabbed workspace, the views
will be resized to fill in the space occupied by the closed view.

New Tab Opens and adds a new tabbed workspace in the Workspace area. The new tab will be
labelledNew Tab, but can be renamed. See Sectioh.2.1for more details on adding a new
tabbed workspace.

14

HI-TIDE Overview General Preferences

Figure 2.8: Font/colour select dialog

Font/Color Settings x|

rselect Font

onospaced Bl |1 Z poirts

rSelect Color

" Foreground 4 b | Red
% Backaround 4 Green
4 Blug

rPrevie

We make chips think

Ok | Cancel |

2.2.3.6 Changing Font And colour

Most Workspace views allow the font and colours used in its display to be changed. Such views
have aFont/colours... menu item in their popup menu. Selecting this menu item will display the
Font/colour Settingsdialog, which is shown ir2.8,

There are three sections in tRent/colour Settingsdialog. At the top is the Select Font area,
where the font can be set. The drop-down combo box contains the list of available fonts for that
view. To the right of the font selection combo box is the size of the selected font. The exact size can
be entered into the text field.

In the center is the colour selection area. The foreground and background font colours can be
set, by toggling between the two radio buttons. The three sliders are to adjust the red, green and blue
colour values of the font.

At the bottom of the dialog is a preview of the font type, size and colour that has been set. This
is updated as the font properties are changed.

Clicking on OK will apply the changes to the view. Clickin@ancel will discard all of the
changes.

2.3 General Preferences

The general preferences settings allow customization of HI-TIDE’s operation. These preferences
include text editor functions, through to debugging features. The preferences are s€&eviaral
Preferenceddialog.

15

General Preferences HI-TIDE Overview

Figure 2.9: General preferences dialog — project tab

General Preferences x|

| Eciitor I
rRecent Projects ———————— rAuto Save Project
[V Reload last project st startug Save project when closing

Recert projects list size: I 53: © Always C Never (= Prom

rEiilcl

7 Stop on errars
[¥ Load HEX file on successful kuild

2.3.1 General Preferences Dialog

The General Preferenceddialog provides a graphical means of setting options that apply to HI-
TIDE and all projects that are used under HI-TIDE.

To display the dialog, sele@&referencesfrom theFile menu. TheGeneral Preferencedlialog
has tabs to group the options with similar function.

The following sections describe the tabs of the dialog and the function of each of the options.

2.3.1.1 Project Tab

The Project tab contains options that apply generally to HI-TIDE projects. The options in this tab
are detailed below. Figur29 shows theGeneral Preferencedlialog with theProject tab showing
the following options.

Reload last project at startup Selecting this option sets HI-TIDE to automatically reload the last
project when HI-TIDE is restarted. De-selecting this option will cause HI-TIDE to start up
without any projects opened.

Recent projects list sizeThis option sets the number of file names to display in the recent projects
list. These represent projects that have been previously opened by HI-TIDE. This list is dis-
played under th&kecent Projectssub-menu of thd’roject menu (see SectioB.1.4. The
number of entries must be between 1 and 10, inclusive.

16

HI-TIDE Overview General Preferences

Save project when closingspecifies the save action for HI-TIDE to take when a project is being
closed. The options are: to always save the project Alevdys); prompt the user if the
project has changed@®fompt); or never save the project fil&lgver).

Stop on errors specifies whether compilation should continue if an error is encountered. Prema-
turely stopping compilation may save time compiling large projects. De-selecting this option
will force the compiler to compile all of the source files before reporting any errors. Use
this setting if you want the compiler to report all errors with all files. The link step is never
performed is there are any errors in the source files, regardless of this setting.

Often one error may causes other errors to occur in a snow-ball effect. Primarily concen-
trate on the first error(s) issued by the compiler. Seemingly extraneous error messages
may disappear after fixing problems earlier in the source and the project is recompiled.

Load HEX file on successful build If this option is selected, HI-TIDE will attempt to load the HEX
file into the debugger if the project was successfully built. This ensures that the debugger is
always working with the latest build output. When deselected, the user must manually load
the HEX file, if required, after a successful build.

2.3.1.2 Editor Tab

The Editor tab sets options specific to the editor and editing of files. The options are described in
the following. Figure2.10shows theGeneral Preferencedlialog with theEditor tab showing the
following options.

Recent files list sizeThis option sets the number of file names to display in the recent files list.
These represent files that have been previously opened in an Editor view. The list is displayed
under theRecent Filessub-menu of thé&ile menu (see Sectiof 16. The number of entries
must be between 1 and 10, inclusive.

Reload modified files This option allows control over the editor’s automatic load feature. If a file
shown in an Editor view has been modified other than by the editor, it can be reloaded to
display the changes. The editor will check all files if HI-TIDE regains focus from another
application, or after compilation of any files. The options are to always reload files if they have
been modifiedA&lways), prompt the user to reload the files if they have changedropt) or
never reload the modified filedléver). If a file has been modified, but the user opts not to
update the Editor view, the normiile modified flag will appear next to the file’s name in the
title bar of the Editor view.

17

General Preferences HI-TIDE Overview

Figure 2.10: General preferences dialog — editor

General Preferences x|
Project [Edior]|
Openi Auto
P (o E Save modified files hefore bullding project

Reload externaly morified fies & tways " never © Prompt
 twaye " Never F prampi ||PAVE modiiz s when cosig

© aways O Mever & Prompt

Prirt Optior: Arimate Option:

I~ wrap lines [Track Program Courter
[Prirt line numbers

I Print hescer

I Print twa calurns per page

Save modified files before building This option allows control over the editor's automatic save fea-
ture. Prior to building the project, the editor can check to ensure that each file to be compiled
has been saved. If the user opts not to save modified files, the file built during compilation will
be the file without the modifications, i.e. the file as it is stored on disc. The settings associated
with this option are to always save the files prior to buildiAgays), prompt if the files need
saving Prompt) or never save modified files prior to buildinyéver).

This option also applies to files compiled individually from @iempile To menu under the
C File popup menu oAssembler filepopup menu.

Save modified files when closingrhis option allows control over the editor's automatic save fea-
ture. Prior to closing, the editor checks to see if any opened files have been modified. If the
user opts not to save modified files when closing, any changes made in the editor will be lost.
The settings associated with this option are to always automatically save unsaved modified

files (Always), to prompt the user if the file needs saviygmpt) or to not save the files at
all (Never).

Wrap lines This option enables line wrapping when printing files from the editor. It is recom-
mended that this option be selected to ensure that long lines are not truncated. This is critical

when using thé&rint two columns per pageoption. This option does not affect how lines are
displayed in the Editor view.

Print line numbers This option controls whether line numbers are printed with the file. When
selected, a line number will be printed at the beginning of each line of code.

Print header This option controls whether a header is printed with the file. When selected, a header
containing the filename and current date, and a footer containing a page number, are added to

18

HI-TIDE Overview Third-Party Tools

each page in the file.

Print two columns per page This option allows printing of two columns on one page with land-
scape layout. To prevent text being printed off the column and page, selébfréielines
option when using selecting this option.

Track Program Counter This option controls how the editor behaves when stepping through a
program. When this option is enabled, the Editor view will track the program counter and
adjust its display so as the line about to be executed is visible on the screen. As the program
calls or jumps to code in different files, HI-TIDE will automatically switch views to display
the file in which the PC is located. If execution is transfered to a file that is not open in any
editor, that file will be opened.

2.4 Third-Party Tools

Third-party software tools can be executed without having to leave the HI-TIDE environment. This
feature allows customized buttons to be added to the HI-TIDE toolbar which can be used to launch
the associated third-party software. These buttons may also be used to switch to the third-party tool
once they are running.

Third-party tools, when added, are shown in the buttons list inSibip Third-Party Tools
dialog and are represented by buttons in HI-TIDBser Toolstoolbar (see Sectioi.2 for more
information on toolbars).

Some tools are automatically added by HI-TIDE and can not be removed from the tool buttons
list, although they may be hidden from the toolbar.

The third-party tools feature is mainly controlled via tBetup Third-Party Tools dialog. This
dialog can be opened from tfi®@ols menu and appears as shown in FigRr&l It can be used to
add, remove and customize tools. TBetup Third-Party Tools dialog can also be used to hide,
modify or remove the buttons once they have been installed on the toolbar.

At the top of the dialog is a list of the third-party tools buttons that are currently setup in HI-
TIDE. The center section of the dialog shows the details associated with each button. Selecting a
button from the list will enable the details panel and the details of the button will be displayed in the
corresponding text fields.

2.4.1 Adding and Deleting Tools

To add a new third-party tool to HI-TIDE, click on thdéew Tool button in the tool setup dialog.

This will create a new entry and the entry is added to the list of tools. The entry will be labelled
Untitled n, wheren is a sequential index, starting from 0 which is incremented each time a new tool
button is created. The tool's name may be changed from the default name to better describe the tool.

19

Third-Party Tools

HI-TIDE Overview

20

Setup Third-Party Tools

Tools

Hiwsy ey Tool

¥ Load Application Rermove

Toal hatme

Change icon |

IEloot Loacer

Cotrtriztd Ic:ibootldrﬂoad.exe

Additiohal argumerits I-n

Erwiranment variahles I

‘Wiorking directory Ic:ibootldr

[V Use output file

Prefix option to filename I.l'.i‘f

Build project before execution

i Alwvays " Mever (% Prompt if build required

oK, | Caneel | Al |

Figure 2.11: Tool setup dialog

HI-TIDE Overview Third-Party Tools

All third-party tool buttons must have unique names. These names are used to identify the buttons.
A newly created tool button cannot have the same name as an existing one.

The new tool button entry is assigned a default “hammer” button image. The button imag&can
be changed to a customized image. Changing of the button image is discussed in Séclidrhe
other options are described in this section as well.

When all details have been entered, click eitherApply button or theOK button to save the
new button. TheApply button saves the changes, but does not close the dialog. ClickiGgmcel
will discard any unsaved changes. When the dialog is closed, new tools will be displayed in the
HI-TIDE toolbar.

To remove a button from the list, select the button in the list and clickemove Only user-
created buttons can be removed from the list. Default buttons created by HI-TIDE can not be re-
moved, but they can be hidden. For more information on hiding buttons, refer to S2eti@n

2.4.2 Tool Options

Adding a new tool is described in Sectigrt.1land once added, the following describes the different
text fields and options within the details panel of this dialog that apply to each tool. These options
may be edited after a tool has been setup by re-opening this dialog and making the appropriate
changes.

Tool name A text field for entering the name of the third-party tool button. This name may be any
name to describe the tool, but it must be unique within the list of tools.

Command This is the actual command that is executed by HI-TIDE to start the third party software.
There is a widget button to the right of this text field that opens a file dialog to select an
executable. Théull path of the executable should be entered here. Do not enter command-
line arguments in this field.

Additional arguments These are command-line arguments that will be passed to the executable.
Leave this field blank if there are no arguments required. Do not add the name of the com-
piler's output file here. That can be automatically added by HI-TIDE. Sebs#esoutput file
option, described below. The arguments required and their format is specified by the applica-
tion being executed. See the documentation that came with this software for more information.

Environment variables Any required environment variables can be entered into this text field.
Leave this field blank if there are no environment variables required. The environment vari-
ables required and their format is specified by the application being executed. See the docu-
mentation that came with this software for more information.

Working directory This text field specifies the working directory for the executable. This directory
is where the command will be executed from. A widget to the right of the text field opens a

21

Third-Party Tools HI-TIDE Overview

directory chooser to help select the required directory. Leave this field blank if not working
directory need be specified.

Change icon Clicking on this button opens a file chooser to allow the button image to be specified.
A preview of the tool button image is shown above @leange iconbutton. If no image is
selected, a plain grey button is used on the toolbar. A generic inageerl6.gif, can be
loaded from theimages directory under HI-TIDE.

Use output file This option allows the name of the compiler’s output file to be specified to the third-
party tool. Selecting this option passes the name of the compiler’s output file as an argument
to the executable command when it is executed. If the name of the output file changes, this
feature will always choose the current output file name.

When using this feature, tHerefix option to filename text field will be enabled. This field
specifies any command-line arguments that need to be prefixed with the filename. Leave this
field blank if the filename does not need a leading command-line argument before it.

Build project before execution This option controls the auto-build feature of HI-TIDE. After click-
ing on a third-party tool button, HI-TIDE checks the status of the project prior to launching the
third-party tool. IfAlways is selected, then the project is automatically built each time. Se-
lecting Never will immediately launch the third-party tool without building the project, even
if the project is out of date. IPrompt is selected the user will be prompted to select the
required action.

In all cases, the project is built as if tlRuild button or menu item was selected, and uses
dependency checking. Thus, if a build is requested, but no files have changed, no actual
compilation will take place.

OK Button Clicking on theOK button will save the current dialog settings and close the dialog.

Cancel Button Clicking on theCancelbutton will close the dialog and any unsaved changes will
be lost.

Apply Button Clicking on theApply button will save the current dialog’s settings. Once the details
have been saved, the details are not discarded wheDaheelbutton is clicked.

2.4.3 Hiding and Showing Buttons

The third-party tool buttons can be removed from the toolbar without being deleted entirely from the
list of tools.

22

HI-TIDE Overview Third-Party Tools

If a tool button should be showing on the toolbar, but is not present, it may be that the
toolbar is hidden. Refer to Sectiéh2.1for more details on displaying the Tools tool
bar.

All the created tool buttons are listed in the tool buttons list. The list contains two columns: The
first column is theShowcolumn which contains checkboxes. The second column contaiff®the
Name, which displays the hames assigned to each button. Deselecting the check box in the show
column for a button will remove that button from the HI-TIDE toolbar, but will not remove the button
from the list. Selecting the checkbox will display the button in the HI-TIDE toolbar.

Changes to hiding or showing the buttons will only apply if @K button orApply button in
the dialog is clicked.

23

Third-Party Tools HI-TIDE Overview

24

Chapter 3

HI-TIDE Menus and Toolbars

3.1 Menus

This section presents a description of each of the HI-TIDE menus.

3.1.1 File Menu

The File menu contains menu items that relate to files used by HI-TIDE. To conform with other
applications, this menu also contains a preferences item and an exit menu item. The following
describe the menu items in detail.

New File This will create a new text editor file. Each new file is opened in a new Workspace tab.
As new files are created, they will be namgdtitiedn wheren is a sequential number. The
Workspace'’s tab in the editor will be labelled with the same name as the file.

Open... Opens a file dialog to select a file to load in the editor. The selected file will be opened in
a new editor Workspace tab. The Workspace’s tab in the editor will be labelled with the same
name as the file.

Recent Files A sub-menu that lists the files that have been recently opened in HI-TIDE. The size of
the list can be set in the editor options of tReneral Preferenceglialog, see Sectioh.3.1.2
The selected file will be opened in a new Workspace tab. The tab will be labelled the same as
the name of the file.

Save File Saves the opened editor file that is currently in focus. If the currently focused view is not
of an editor file this action will have no effect. If the file is a new file that has not yet been

25

Menus HI-TIDE Menus and Toolbars

saved with a user-specified name, the user will be prompted to enter a name with which to
save the file as.

Save All Saves all of the currently opened editor files and the project file. Untitled files will be
saved in the same manner@ave File As

Save File As...Opens a file dialog to allow entry of a new file name with which to save the current
file. This will rename the opened file.

Print... Displays thePrint dialog for printing of an editor file. Only editor views can be printed.
This menu item will only open thErint dialog if an editor view was focused prior to selecting
this option. Selecting this option while an editor view is not in focus will not have any effect.
See Sectiod.3.6for more details on printing editor files.

General Preferences...Opens thé&seneral Preferenceslialog for selecting preferences that apply
to HI-TIDE and other components of HI-TIDE.

Exit Close and exit from HI-TIDE. If there is a project currently opened, the user may be prompted
to save the project, as dictated by the general preferences settings described inZSédtibn

3.1.2 Edit Menu

The Edit menu provides functions relating to the text editor. The functions are listed and described
as follows.

Undo Reverses the last text editor action. Several editor actions can be reversed by using this item
repeatedly.

Redo Restores the edit action that was removed by thelasio action.

Cut Copies the currently selected text in a text editor view to the clipboard and then deletes the
selected text.

Copy Copies the currently selected text to the clipboard. The selected text is not deleted.

Paste Inserts the contents of the clipboard into the selected editor file, before the current position of
the cursor.

Find... Opens thd-ind & Replace dialog with theFind tab selected. This allows the user to search
for text within the currently selected editor view. An editor view must be selected for this
menu item to have an effect. See SectioBfor a detailed description of tHeind & Replace
dialog.

26

HI-TIDE Menus and Toolbars Menus

Find Again Repeats the last search without displayingFel & Replace dialog. An editor view
must be selected for this menu item to have an effect.

Replace... Opens themind & Replace dialog with theReplacetab selected. This allows the user
to search and replace text within the currently selected editor view. An editor view must be
selected for this menu item to have an effect. See Sectidrfior a detailed description of the
Find & Replace dialog.

3.1.3 View Menu

TheView menu provides actions that relate to some of the visual components within HI-TIDE. The
menu items are described below.

Toolbar TheToolbar menu is a submenu that shows a list of the toolbars available in HI-TIDE. The
user is able to select which toolbars will be displayed in HI-TIDE by selecting the appropriate
item in theToolbar menu. The toolbars which are displayed are marked with a check.

Split View Top/Bottom Splits the currently selected Workspace view into two views. The result
will be two views, one on top of the other. The original view will be placed in the new top
view. The bottom view will be an Empty view. See SectibA.3.3for more details on splitting
of views. Selecting this option while no views are in focus will have no effect.

Split View Left/Right Splits the currently selected Workspace view into two views. The result will
be two views side by side. The original view will be placed in the new left view. The right-
hand side view will be an Empty view. See Sectibi.3.3for more details on splitting of
views. If a view is not in focus when selecting this option, it will have no effect.

Close View Closes the currently focused Workspace view. If this Workspace view is the only view
in the Workspace tab, the tab is removed as well. If the Project area or Build area are in
focus when this option is selected, they are hidden from display . For more information on the
Workspace area, refer to Sectidr3.

New Tab Adds a new tab to the Workspace area. The new tab will be labMksd Tab and will
contain an Empty view. See Sectiar?.2.1for more details.

Show/Hide Project area Shows or hides the Project area. Refer to Sectidrior more details on
the Project area.

Show/Hide Build area Shows or hides the Build area. Refer to Sectiohfor more details on the
Build area.

27

Menus HI-TIDE Menus and Toolbars

The followingView menu items create new views which are then added in new tabs in the Workspace
area. As the views are plugins, the order in which they appear in the menu may differ. The views are
described in alphabetical order.

Data Memory Displays the writable memory of the target device. See Seédtiér2for more de-
tails.

Executable Memory Displays the executable memory of the target device. See Setdahfor
more details.

Registers Displays the registers memory of the target device. See Sedtibi3for more details.

Variable Watch Displays the view to monitor variables and their values. This view can be used to
display any variables defined by a program. See Sectidmifor more details.

Local Watch Displays the view to monitor block-scope variables and their values. This view au-
tomatically populates withuto and static local variables defined within the function being
executed. See Sectidr4.4for more details.

Virtual I/O Displays a view in which peripheral device panels which can be added and wired to the
simulator.

3.1.4 Project Menu

The Project menu contains project-related menu items. These are described below.

New Project. .. Opens the Project wizard which will help create a new HI-TIDE project.

Open Project... Opens a file dialog for selection of an existing project to load.

Recent Projects A submenu which displays a history list of projects that have been opened previ-
ously. The number of projects in the history can be set irGaeeral Preferenceglialog, see
Section2.3.1.1 Selecting a project from this submenu will reopen the project if the project
file still exists.

Close Project Closes the currently opened project. Options in@emeral Preferenceglialog can
be set to determine if the project file is to be saved before closing, see S2&ibri Similar
options also apply for unsaved Editor view files that are being closed.

Save Project Saves the currently opened project file to disk.

Save Project As...Saves the currently opened project under a different name or path. A file dialog
will appear for the user to select the new name and path.

28

HI-TIDE Menus and Toolbars Menus

Add Files To Project... Opens a file dialog for the user to select files to add to the project. The
files that can be added to the project include source file®f .as), object files (obj) and
library files (. 1ib). Multiple file selection can be performed in the file dialog.

Add File To Project Adds the currently opened and focused Editor view file to the project. If the
file cannot be added to the project, this option is disabled.

Change Toolsuite Version. .. Selects the toolsuite version to use with the project. The toolsuite re-
lates to the compiler and compiler version. For more details on toolsuites, refer to Sedtion
For more details on changing toolsuites, refer to Sedi6ril

Change Device. .. Selects the target device for the project. A chip selection dialog is shown to
enable the selection of the new microcontroller. This action can also be performed by double-
clicking on the target name in the status bar. Sediién?has more details on changing target
devices.

Change Package. ..Selects the package type of the target device. A chip package selection dialog
will appear to enable the selection of the new chip package. Some microcontrollers have
functionality that is dependent on the package type. See Seétid@for more information
on Variable Watch view package types.

Change Debugger. .. Selects the debugger to use with the project. The debuggers available will
depend on the toolsuite selected. This action can also be performed by double-clicking on the
debugger name in the status bar. For more details on changing debuggers, seesSedtion

Global Compiler Options... Opens th&lobal Compiler Options dialog to allow setting of global
compiler options. Global compiler options affect all the files in the project. The dialog and
options displayed by this menu are very much dependent on the toolsuite selected. The com-
piler options are discussed in detail in Chaptehe Global Compiler Options dialog can
also be displayed by double-clicking on the output node in the Files view in the Project area.

3.1.5 Build Menu

TheBuild menu contains the actions to build the current project. The options are:

Make Builds the project with dependency checking. Only source files that are not up to date are
recompiled. If the output node is not up to date, the object files are linked to create an updated
output node.

Make All Compiles all of the source files in the project and then links to create the output node.This
action always recompiles each source file and relinks the project even if the files have not been
modified.

29

Menus HI-TIDE Menus and Toolbars

Clean Deletes all compiler-generated files, e.g. object filesf), list files (. 1st), source-level
debugging files (sdb, . sym), etc. Object files that are specified in the project are not removed.

Compile To Object File Compiles the current focused file showing in the Editor view to an object
file. This option is only enabled if the view in focus is an editor view. No other files are
compiled and the project is not linked. This option can be used to locate errors within the file
currently being developed.

3.1.6 Debugger Menu

The menu items in th®ebugger menu are to control the selected debugger. If no debugger is
selected, this menu has no effect. The active debugger is displayed in the status bar. The menu items
are described in the following.

Reset Performs a reset of the debugger. Refer to the documentation of the debugger for more details
on what the reset action does at the debugger level.

Run Commences full-speed execution of the program in the debugger. Debugger views will not be
updated during full-speed execution. To stop this action, us8tiyitem.

Animate Continuously executes single assembler steps, updating debugger views after each step.
Execution is slower than that associated withfua action. To stop the debugger, US®p.

Stop Stops the current execution of the debugger.

C Step Makes the debugger execute a series of assembler instructions which correspond to one line
of C source code. The number of executed instructions will depend on the C source statement.
Debugger views are updated when the debugger has executed the instructions.

Assembler StepMakes the debugger execute a single assembler instruction. Debugger views are
updated once the debugger has executed the instruction.

Set/Remove Breakpoint Allows a breakpoint to be set or removed on the C line which contains the
caret in a focused Editor view, or on the highlighted assembiler line in a focused Disassembly
view. A set breakpoint is indicated by a red dot. The dot disappears if no breakpoint is set on
this line. See Sectiof.1.2for more information.

Disable Breakpoint Disables, but does not remove, a breakpoint from the C line which contains the
caret in a focused Editor view, or on the highlighted assembiler line in a focused Disassembly
view. The disabled breakpoint is indicated by a grey dot.

Remove All Breakpoints Removes all breakpoints from the program, whether they were set on C
statements or assembler instructions.

30

HI-TIDE Menus and Toolbars Toolbars

Disable All Breakpoints Disables, but does not remove, all breakpoints from the program, whether
they were set on C statements or assembler instructions.

Enable All Breakpoints Enables all disabled breakpoints from the program.

Run To Cursor Causes atemporary breakpoint to be inserted on the C line which contains the caret
in a focused Editor view, or on the highlighted assembler line in a focused Disassembly view
and program execution to continue from the current program counter location.

Load HEX File... Opens a file dialog to select the HEX file to load into the debugger memory.
This can be used to over-write a HEX file previously loaded into memory. The HEX file can
be automatically loaded after building. See Secfidh1.1

3.1.7 Tools Menu

TheToolsmenu provides functions to access external or third party tools, as well as the Code Wizard.

Code Wizard Opens the&Code Wizard dialog. The Code Wizard is used to aid in the initialization
of target device peripherals. See Chafitéwr more information.

Setup User Tools. .. Opens theésetup Third-Party Tools dialog. See Sectio.4 for more details
on user tools.

3.1.8 Help Menu

Contains various help information.

About Shows theAbout dialog, listing details of HI-TIDE, including the version number, copy-
right, contact and trademark information.

3.2 Toolbars

This section presents an item-by-item description of each of HI-TIDE’s toolbars and the functions
of each of the toolbar buttons.

3.2.1 Hiding / Showing Toolbars

HI-TIDE's toolbars can be hidden from view so that they do not clutter the toolbar display.
To hide a toolbar, select thdew menu, and then th&olbar sub-menu. This will display a list
of the available toolbars. The toolbars that are currently visible will be marked with a check next to

31

Toolbars HI-TIDE Menus and Toolbars

their name. Those without the check are hidden. To hide a toolbar that is showing, select that toolbar
name from th&Toolbar sub-menu.
To show the toolbar, select the toolbar name from the same menu.

3.2.2 Standard Tools Toolbar

The Standard Tools toolbar provides standard tools such as creating new files, saving files, printing
and splitting of views. The standard toolbar buttons are listed and described below.

New File This will create a new editor text file callddntittedn, wheren is a sequential number.
This is the same as selectiinpw File menu item in theFile menu. TheNew File toolbar
button can be “dragged and dropped” to an Editor view create a new file. Refer to Skstidn
for more details.

Open File Opens a file dialog for selection of an existing text file to open in the editor. This is the
same as selecting tl@pen File menu item in thd-ile menu.

Save File Saves the currently focused file in the editor. This is the same as selectiBgubd-ile
option in theFile menu.

Save All Saves the currently focused file in the editor. This is the same as sel8etiegAll in the
File menu.

Print Opens thérint dialog for setting up print options and printing an editor file. This is the same
as selectingrint... from theFile menu.

New Tab Creates and adds a new Workspace tab to the Workspace area. This is the same as select-
ing theNew Tab menu item in the/iew menu.

Split View Top/Bottom Splits the currently focused view into two views, one on top of the other.
This is the same as selectiBglit View Top/Bottom in the View menu.

Split View Left/Right Splits the currently focused view into two views, side by side. This is the
same as selectingplit View Left/Right in the View menu.

Close View Closes the focused view. The is the same as seleClioge Viewin the View menu.

3.2.3 Editor Toolbar

The Editor toolbar provides tools essential to the editor. These include actions such as cut, copy and
paste. The editor toolbar buttons are listed and described below.

32

HI-TIDE Menus and Toolbars Toolbars

Undo Reverses the last editor text action(s). This has the same effect as selémdiodrom the

Edit menu.

Redo Restores the edit action that was reversed by théJadb action. This is the same as selecti
Redofrom theEdit menu.

Cut Copies the selected text from the editor text file to the clipboard and then deletes that sele ted
text from the file. This is the same action as selec@ug from theEdit menu.

Copy Copies the selected text from the editor text file to the clipboard. This is the same as seing
Copy from theEdit menu.

Paste Inserts the contents of the clipboard into the editor text file before the current position e
cursor. This is the same as selectPastefrom theEdit menu.

3.2.4 Build Toolbar

The Build toolbar provides tools related to project compilation. The build toolbar buttons are listed
and described below.

Make Project Builds the current project files, using dependency checking. This is the sampeas

selecting theMake option in theBuild menu

3.2.5 Views Toolbar

The Views toolbar provides means of creating and adding new views to the Workspace area. The
buttons in the Views toolbar can be “dragged and dropped” into the Workspace area to create new
views. Clicking on the view buttons will create a new view in a new Workspace tab. Dragging the
button and dropping the view will replace the current view with the dragged view. See S2¢&ién
for more information.

The Views toolbar buttons are listed and described below.

Data Memory Creates a new view containing the writable memory view of the target device. [Lhjs
is the same as selectimzata Memory from theView menu. This button can also be dragg
and dropped to create a new view.

Executable Memory Creates a new view of the of executable memory of the target device. Thisjs
the same as selecting tBxecutable Memory menu item from th&/iew menu. This button
can also be dragged and dropped to create a new view.

Registers Creates a new view of the registers of the target device. This is the same as selecting
Registers from the view menu. This button can also be dragged and dropped to creat ew
view.

33

Toolbars HI-TIDE Menus and Toolbars

Watch Variables Displays the view to monitor variables and their values. This view can be used to
display any variables defined by a program. This is the same as selectivgtitie Variables
menu item from th&/iew menu. This button can also be dragged and dropped to create a new
view.

Local Watch Displays the view to monitor block-scope variables and their values. This view au-
tomatically populates withuto and static local variables defined within the function being
executed. See Sectidn4.4for more details.

Virtual I/O Displays a view in which peripheral device panels which can be added and wired to the
simulator.

3.2.6 Tools Toolbar

The Tools toolbar contains any tools that are provided with HI-TIDE. The buttons in this toolbar are
listed and described below.

Code Wizard Launches th€ode Wizard dialog. See Chaptétfor more information.

3.2.7 User Tools Toolbar

The User Tools toolbar contains user-defined tools and actions. The buttons are customizable and
may contain different icons. See Sectidrl for more details on setting up and using third party
tools.

3.2.8 Debugger Toolbar

The Debugger toolbar buttons are used to control the debugger that is selected. The buttons are
disabled if there is no debugger selected for the current project.

The basic functions of the debugger are controlled by these toolbar buttons, which are listed and
described below.

Reset Resets the debugger. The extent of the reset will be dependent on the debugger. Refer to the
debugger’'s documentation for more details on what type of reset the debugger performs. This
button has the same effect as seleciR&getin the Debuggermenu.

Run Does a full speed execution of the code in the debugger. Debugger views are not updated
while the debugger is running at full speed. While the debugger is running, this button is
replaced with theStop button, which is used to terminate the full speed execution of the
debugger. Clicking on this button has the same effect as seleRtingin the Debugger
menu. This button is disabled while another action sucArdmate, C Stepor Assembler
Stepis executing.

34

HI-TIDE Menus and Toolbars The Status Bar

Animate Continuously executes single assembler steps, updating debugger views after each step.
This has the same effect as continuously clicking on the assembler step bDgbagger
views are updated while this action is running. While the debugger is running\riheate
button is replaced by th8top button. The debugger views are updated at the end of each
execution each assembler instruction. This action can also be performed by selecting the
Animate option from theDebuggermenu. This button will be disabled while the debuggeri
operating undeRun, C Stepor AssemblerStep. B

C Step Steps the debugger a series of assembler instructions equivalent to one line of C source
code. While the debugger is stepping, this button is replaced witlsStbe button and is
reinstated after the stepping stops. Selecting this button is the same as sé&eStemfrom
theDebuggermenu. The debugger views are not updated while the debugger is steppiut
are updated once the stepping is completed. This button will be disabled while other actions
such aRun, Animate or Assembler Stepare being executed by the debugger.

Assembler StepMakes the debugger execute one assembler instruction. The debugger views are
updated at the end of the execution of the assembler step. This is the same as selecting the
Assembler Stepoption from theDebuggermenu. This button will be disabled while th
debugger is operating undBun, Animate, or C Step.

Stop This button will appear in place of tHeun button,C Step button orAnimate button, when
one of those actions have been selected. Stop button will appear in lieu of the button tha
started the debugger. Selecting this button will stop the debugger, and the original butt ill
be again displayed.

3.3 The Status Bar

The Status Bar can contains information relating to the Editor view, the currently selected debugger,
the selected target device, and information relating to the execution of a program being debugged.
A typical status bar display is shown in Figue.

On the far left of the status bar is the Editor view;s caret position indicator. This indicator shows
the line number and column position of the caret, in relation to the file in the Editor view that is
currently being edited. If an Editor view is not in focus, no line or column information will be
displayed.

To the right of the caret position indicator is the editor status. This reports events in the editor.
The events are reported as text messages. Typical events can include if a search in the editor has
reached the end of file, etc.

To the right of the editor status is a description of the debugger that is currently selected. This will
display either the name of the debugger that is selected or th<eRtebuggerwhen a debugger

35

The Status Bar HI-TIDE Menus and Toolbars

Figure 3.1: The status bar

Ln21: Col 0 End of file reached MSP430 Simulstor MSP430F449 pe0x1100 [Stopped [System reset

is not selected. Double clicking on this section will display a dialog to allow selection of a different
debugger, if a different debugger is available.

The name of the project target device is displayed in the third section of the Status Bar. Double
clicking on this section will display a dialog to allow selection of a different target device.

The fourth section contains the value of the program counter. If no debugger is selected this
section will be blank.

The next section after the program counter indicates the status of the debugger. The debugger can
be in one of three states and is indicated by the t8tdpped Busy or Running. Stopped indicates
that the debugger has halted and is not performing any tasks. Busy indicates that the debugger
is performing some task that does not involve program execution. Example of a busy state for a
debugger could be resetting or downloading memory. The Running state indicates that the debugger
is executing the program.

A description of why the debugger last stopped is shown in the far right section of the Status
Bar. On most occasions this section will displdger Requestedor Breakpoint as the reason
execution was stopped. On some occasions there will be an error in executing the program causing
the debugger to stop, an explanation of the error will be displayed in this section.

36

Chapter 4

HI-TIDE Views

This chapter looks at all the views which can be displayed in HI-TIDE.

4.1 The Project Views

The views within the Project area are static views that are always visible and which are managed by
HI-TIDE. The following sections describe their purpose and options.

41.1 Files View

The Files view is one of two views within the Project area and displays the files associated with the
application being developed. It is shown circled in Figdre

The files are displayed like a directory structure. At the top (root) of the structure is the output
file (or output node). The next level under this root are the file folders. The folders contain the source
files, object files and libraries associated with the project.

The folders aré& Files (which contains C source fileshssembler Files(which contains assem-
bler source files)Pbject Files (which contains user-supplied relocatable object files)labihries
(which contain user-supplied, HI-TECH-format library files).

By right-clicking on the files or folders a popup menu will be displayed showing various options.
These options include functions such as adding files to the project, creating new files, opening the
file in the editor, etc. The following sections describe these options in detail.

37

The Project Views HI-TIDE Views

Figure 4.1: Project area

4 HI-TIDE - aaa.hpri =
Fil: Edi View Froject Buld Debugger Tooks Help
o el = I
el e ==Y = @ o[w| B &5 & <<
S nisassembly EVICE_MEMORY ¥
— Address Data Label Opcode
z e Delay functions =l 10FE 0000 illegal ZII
R See delay.h for details p> 1100 04004051 start now.w
i x 1104 FOFA4360 startup wov.w 2]
(88 Aissermbler Files 5 s Make sure this cods is comp 1108 FOF34360 now.w
{8 Chject Files 6 1100 11324030 br.w
{iib] Libraries 5 {
& ginclude rdelay. bt 1110 35.2-3 Delazhia up
9 : :
" char a; @111z 4267 now.b
woid . while(i—-) {
11 DelayMs (unsigned char cnt) 1114 ac04 Sup
1 Fo DelayUs(us ...
1 unsigned char 17 1116 00774076 wov.b
614| while (emt--} { 111a 8356 sub.b
i 15 i=d; 111C 2005 inz
15 while({i--] { 5 while{i--) { B
[T e Ll_l | i _>l_I
Fies!| Code Samples delay c | Disassembly | Data Memary
e

Build Results

| Error Log | Memory Usage | Psect Usage | Buid Log

4.1.1.1 Output File Popup Menu

Double-clicking on the output file node will open ti@&obal Compiler Options dialog for the
project. Right-clicking on the output file node provides the following options in a popup menu.

Global Compiler Options... The Global Compiler Options... command opens th&lobal Com-
piler Options dialog for the project. The dialog allows the setting of project-related options,
on a global scale to the project. These options include compiler options, memory options and
linker options. These options are discussed in Chapter

Properties The Properties command opens theile Properties dialog, which displays properties
of the default output file stored on disk. See Sectich2for more information on thé&ile
Properties dialog.

4.1.1.2 C Files Folder Popup Menu
Right-clicking on theC Files folder provides the following options.

Add Existing C File(s) This command allows one or more existing C files to be added to the
project. The file(s) to be added to the project can be selected via the file dialog that is shown.

38

HI-TIDE Views The Project Views

Create And Add New C File This command will show the file dialog which will prompt for a file
name and path. Once a file name is entered, the new file, with the specified name, will be
added to the project in the appropriate file folder and will be opened in the editor as a new file.

4.1.1.3 C File Popup Menu

Double clicking on a file in th& Files folder will open that file in the editor. If the file is currently
opened in the project, the editor will bring the view with that file into focus. If the file is not opened
in the editor, the file will be opened and placed in a new Workspace tab, and the tab will be labelled
with the name of the file.

Right-clicking on the individual C file will select that file and show a popup menu with the
following options:

Remove from project This option removes the selected file from the project.

File-specific options... TheFile-specific options..command allows the setting of compiler options
which only apply to the selected file. Any options set for a single file will override the global
options specified for the project. The file-specific options which can be specified will be
dependent on the compiler selected.

Compile to... This menu contains commands to compile the selected C file to the following formats

Preprocessed fileThis command compiles the selected file to a pre-processed. fite)
The output file will be the name of the C file but will have gre extension.

Assembler file This command compiles the selected file to an assembler .fil€).(The
output file will be the name of the C file but will have. as extension.

Object file This option compiles the selected file to a re-locatable object file{). The
output file will be the name of the C file but will have.abj extension.

Properties... TheProperties...command opens a dialog that displays properties of the selected file
stored on disk. See Sectidnl.2for more information on th&ile Properties dialog.

4.1.1.4 Assembler Files Folder Popup Menu

Right-clicking on theAssembler Filesfolder provides the following options:

Add Existing Assembler File(s) This command allows one or more existing assembler files to be
added to the project.

Create And Add New Assembler File This command will prompt for a file name and path. Once
a file name is entered, the new file with the specified name will be added to the project and is
also opened in the editor as a new file.

39

The Project Views HI-TIDE Views

4.1.1.5 Assembler File Popup Menu

Double clicking on the file will open the file in the editor. If the file was not already opened in the
editor, the file will be opened and placed in a new Workspace tab, with the tab labelled with the
name of the file. If the file was already opened, the editor will bring that file into focus.

Right-clicking on the individual assembler file will select that file and show a popup menu with
the following options:

Remove from project This option removes the file from the current project.

File-specific options... TheFile-specific options..command allows the setting of compiler options
which only apply to the selected file. Any options set for a single file will override the global
options specified for the project. The file-specific options which can be set will be dependent
on the compiler used.

Compile to... The Compile to... menu contains commands to compile the selected assembler file
to the following formats

Preprocessed fileThis command compiles the selected file to a pre-processed. fite)
The resulting file will be the name of the C file but will have@e extension.

Object file This option compiles the selected file to a relocatable object file). The
resulting file will be the name of the C file but will have ab j extension.

Properties... The Properties... command opens a dialog that displays properties of the file stored
on disk. See Sectiof.1.2for more information on th&ile Properties dialog.

4.1.1.6 Obiject Files Folder

Right-clicking on theDbject Files folder will show a popup menu with the following options.

Add Existing Object File(s) This command allows additional pre-compiled object files to be added
to the project. D not add object files created from C or assembler project files.
4.1.1.7 Object Files

Right-clicking on theObject Files will select that file and show a popup menu with the following
options.

Remove From Project The Remove From Projectcommand will remove the object file from the

project. If the object file is the standard object file, confirmation will be required before the
file is removed as this is not a common operation.

40

HI-TIDE Views The Project Views

Properties... The Properties... command opens a dialog that displays properties of the file stored
on disk. These properties are the absolute path of the file, the file’s size in bytes and the time
and date it was last modified. See Sectioh.2for more information on th&ile Properties
dialog.

4.1.1.8 Libraries Folder
Right-clicking on thelibraries folder shows a popup menu with the following options.

Import Library This command allows the addition of pre-compiled libraries to be added to the
project.

4.1.1.9 Library Files

Right clicking on the library file selects that file and provides the following options.

Properties... TheProperties...command opens a dialog that displays properties of the selected file
stored on disk. See Sectidnl.2for more information on th&ile Properties dialog.

Remove From Project TheRemove From Projectcommand will remove the selected library file
from the project. If the library file is a standard (compiler supplied) library file, confirmation
will be required before the file is removed as this is not a common operation.

4.1.2 File Properties Dialog

The File Properties dialog displays the properties of a file stored on disk. The information includes
the name of the file, the full directory path of the file, the size of the file and when it was last
modified.

Additional information can also be associated with the file. This information includes the author
of the file, the company and any accompanying notes. The additional information are text saved
with the file and can optionally be filled in. This information is not actually saved with the file but
with the project information and will not affect the file in any way. Figdt shows a typicaFile
Properties dialog.

4.1.3 Code Samples View

The File Properties dialog displays sample files that maybe be referenced during program develop-
ment. The files shown are the contents of¢heples directory contained in the selected toolsuite’s
distribution. These files may opened in an Editor view by either double-clicking their icon, or drag-
ging the file icon to a Workspace view.

The files shown in this view are not stored in the project file.

41

The Build Views HI-TIDE Views

Figure 4.2: File properties dialog

File Properties x|
File
Matne: delay .
Path: h:hi-tice
Size: 315E
Last Modifiect 134072003 14:26:59
rComment:

Author: HI-TECH Software

Company: [H-TECH Software

delay routines|

Motes:

e |

4.2 The Build Views

The views within the Build area display information relating to compilation of the project. The Build
views are static views that are always visible and which are managed by HI-TIDE. There are four
tabs, labelledError Log , Memory Usage Psect Usag@andBuild Log. Each view is described in
the following sections.

The termsbuild andbuilding used in the following sections refer to either compiling, or compil-
ing and linking of the files in the project. Figu#e3 shows the Build area circled.

4.2.1 Error Log View

The Error Log view displays error and warning messages that were issued by the compiler when
building the project. The errors/warnings are displayed in a table with four columns, mayhes:
File, Line # andDescription.

Double clicking on a error or warning will display the file that contains the error and move the
caret to the line on which the error occurred. Figdaréshows a typical error summary in this tab,
showing both warning and error messages.

The Type column displays easy-to-identify images which indicate either an error, warning or a
successful build. A re@& shown in the type column denotes an error occurred while building and
the row that it appears on contains the error message that was issued by the compiler. A\yellow

42

HI-TIDE Views The Build Views

Figure 4.3: Build area

% HI-TIDE - aaa.hpri e =&l x|
Fie Edit View Project Buld Debugger Tools Hefp

DEI-MEIQIE‘*F‘EF oo 4 (B B 9 b w] A BE 8658 & <%
A [Jossassemon e e veworr =[]

1o — Adoress Dt Label Opcods
PR Delay functions = 10FE 0000 illegal =
$ee delay.h for details > 1100 DAD0403L start nov. =l

—

1104 FOFA4380 startup wov.w

1108 FOF84380 nov.w
1100 11324030 br.w

Make sure this code is comp

1{
1110 3008 _Delaylis imp
. it
o 51:; & @112 4267 nov.b
while(i--) {
71 Delayie (uneigned char cnt) 1114 acoa
12 Pelayls(us ...
2 unsigned char i; 1116 00774076 nov.b
1 | while (Ent--) { 1114 8356 aub.b
@15 =4 111c 2005 jnz

16 wh1lEE1 - = whiledi--) { -
K] — i ;l_‘ | i _>l_|
Figs Code Samples | | gegy.o | Disassembly | Deto iemery |

——

Build Resutts B

3
4

5

& %
5

2 ginclude "delay. b
H

Jup

in the type column denotes a warning message, issued by the compiler. If the build was succ I5sful,
a green tick will be displayed. v

TheFile column displays the file where the error or warning occurred. Some errors or warnings,
such as linker errors, may not display a file name.

TheLine # column indicates the line number of the file, shown in Eile column, where the
error or warning occurred. Some errors or warnings, such as linker errors, may not display a line
number.

The Description column displays a short description of the error or warning that occurred. A
successful build will yield the texto Errors. in this column.

4.2.2 Memory Usage View

The Memory Usage view displays memory usage statistics for the compiled program. This tab will
only show the memory statistics if the build was successful, i.e. there were no errors. If errors
occurred during in the build of the project, this tab will be blank.

The memory information that is displayed will be compiler specific. A typical memory usage
output is shown in Figuré.5.

43

The Build Views HI-TIDE Views

Figure 4.4: Error log

S| HI-TIDE - aaa.hprj =151x|
Fle Edit Yiew Project Buid Debugger Tools Help
== epla B o
D& =S| HERE <]~ 4|l @ @ » w23 5585 & 5
ldetay.c B
7 —
g ginclude "delay.h” d
9 char o
10 vota -
11 Delays (unsigned char ent)
12y =
KT ;l_l
delay.c
Build Results
Type File: Line # Description
E |niniticedelay o 10 ; expected -
E |niticecielay.c fa o idertifer in declaration
b itide'velay i missing basic type: int assumed
E |niniticewelay c 14 ; expected
E h:hi-ticewdelay .o 16 Iha identifier in declatation
I Victievletay o he missing basic type: int assumed
E |hnidtidetelay.c e expected =
E h:hi-ticewdelay .o nv Iha identifier in declatation
h:thi-ticie'delay ¢ iEd missing basic type: int assumed
E |hhiticeielay.c h7 : expected
E |ninitidedelay o i no idertifer in declaration
i thiticie delay ¢ 17 missing basic type: int assurmed
E |hhiticetelay.c h7 : expected
E |ntiticecielay.c h7 o idertifier in declaration
b ihiticetcelay o n7 iz sine hasic tune: int aee mead -
4 | »
_Enor Log | Memery Ussge | Psect Usage | Buid Log
n& Col6 fritisizing project MSP430 Simulstor | MSP430F440 po0x1100 Etopped [Bystem reset

4.2.3 Psect Usage View

The Psect Usage view displays psect information for the program sections in the compiled program.
This tab will only show the psect usage if the build was successful , i.e. there were no errors. If
errors occurred during the build of the project, this tab will be blank.

The psect usage information that is displayed will be compiler specific. FigGrehows a
typical psect usage output.

4.2.4 Build Log View

The Build Log view displays detailed information on the build process. The information in the
build log includes the date and time the build occurred, the dependency checking process used by
HI-TIDE, command line options passed to the compiler to build and link the files and any compiler
output.

The build log is updated on each build and will be updated even if errors occurred during building
of the project. For a detailed description of when the build log is updated and the meaning of the
contents of the log see SectiérB.4

44

HI-TIDE Views The Editor View

Figure 4.5: Memory usage output

IR

File Edt Wew Project Buld Debugger Tools Help

0| 2R | BRI o o] (=l B8] @ »[w] 33 BB&5 &

delay.c | x|
7 =
ginclude "delay.h" d
“ char aj
10 void I
11 DelayMs{unsiemed char cnt)
1z =
T _>l_I

delay.c

Build Results

emory Usage Map:

Progran space used S6h [&6) of EEEOh bytes avail { 0.1%)
ata space d an 4) of 900h bytes avail { D.2%)
RAN used @ 4) of G00h bytes avai 10 0.2%)
THFHEN d Oh | 0) of 100k bytes avai 1 0.0%)

2
&

Summary:

Program space used 56h bytes { 0.1%
0.2%

)
ata space used an bytes |)

Error Log :Memory Usage || Psect Usage | Build Log

Itislizing project MEP430 Simulator MSP4G0F44a o100 [topped [Bystem res: st

4.3 The Editor View

The Editor view is used to display and edit text files in HI-TIDE. The editor provides syntax high-
lighting for C source and header files. The editor also contains cut, copy and paste functionality and
multi-level undo and redo.

The editor also provide a means of debugging source code, by allowing the setting of source-level
breakpoints and tracing the code execution.

The Editor view consists of three regions - the line number gutter, the breakpoint gutter and the
main text area, as shown 4nv.

4.3.1 Editor Gutters
4.3.1.1 Breakpoint Gutter

The Breakpoint gutter, on the very left of the Editor view, is to provide a view of the breakpoints that
have been set for the file showing in the Editor view. The items that can be shown in the breakpoint
gutter are a “red dot”, a “grey dot”, a “green arrow” and a “red arrow”.

A “red dot” denotes that an enabled breakpoint has been set for the source code line on wt®h the
dot is shown. Breakpoints can be disabled without having to remove the breakpoint entirely. A “grey

45

The Editor View

HI-TIDE Views

46

Figure 4.6: Psect usage output

S HI-TIDE - aaa.hpr)

Fle Edt Vew Project Buld Dehugger Tools Help

=181 %

Oz =)2s] B R B o]« =
|

7

10 yoid

124

I KT

¢ #include "delay.h”
9 char a

11 Delayls unsiened char cnt)

) v|w 29 SRS &

o

I

delay e

Build Results

Psect Usage Map:
Poect | Contents | Mewory Range
1 |
rogram | Starvup code | 1100k - 1103h 4 bytes
init | RAM clear and copy code | 1104h - 110Fh 12 pytes
text | Progran and library code | 1110h - 1135h 38 bytes
ectors | | FFEOR - FFFFh 32 bytes
1 |
s | RAM wvarishles | 0200k - 0203h 4 bytes
1 |

Error Log | Memory Usage | Peect Usage | Buid Log

friizing project MSP430 Smulster

MSF430F449

[pe:0x1100 [Stopped System reset

Figure 4.7: Editor view layout

1%
13
&1l
@15
16
;17
18
14
20y
1

unsigned char i;

while

[cnt--)
i=4;

{

while({i--} {

DelayUs (u3_CNT) ;

HI-TIDE Views The Editor View

dot” denotes that a breakpoint has been set at the source code line but the breakpoint is dZbled.
Source code lines that do not have any dots beside them means that there are not breakpoints set for
that source line. Figuré.7 shows breakpoints set, breakpoints enabled and disabled.

source-level breakpoints can be managed by right-clicking in the breakpoint gutter and selecting
from popup menu or by double-clicking in the breakpoint gutter at the line of code. Refer to Section
4.3.8for more details on the popup menu. Refer to Secti®Bsdand4.3.11for more details on
managing source-level breakpoints from within the breakpoint gutter.

The breakpoint gutter also provides an indication of the program counter. While stepping the
debugger, a program counter indicator (“green arrow”) will appear in the breakpoint gutter. P*his
denotes the source statement that will be executed next. If the debugger stops at an assembler
instruction that is within the block of instructions corresponding to a C statement, the arrow will
point to that C statement. If the debugger stops on an activated source-level breakpoint, a “red
arrow” will be displayed to show that the debugger has stopped on a breakpoint.

4.3.1.2 Line Number Gutter

The Line Number gutter is to the immediate right of the breakpoint gutter (see Figirdhe line
number gutter displays sequential line numbers with every line of source code. The line numbers
form no part of the source file or program, but can be used to make reference to particular source
lines easier.

4.3.2 Creating Editor Files

A new file can be created by selectiNgw File from theFile menu or by clicking on th&lew File
button in the standard toolbar. A new Editor view will be created and displayed in a new Workspace
tab. A new file will be opened in the Editor view, in a tab callédtitled n, wheren is a number.

The new file will not be saved to disk until it is explicitly saved. Closing the file without
saving will lose all unsaved data. When the file is saved, a file name and directory of
the file can be set.

A new file can also be created from the project view by right clicking @Falesor Assembler Files
folder and selectin@reate and Add menu. This will display an Editor view in a new Workspace
tab and also save the file to disk.

Alternatively, new editor files can be created by dragging\be File button from the Standarc %
toolbar to a workspace view. The mouse pointer changes to indicate that the view over whi_]
pointer sits can be replaced by the editor.

47

The Editor View HI-TIDE Views

4.3.3 Opening Editor Files

There are a number of different ways to open files in the Editor view.

A file can be open by selectin@pen File from theFile menu. This action will display a file
dialog that will allow a file to be selected and displayed. Opening a file through this menu will create
a new view in a new Workspace tab, labelled with the name of the file. The editor also stores a list
of files that have been recently opened.

To open a file that has been recently opened, select the file fro®@pkba Recently Opened
File submenu in thé&ile menu. This action will display the selected file in an Editor view in a new
Workspace tab. The Workspace tab will be labelled with the name of the file. The number of files
stored in theDpen Recently Opened Files can be configured in@eneral Preferenceglialog.

A C or assembler source file that is part of the project can be opened by double clicking on the
file's icon in the Files view in the Project area. This action will display the selected file in an Editor
view in a new Workspace tab if the file is not already opened. If the file is already opened in an
editor, the editor will locate the first view that contains the file and give focus to that view.

A C or assembler file that is part of the project can also be opened by dragging the file from the
project view and dropping the file onto an existing view. When the file is dropped, the existing view
will be replaced by an Editor view displaying the selected file.

Files can also be reloaded if they are externally modified. By default the user is prompted
to reload the file when it is detected as being modified externally, but this can be changed in the
General Preferencedlialog.

4.3.4 Saving Editor Files

To save a file, make sure the file is in focus and seBznte Filefrom the File menu. If the file
is a new untitled file, a file dialog will be displayed where a file name and path for the file can be
selected. If the file is not in focus, selecting Bave Filemenu item will have no effect.

SelectingSave Allfrom theFile menu will save the project file and all opened files in all Editor
views.

To save a file under a different name and/or directory s&agt File Asfrom theFile menu.
When this action is selected, a file dialog will be displayed where a different file name and path for
the file can be selected.

Files can also be configured to save automatically when building or when closing a project. By
default, all files are saved when a project is about to be built, but this can be change@aniral
Preferencegdialog.

When a project is closing, HI-TIDE will, by default, prompt to save any modified files. This
action can be changed in tl&eneral Preferenceslialog.

48

HI-TIDE Views The Editor View

4.3.5 Closing Editor Files

A file is considered closed when all of the Editor views displaying the file are cl&sgitbr views
are closed in the usual way: selecti@tpse Viewfrom theView menu, or by clicking on the close
button in the view’s title bar to close the tab that contains the view. 2

4.3.6 Printing Editor Files

Afile open in an editor can be printed by focusing the Editor view and then selectirigrithte.
option from theFile menu, or by clicking théPrint button in the toolbar. The Print dialog will
appeatr, to allow print options to be set. The appearance of the print dialog will be platform specific.

If more than one Editor view is opened in a Workspace tab, take care to ensure that the
correct file is focused, otherwise the incorrect file may be printed.

The editor provides additional print options, such as printing line numbers and line wrapping, that
might be useful when printing program code. See Seci@nl.2for more details on these print
options.

4.3.7 Syntax Highlighting

The Editor view uses a colour coding scheme to highlight the syntax of C files and header files. The
editor detects if the file opened is a C file or a header file by the file’s extension. C files have the
extension. c and header files have the extension

4.3.8 Editor Popup Menu

Right-clicking on any of the Editor views will display the Editor popup menu. The following de-
scribes the items in that menu that are specific to the Editor view. The view control menu items
which will appear in the Editor’s popup menu are described in Seétid13.5

Set Breakpoint Selecting this option sets a source-level breakpoint in the debugger currently se-
lected in HI-TIDE. The breakpoint is set on the line over which the popup menu is raised.
This option is only enabled if a debugger is selected in HI-TIDE, a HEX file is loaded and the
source code actually defines executable assembler instructions. See also&2acion

Remove Breakpoint This menu item replaces ti&et Breakpoint menu item in the popup if the
mouse is right-clicked over a source line that already has a breakpoint set at that location. This
option removes the breakpoint entirely from the debugger.

49

The Editor View HI-TIDE Views

Remove All Breakpoints Clears all of the breakpoints that have been set in the debugger.

Disable Breakpoint This turns off the breakpoint without removing the breakpoint. The breakpoint
can be re-enabled by tlignable Breakpoint option.

Enable Breakpoint This menu item replaces thaisable Breakpoint menu item if the mouse is
right-clicked over a source line that already has a disabled breakpoint set at that location. This
option re-enables the disabled breakpoint.

Disable All Breakpoints This option deactivates all of the breakpoints that are currently set. This
menu item is only enabled if there have been breakpoints set in the debugger. If there are
no breakpoints set, this menu item will be disabled. This option does not affect disabled
breakpoints.

Enable All Breakpoints This menu item activates all of the disabled breakpoints. This menu item
is only enabled if there have been breakpoints set in the debugger. If there are no breakpoints,
this option is disabled. This option does not affect enabled breakpoints.

Cut This menu item performs the editor cut selected text operationt Seg
Copy This menu item performs the editor copy selected text operatiod See

Paste This menu item performs the editor paste text See Sedtid@

4.3.9 Setting Source-Level Breakpoints

Source-level breakpoints can only be set on the line of source code, which generates an instruction
or symbol. Not all C statements generate executable code. An example of such a statement is the
declaration of an unitialized local variable. In some instances, the optimizer may remove or merge
the generated executable instructions associated with source code which may result source code that
does not referencing assembler instructions. Source-level breakpoints cannot be set for these lines.

To set a breakpoint, right-click the mouse over the line where the breakpoint is to be set. The
Editor view popup menu will appear. If a valid source-level breakpoint is available for that line of
source code, th8et Breakpoint option will be enabled in the popup menu. If a valid source-level
breakpoint is not available, then tiget Breakpoint option will be disabled. If a breakpoint is
already set at that line, the opti®@emove Breakpointwill appear in lieu ofSet Breakpoint

A source-level breakpoint can also be set by double-clicking on the breakpoint gutter or the
line number gutter. If a valid source-level breakpoint is available for that line of code, then the
breakpoint will be set. If a valid breakpoint is not available, double-clicking in the breakpoint gutter
or line number gutter for that line will have no effect, that is, the breakpoint will not be set. Double-
clicking on a breakpoint that is already set will activate or deactivate the breakpoint. See Section
4.3.11for more details on activating and deactivating of breakpoints.

50

HI-TIDE Views The Editor View

When a source-level breakpoint is set for a line of source code, a “red dot” will appear in the
breakpoint gutter. This is shown in Figuter, where lines 14 and 15 of the source code have enabled
breakpoints set.

When a source-level breakpoint is set, a breakpoint will be set in the debugger at the assem-
bly level at the assembly instruction or symbol that maps to the source code line. The assembly
breakpoint will be shown in the Disassembly view. Refer to Secfignl.4for more details on
breakpoints in the Disassembly view.

4.3.10 Removing source-level Breakpoints

To remove a source-level breakpoint, right-click over the breakpoint location and seleRethe
move Breakpoint option from the popup menu. The red dot or grey dot will be removed when the
breakpoint is removed. Removing a source-level breakpoint will also remove the assembly level
breakpoint that maps to the source-level breakpoint.

To remove all breakpoints, right-click in the Editor view and selRemove All Breakpoints
Breakpoints set in both the Editor view and Disassembly view will be removed. Refer to Section
4.4.1.5for more details on removing breakpoints in the Disassembly view.

4.3.11 Activating/Deactivating source-level Breakpoints

Sometimes it is more desirable to disable a breakpoint than to remove the breakpoint altogether.
This allows the user to temporarily deactivate that breakpoint, to later reactivate it, without having
to remember where it was set.

To disable an activated breakpoint, right-click over the source-code line at which the breakpoint
is set and seled®isable Breakpoint from the popup menu. ThBisable Breakpoint menu item is
only available if an activated breakpoint is set at that source code line location. See Segtion
for more details on the popup menu. Alternatively, double-clicking on the activated breakpoint (“red
dot”) in the breakpoint gutter will deactivate the breakpoint. Disabling of the breakpoint will be
denoted by the “grey dot”. Figure 7 shows a deactivated breakpoint at line 17 of the source code.

All breakpoints can be disabled by selecting Biisable All Breakpoints option from the Editor
view’s popup menu.

Breakpoints can be enabled by right-clicking on the Editor view at the source-code line with the
breakpoint and selectirignable Breakpoint from the popup menu. ThEnable Breakpoint menu
item is only available when the selected line of source code has a disabled breakpoint set at that
location. See Sectiof.3.8for more details on the popup menu. Similar to disabling breakpoints,
a deactivated breakpoint can also be activated by double-clicking on it. The deactivated breakpoint
(shown with a “grey dot”) will change to a “red dot".

Deactivated breakpoints can also be activated by selectingrihble All Breakpoints option
from the Editor view popup menu.

51

The Editor View HI-TIDE Views

Figure 4.8: Find and Replace dialog — find
|

Replace I

Find text I hd | Find

Cancel

Optian:

I ‘wwhole word I Fingd hackwards
I Caze sensitive I Wirap at the end of file

- Reoular expression

4.3.12 Searching For Text

The editor can search for text and regular expressions, and replace text uskigdi& Replace
dialog. To open the Find & Replace dialog, selectfired menu item from théedit menu. Figure
4.8 shows the dialog with thEind tab selected. Clicking on theéind button will perform a search
of the current Editor view for the text shown in thénd text text field.

Figure4.9shows the dialog with thRBeplacefunction tab selected. Clicking on titénd button
will search the current Editor view for the text shown in fiad text text field. Clicking on the
Replacebutton will do a find and replace action. That is, any currently found text will be replaced
prior to the dialog locating the next occurrence of the text infimel text text field.

TheFind text text field accepts regular expressions as part of the search string. A table of the
accepted regular expressions and their meaning is tabulated in Section

4.3.13 Search Options

By default, searches are performed from the current location of the editor caret, left-to right and
downwards in the editor document. The searched text can be part of a word or a whole word and
will be case-insensitive. The search will stop at the bottom of the document.

Options in theFind & Replace dialog allows refinement of the search. As the options are
checkboxes, any combination of the options can be selected. Each option is described individually
in the following sections.

Whole word Selecting this option will restrict the text found to those that are whole words only. For
example, if the search text is\, the possible matches will ben, In, iN or IN. If this option

52

HI-TIDE Views The Editor View

Figure 4.9: Find and Replace dialog — replace

Find & Replace x|

Firet

Firl text i Finel

Replace with hd Replace

Cancel

Option:
I ‘Whole weord I Find hackwards
I Caze sensitive I wirap at the end of file

- Reqgular expression

is unchecked, the search text may also form part of a larger word, su¢ht@s;nclude or
BIN. Selecting th&Vhole word search will disable the search fRegular expressionoption.

Match case When this option is selected the search will only find words or expressions that are of
the same case as the search text. For example, searchingafiar will not find Start or
START. Unchecking this option will make the search case-insensitive and would, for the same
example search string, matehart, Start, sTaRt etc.

Regular expression Selecting this option makes the text in fhiad text text field a regular expres-
sion rather than a text string. Selecting fRegular expressionsearch option will disable the
search fovhole word option.

Find backwards By default, the search is performed from the current caret position, going left to
right and downwards in the editor document. If a caret was to the right or below a string or
expression being searched for, it will not be located. Selectingritneé backwards option
changes the search to start from the current caret position, going right-to-left and upwards in
the editor document. Deselecting this option will return it to the default search order.

Wrap at the end of file By default, if searching in default order, the search will stop once the end
of the file is reached. If thEind backwards option is selected, the search will stop at the top
of the file. Selecting the Wrap at the end of file option will allow the search to “wrap” around
the document. That is, if the search is in the default order, once the search reaches the end of
the file, it will start searching from the top of the file again. If fied backwards option is
selected, the search will restart from the bottom of the file once it has reached the top of the
file.

53

The Debugger Views HI-TIDE Views

4.4 The Debugger Views

Several of the available views are collectively known as the Debugger views. These views interact
with the selected debugger. If no debugger is selected then these views are not applicable and cannot
be displayed. These views include the Disassembly view, Data Memory view, Registers view, and
Variable Variable Watch view, Local Variable Watch view.

If any of these views are displayed and the debugger is changed to no debugger, then the view
will remain in the Workspace area, but become blank, i.e. have no contents, although the title bar and
layout will remain. Blank views may be closed in the usual way, and if a debugger is again selected,
the view display will be updated.

4.4.1 Disassembly View

The Disassembly view provides a view of the executable memory of the target device, as well as a
means to step through the code and set breakpoints in the code. The following sections describe the
Disassembly view in detail.

4.4.1.1 Disassembly View Layout

The Disassembly viewconsists of a tabulated view, with 6 columns (ge&0. Each row of the
view is shown as a disassembled assembler instruction. The Disassembly view always interprets the
memory as executable assembler instructions, even if the bytes located here are program data.

The first column on the left of the view is the Breakpoint gutter. This is similar to the Breakpoint
gutter in the Editor view. The Breakpoint gutter allows setting and viewing of breakpoints, as well
as tracing the program counter. See Seciighl.2for more details.

The second column from the left side of the view, labeBelliress displays the starting address
of the program memory being displayed. As instructions may be of fixed width, the addresses may
not increase linearly.

TheData column shows the target device’'s numeric machine code corresponding to the instruc-
tion represented by the line. The codes shown will vary depending on the instruction set of the target
device.

TheLabel column displays any symbol that is associated with the address of the assembled line.
Note that there can be more than one label at the same address. The label that is last read from the
debugging file will be the one displayed. If there is no label available for the assembled line, the
entry in theLabel column will be left blank on this line.

The OpCode column shows the human-readable interpretation of the machine code instruction.

The Operands column shows the operands used with the opcode. These are usually displayed
as addresses in hexadecimal format. If a label or register name is found at the referenced address,
the human-readable form of that address is displayed.

54

HI-TIDE Views The Debugger Views

Figure 4.10: Assembler view

=l=ix]

Fie Edt Yiew Project Buld Debugger Tools Help

0| 2R = BRI o o] (=] @] ©f » (w23 BB &

EVICE_memory ~ |1

Adcress Data Label Opeade Operands
o TTTEgET L |
10FC oooo illegal O0x0000 d
10FE oooo illegal 0x0000
> 1100 04004031 start nov.w #0400, 57 L
1104 FOFA4380 startup mowv.w #0,_ Ldata
1108 FOF84350 mov. #0, _gchar
l10C 11324030 br.w #_main
110 scos _Delaylis dup 12z
@111z 4267 now.b #4,57
1114 3C04 Jup 111E
1116 00774076 nov.b #0077,B6
111a 8358 sub.b #1,R6
111c 2008 nz 1128
111E 8357 sub.b ¥L,R7
1120 2FFA c 1116
@112z 8354 sub.b #1,R4
l1z4 ZFF6 ac 111z
1126 4130 rer
1128 4303 nov.w #0,R3
11zh 4303 nov.w #0,5:3
112C 3FF6 Jup 1114
112E 5354 _func add.b #1,R4
1130 410 et
1132 EECA4010 _main br.uw FFFE
1136 oooo illegal O0x0000
1138 oooo illegal 0x0000
113 0000 illegal 00000 2
WEI} >
delay ¢ | Disassembly
[Initislizing project MEP430 Simulstor WSP430F4G be:0x1100 [Etopped [System reset

The Disassembly view title bar contains a combo box which contains the names of memory
spaces available on the device that is selected. Harvard architecture devices may contain more than
one memory space. The disassembled memory shown in this view will be that from the selected
memory space.

4.4.1.2 Breakpoint Gutter

The breakpoint gutter in the Disassembly view shows the assembly level breakpoints and also traces
the program counter. It also allows the setting, deactivating and activating of breakpoints. The items
that are shown in the breakpoint gutter are a “red dot”, a “grey dot”, a “green arrow” and a “red
arrow”. See4.10

A “red dot” denotes that aactivatedbreakpoint has been set for the memory address represented
by the assembled line of program memory. A “grey dot” denotes that a breakpoint has been set at
that address but the breakpoint is disabled.

Assembly level breakpoints can be managed by right-clicking in the breakpoint gutter and se-
lecting from the popup menu or by double-clicking in the breakpoint gutter at the assembly line.

The breakpoint gutter also provides a trace of the program counter. While stepping the debugger,
a program counter indicator (“green arrow”) will appear in the breakpoint gutter. This denotes an

55

The Debugger Views HI-TIDE Views

instruction that is to be executed next. If the debugger stops on an activated breakpoint, a “red arrow”
will be displayed to show that the debugger has stopped on a breakpoint.

4.4.1.3 Disassembly View Popup Menu

Right-clicking on any of the Disassembly views will display the Disassembly view popup menu.
The following describes the items in that menu that are specific to the Disassembly view. The view
control menu items are described in Sectioh.3.5

The Disassembly view can have its colours and font customised. This is set Fiaritieolours...
popup menu item. ThEont/colour Settingsdialog is described in Sectidh2.3.6

Set Breakpoint Selecting this option sets an assembly-level breakpoint in the current debugger.
This option is only enabled if a debugger is selected in HI-TIDE and a HEX file has been
loaded.

Remove Breakpoint This menu item only appears (in lieu 8&t Breakpoin) if the mouse is right-
clicked over assembled line that already has a breakpoint set at that location.R&fmewve
Breakpoint is displayed, th&et Breakpoint menu item will not be displayed.

Remove All Breakpoints Clears all of the breakpoints that have been set in the debugger.

Disable Breakpoint This turns off the breakpoint without removing the breakpoint. The breakpoint
can be enabled by tHenable Breakpoint option.

Enable Breakpoint This menu item only appears (in lieu Disable Breakpoini) if the mouse is
right-clicked over Disassembly view line that already has a breakpoint set at that location and
that breakpoint is disabled itself.

Disable All Breakpoints This option deactivates all of the breakpoints that are currently set. This
menu item is only enabled if there have been breakpoints set in the debugger. If there are not
breakpoints set, this menu item will be disabled. Selecting this option on breakpoints that have
been deactivated will have no effect.

Enable All Breakpoints This menu item activates all of the breakpoints that are currently set. This
menu item is only enabled if there have been breakpoints set in the debugger. If there are not
breakpoints, this option is disabled. Selecting this option on breakpoints that are activated will
have no effect.

Show PC Selecting this option displays the program memory, in the Disassembly view, starting
from the address of where the program counter is at. See also Séectiari.

56

HI-TIDE Views The Debugger Views

Figure 4.11: Breakpoints in assembler view

lizas=sembhy

Address Diata Label Qnr'ndP Operands
10FE oooo illegal 00000
» 1100 04004031 start mow. w #0400, 57
1104 FOFa4380 startup mow. W #0,_ Ldata
1105 FOF54380 mow. W #0,_gchar
110c 11324030 br.w #_main
@1110 3C08 _DelayMs Jnp l1zz
1112 4267 mov. b #4,R7
1114 3co4 jnp 111E
1116 00774076 wov. b #0077, RE
1114 5356 sub.b #1,B6
111C zZ003 jnz 1125

Show C Source Selecting this option displays the C source code line that was compiled to produce
the compiler instructions displayed. Deselecting this option hides the C source code. Figure
4.10shows an example of an Disassembly view with C source code showing. Higtire
shows an example of an Disassembly view without C source code showing. Refer to Section
4.4.1.8for more details.

Track PC Location The option is a check box option. When the option is checked, the Disassem-
bly view will automatically update the view to follow the location of the program counter.
Unchecking the option will turn off this feature. See also Secfighl.7

4.4.1.4 Setting Assembly Level Breakpoints

Unlike source-level breakpoints, assembly level breakpoints can be set at any assembly line, since
each assembly line is executable. When a source-level breakpoint is set, the breakpoint will also
appear in the Disassembly view. Setting an assembly level breakpoint will not necessarily make the
breakpoint appear in the Editor view, as not all source code will line up with assembly instructions.

To set a breakpoint, right-click the mouse over the line that the breakpoint is to be set. The
Disassembly view popup menu will appear. If a breakpoint has not been set at that assembly line
address, th&etBreakpoint option will be displayed in the popup menu. If a breakpoint is already
set at that line, the optioRemove Breakpointwill appear in lieu ofSet Breakpoint

A source-level breakpoint can also be set by double-clicking on the breakpoint gutter next to the
address of where the breakpoint is to be set. When the new breakpoint is set, a “red dot” will appear
in the breakpoint gutter (as shown by the line at Address 1110 in Figldg

Double-clicking on a set breakpoint will either activate or deactivate that breakpoint. If a break-
point is set and activated (red), double-clicking on it will deactivate that breakpoint (as shown by

57

The Debugger Views HI-TIDE Views

the line at Address 1116 i 11). See Sectiod.4.1.6for more details on activating and deactivating
breakpoints. Double-clicking on a deactivated breakpoint will activate that breakpoint.

4.4.1.5 Removing Assembly Level Breakpoints

To remove an assembly level breakpoint, right-click over the set breakpoint and selRetntiowe
Breakpoint option from the popup menu. The red or grey dot denoting the breakpoint will be re-
moved. If the assembly line mapped to a line of source code, the breakpoint will also be removed
from the Editor view.

To remove all breakpoints, right-click in the Disassembly view and s&eatove All Break-
points. Breakpoints set in both the Disassembly view and Editor view will be removed. Refer to
Section4.3.10for more details on removing breakpoints from the Editor view.

4.4.1.6 Activating/Deactivating Assembly Level Breakpoints

To deactivate an enabled breakpoint, right click on the assembly line that the breakpoint is set for
and selecDisable Breakpoint from the popup menu. Thisable Breakpoint menu item is only
available if an activated breakpoint is set at that source code line location. See Sédtiomore
details on the popup menu. Alternatively, double-clicking on the activated breakpoint (“red dot”) in
the breakpoint gutter will deactivate the breakpoint. Disabling of the breakpoint will be denoted by
the “grey dot”.
Breakpoints can be disabled, as a whole, by selectin@is&ble All Breakpoints option from
the Disassembly view popup menu.
Breakpoints can be enabled by right-clicking on the Disassembly view at the assembly line with
the breakpoint and selectirignable Breakpoint from the popup menu. ThEnable Breakpoint
menu item is only available when the selected assembly line has a disabled breakpoint set at that
location. Similar to disabling breakpoints, a deactivated breakpoint can also be activated by double-
clicking on it. The deactivated breakpoint (shown as a “grey dot”) will change to a “red dot”.
Deactivated breakpoints can also be activated by selectingrithble All Breakpoints option
from the Disassembly view popup menu.

4.4.1.7 Displaying Program Counter Location

The Disassembly view is capable of indicating where the program counter is at. While stepping the
debugger, the value of the program counter is indicated by a “green arrow” (as shown by the line at
Address 1100 id.11). This denotes the instruction that is to be executed next.

When the program counter changes, the “green arrow” will move to reflect the change and show
the new location. The “green arrow” is only updated if the debugger is stepping - single stepping,
continuous gnimating or source-level steppin@(stepping. If the debugger is running, the “green
arrow” will not be updated until the debugger stops.

58

HI-TIDE Views The Debugger Views

While the debugger is stepping, it is possible that the program counter may be at a value that is
not currently displayed in the Disassembly view. There are two ways to display the assembly line
where the program counter is at, if it is out of view.

Right-clicking in the Disassembly view and selecting 8w From PC Valueoption from the
Disassembly view popup menu will display memory in the Disassembly view, with the first assembly
line starting from the address of where the program counter is at.

Alternatively, the Disassembly view is able to automatically track the program counter so that if
it is at a location that is not currently displayed, it will scroll to the location of where the program
counter is at. This is similar to automatically selecting 8teow From PC Value each time the
debugger steps and the program counter is not displayed. To enable this feature, right-click on the
Disassembly view and select tiieack PC Location option. When enabled, the option will have
a checked tickbox displayed next to the option. When disabled, the option will have an unchecked
tickbox displayed next to it. See Sectid.1.3for more details on the Disassembly view popup
menu.

4.4.1.8 Displaying C Source Code

The Disassembly view is capable of displaying mixed C code and assembly code within the view.
Each C code line shown is grouped with the block of assembler code that was generated from that
C line. Thus, making the view similar to that of an assembler listing file. The number of assembler
instructions that follow a C line will vary, depending on the C source code itself.

To display C source code in the Disassembly view, right-click on the Disassembly view and
selectShow C Source from the popup menu. The C code is shown in bold type and is placed in the
Data column4.12shows a typical Disassembly view with C code showing.

4.4.2 Data Memory View

The Data Memory view displays the writable memory of the target device. It also shows the memory
locations that have had their values changed, to aid in debugging. The view is described in detail in
the following sections.

4.4.2.1 Data Memory View Layout

The Data Memory view displays the writable memory in a table format. Each row of the view
displays a range of memory addresses and the ASCII value of each memory address. The number of
addresses displayed in the row varies, depending on the width of the view, as well as the format of
the data to be displayed. Figutel 3shows a typical Data Memory view.

On the very left of the Data Memory view, tieldresscolumn displays the starting address for
each row. The addresses are always displayed in hexadecimal. On the far right, the Data Memory

59

The Debugger Views HI-TIDE Views

Figure 4.12: Source code in assembly view

=8|

Fle Edit Yiew Project Buid Debugger Tools Help

D= Bl R EE o=@ 8 @ bw| 22 25858 &

pevicE_memory > (1]

Adcress Data Label Opcode Operands
el TITETHT TR =
> 1100 0AD04031 start now.w #0400, 5P =]
1104 FOFA4350 startup mov.w #0,_ Ldata
1108 FOF84380 now.w #0,_gchar L
1100 11324030 br.uw #_nain
{
1110 308 _Delaylls dup lizz
i=a;
@111z az67 now.b #4,R7
while{i--) {
114 304 Jup L11E
DelayUs (uS ...
1116 00774076 now.b #0077,R6
1114 8356 sub.b #1,R6
111c 2005 inz liz8
while(i--) {
111E 8387 sub.h #1,R7
1120 2FFA ic 1116
while {ent-...
@112z 8354 sub.b #1,R4
1124 2FF6 ic 111z
¥
1126 4130 et
Delayls(uS ...
1128 4303 nov.w #0,R3
1124 4303 mov. W #0,R3
11zc 3FF6 Jup 1114 2
M| >
delay & | Disassembly
[Iritislizing project MEP430 Simulstor MEP430F4 pe0x1100 [Btopped [System reset

view always has aASCIl column. TheASCIl column displays the ASCII value of each of the
memory addresses for that row. The other columns display the contents of each of the memory
locations in the row.

The number of memory columns shown per row will depend on the width of the format of the
displayed data, however the number of bytes shown will always be 16.

The Data Memory view title bar contains a combo box which contains the names of memory
spaces available on the device that is selected. Harvard architecture devices may contain more than
one memory space. The displayed data memory shown in this view will be that from the selected
memory space.

4.4.2.2 Data Memory View Popup Menu

Right-clicking on any of the Data Memory views will display the Data Memory view popup menu.
The following describes the menu items that are specific to the Data Memory view. The view control
menu items are described in Sectib@a.3.5

The following three menu options change the radix of the displayed memory.

Hex Selecting this option displays all memory locations in hexadecimal.

60

HI-TIDE Views The Debugger Views

Figure 4.13: Data memory view

=l=ix]

Fie Edt Yiew Project Buld Debugger Tools Help

DBl cHERE] =] =@ @ ©f bw 22 28|85 &

address [0 [1 [23 as(e|7lalaflafelclolel|F[1of11|12]13][1a]15]6]17]18
0 FF 00—

20 00 0D 00 0O 00 00 Q0 FF 00 00 00 00 OO0 00 00 FF OO0 00 00 00 00 00 00 00 Fl

40 FF 60 84 0

€0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00 0l 00 00 00 00 00 00 O
80 FF Fl
40 FF Fl
€0 FF FI
E0 FF Fl
100 FF Fl
120 FF Fl
140 FF Fl
160 FF Fl
180 FF Fl
140 FF Fl
1co FF Fl
1E0 FF Fl
200 51 22 08 SF D4 F9 Fz 88 B3 67 E5 28 2D A8 30 76 CF C6 B8 F7 19 72 3F 7B 6
220 89 CP E4 SA C9 70 80 EB 4C SE 9B 8L B5 60 B5 CC 12 Eh 04 0D @5 A6 BF AD &t
240 39 25 D3 D4 2F BE 43 D& EO0 63 BE &0 50 €D E0 36 11 BS 48 B4 ET & 96 EBF A
260 EA 1E 9D F3 OE 1B 8L F8 F6 60 FF BF 07 56 F8 50 56 17 48 16 46 40 OE 57 7t
280 24 9p 0k El 6F 05 84 F3 17 3C 3C D6 E2 63 47 E9 66 EF D4 59 AB 77 6D 1E OF
240 6E 69 EZ C4 SA EZ 93 70 CA EO0 36 CD E9 5D 14 81 CC 28 AD A6 1D D4 FD BC FE
200 S0 ChA EE C5 D6 1A FS 19 98 32 BS CC 22 AR AT CF OD AB 9D 25 AS CO 05 D9 Gt
ZE0 54 49 F4 OB EC 13 F4 94 09 1D 82 FA 98 B6 45 79 B4 SF 6C FD 48 AL CD 1D O
300 FF ED BD CO A3 37 D7 BA A4 85 63 B0 51 E4 3F 26 47 2D E2 S8 16 EL 9C 2F 2
320 DC SE 12z OA 04 ED E6 A3 F2 57 22 86 55 SF D4 84 4F FC C7 SC OF E8 BC B9 BE_
v

[|
delay ¢ | Disassermbly | Data Memary

[Initislizing project MEP430 Simulstor WSP430F4G be:0x1100 [Etopped [System reset

Decimal Selecting this option displays all memory locations in decimal.

Octal Selecting this option displays all memory locations in octal.

The following three options changes the number of bytes displayed per location column in the Data
Memory view.

Byte Selecting this option displays one byte of memory per location column in the view.

Word Selecting this option displays the number of memory locations required to show a word per
location column. The number of bytes per word will depend on the device selected.

Long Selecting this option displays the number of memory locations required to show a long type,
per location column. The number of bytes per long will depend on the selected device.
4.4.2.3 Tracing Memory Usage

Each time the debugger is stopped, the Data Memory view updates the values displayed. The mem-
ory locations whose contents have changed since the debugger was started (stepping, animating or
running) will be highlighted in red. The locations whose contents have not changed are shown in

61

The Debugger Views HI-TIDE Views

the normal font colour set for the view (black by default). Note: to improve performance, only those
memory locations that have been previously displayed in the view are highlighted when changed
and no updates are performed while the debugger is actually running.

4.4.2.4 Modifying Memory

The memory locations in the Data Memory view can be modified by the user. To modify the value
stored at a memory location, click (or double-click) on that location and type the new value into the
memory location cell. Pressirgnteror clicking the mouse in any other column will modify the
location. Pressingscapewill cancel the change. Changed values will appear highlighted in red

type.

To prevent accidental changes in this view, click the mouse on any column other than
the memory columns to deselect any selected memory location cell.

The new value must be specified as a hexadecimal number. If the new value is not a valid hexadeci-
mal number, no change is made. If the new value is a valid hexadecimal number, but is too large for
the the memory location, it will be truncated to fit. For example, if an attempt is made to change a
16-bit wide word location to the hexadecimal valLes 456, the location will be assigned the value
3456.

4.4.3 Registers View

The Registers view displays the registers of the target device. The view is described in detail in the
following sections.

4.4.3.1 Registers View Layout

The Registers view contains two columméame andValue. TheName column displays a human
readable form of the register's name, while Wadue column displays the contents of the register.
The register’'s contents can be displayed in several radices which are selectable from the view's
popup menu. Figuré.14shows a typical Registers view.

The Registers view title bar contains a combo box which contains the names of different types
of registers available on the selected device. Typically a device will have CPU registers, e.g. accu-
mulators and status registers; and special function registers — those registers used to control and
monitor on-board peripherals. The registers shown in this view will be those specified by the combo
box selection.

62

HI-TIDE Views The Debugger Views

Figure 4.14: Registers view

il

Fie Edt W¥ew Project Buld Debugger Tools Help

DV 1] Bl] o o] [se])]] o] 2] BB &)

”
PC 1100 = |
aF oooo d
SR oooo
R4 0o
RS oooo
RE oooo
R7 0000
B3 0o
R9 oooo
R10 oooo
R11 0o
R1Z oooo
R13 oooo
R14 oooo
R15 0o

Nl _>l_I

deiay.c | Disasserbly | Data Memary | Registers

Initislizing project MEP430 Simulstor WSP430F4G be0x1100 [Btopped [System res st

4.4.3.2 Registers View Popup Menu

Right-clicking on any of the Registers views will display the Registers view popup menu. The
following describes the menu items that are specific to the Registers view. The view control menu

items are described in Secti@rR.3.5
The Registers view can have its colours and font customised. This is set Warthleolours...

popup menu item. ThEont/colour Settingsdialog is described in Sectidh2.3.6
The following three menu options changes the radix of the displayed memory.

Hex Selecting this option displays all the memory values in hexadecimal.
Decimal Selecting this option displays the memory values in decimal
Octal Selecting this option displays the memory values in octal.

Binary Selecting this option displays the memory values in binary.

4.4.3.3 Tracing Register Usage

Each time the debugger is stopped, the Registers view updates the values displayed. The registers
whose contents have changed since the debugger was started (stepping, animating or running) will

63

The Debugger Views HI-TIDE Views

be highlighted in red. The registers whose contents have not changed are shown in the normal
font colour set for the view (black by default). Note: to improve performance, only those memory

locations that have been previously displayed in the view are highlighted when changed. Note: to
improve performance, only those memory locations that have been previously displayed in the view
are highlighted when changed and no updates are performed while the debugger is actually running.

4.4.3.4 Modifying Memory

The registers in the Registers view can be modified by the user. To modify the value stored in a
register, click (or double-click) on the desired regist&due column cell and type the new value.
Pressingenteror clicking the mouse in any other column will modify the location. Preseswape

will cancel the change. Changed values will appear highlighted in red type.

To prevent accidental changes in this view, click the mouse on any column other than
theValue column to deselect any selected register contents cell.

The new value must be specified as a hexadecimal number. If the new value is not a valid hexadeci-
mal number, no change is made. If the new value is a valid hexadecimal number, but is too large for
the the register, it will be truncated to fit. For example, if an attempt is made to change a 16-bit wide
register to the hexadecimal valug3456, the register will be assigned the valgsse.

4.4.4 Variable Watch View

The Variable Watch view is a view for monitoring non-local program variables. Specifically it can
display all variables that are not defined within a C function. The variables are represented in the
symbolic debug information file, or SDB file. SDB files are generated by the code generator and one
is produced for each C source file in the project.

The view is described in detail in the following sections.

4.4.4.1 Variable Watch View Layout

The Variable Watch view is composed of several columns. Each column has a label at the top of the
view. TheName column is always present and by default@cation, Decimal, HEX and ASCII
contents column are also displayed. Additional columns can be added via the Variable Watch popup
menu. Figuretl.15shows a typical Variable Watch view.

The width of the columns can be adjusted. As the mouse pointer is moved over the divider of
the column name, it changes to a horizontal resize cursor. Click and drag the divider to the required
position. All the available columns in the Variable Watch view are summarized below.

64

HI-TIDE Views The Debugger Views

Figure 4.15: Variable Watch view

g 1= 5|
Fie Edt Yiew Project Buld Debugger Tools Help
L& = 3] 2l o]] & &b |w] =] EREE] 85 EE) 5 E))
Wariabl B
Lacation Decimal HEX A3C
) Hiisimplei =
S B man() B
[this1 R8 o 0)
0 st R9 0 i o
o thiso RT o o o
O last! R4 o 0)
==L 34 o 0 of
o TBCCRD 192 q i o
o first 200 85 58] u
14 _>l_I
Disassembly | sitipleio st | simpleio ¢ | Vinual WO | variable Watch
| | MSP430 Simulstor WSPA30F4a Pz poixi10A [Stopped reskpoirt

Name This permanent field shows the name of the C identifier being displayed. This is not the
symbol that would be used in assembler code to access this variable. An icon is used to show
the type of the variable represented by the symbol and a tree structure is used to indicate
the scope of the variable within the program’s hierarchy. The icons and symbols are fully
described in Section.4.4.2

Location displays the location of the variable. The location can either be the hexadecimal address
of the memory that holds the specified memory or a register name.

Type displays the C types of displayed variables.

Decimal/HEX/ASCII/Binary displays the contents of the variable in decimal, hexadecimal, ASCII
character and binary format, respectively. The string of scope is displayed if the vari-
able is not legally accessible at the point at which the program is stopped.

4.4.4.2 \Variable Icons and Tree Representation

The Name column in the Variable Watch view uses icons and a tree structure is used to indicate the
scope of the variable within the program’s hierarchy. This view can be used to display the contents

65

The Debugger Views HI-TIDE Views

of both local and global objects so some means of indicating the scope of the variables is required
since there may be more than one variable with the same name.

If any variables added to this view are local to a function or block of code within a function,

a bolded row which contains an object file icon and the object filename is displayed. In a tree
emanating down from this module name is a row which contains a square blue box and name of the
function in which the variable is defined. Parenthesgsare placed after the function’s name. The
local variables are shown in a subtree emanating down from this function name. Each variable has a
green dot next to its name.

Variables which are defined outside a function, but whichsaeg i c have scope only within the
module in which they are defined. Such variables are shown in the tree emanating from the module
name icon.

Variables defined outside a function and which have external linkage are shown independent of
any tree and as the last rows in the view.

Objects of aggregate type (arrays and structures) can expanded to display the individual elements
or members within the object. Array object names are followed by square bracketad structures
are followed by braceg,}. Double-clicking the name column associated with any other these types
will expand or collapse the contents of the type. The elements of an array are represented by their
numerical index; structure members are represented by their member name. If the structure contains
bitfield variables, a colon and the size of the bitfield is given following its name.

Pointer types can also be shown in an expanded state to reveal the contents of the variable or
object to which it refers. They are initially shown expanded and a red arrow is displayed on the
second line. The contents of the object to which the pointer refers is displayed on this line as well as
its location in memory if the appropriate columns have been set up.

4.4.4.3 Variable Watch View Popup Menu

Right-clicking anywhere in the Variable Watch view window will display a popup menu. The fol-
lowing describes the menu items contained in this menu. The view control menu items are described
in Section2.2.3.5

Add/Remove Variables Selecting this option will bring up Add Watch Variables dialog as de-
scribed in Sectior.4.4.4 Variables can be added to, or removed from, this view using this
dialog.

Showcolumn There is one menu item for each column that can be displayed in the Watch view,
except theName column which cannot be hidden from view, which can be used to show or
hide the column. When a column is visible, a tick is shown next to the menu item.

66

HI-TIDE Views The Debugger Views

Figure 4.16: Add/remove variables dialog

Add Watch Variables
r2elect Watch Yariabl

Available Yariables [yslabe Monebes o Watched Yariables

rWariahle Type

P | [# show ailtypes || [a]
A ay st (rnain)

flags IV Painters

i

st (main) ¥ firays

his0 (main) ¥ structures

hiz1 (tnain)

rWariable Scope—
™ absolutes
IV Locals
IV Globals

4.4.4.4 Adding and Removing Variables

Source variables can be added to, or removed from, the Variable Watch view at any timeAdial the
Watch Variables dialog as shown in Figuré.16 This dialog is opened by selectidgld/Remove
Variables menu item from the Variable Watch view popup menu.

On the left of this dialog is a scrollable text box which lists all variables that can be displayed
in this view. This list is searchable. To find a known variable quickly, start typing the name of the
variable into the text field above the list box. The first variable whose name matches the search string
is selected in the list box. Continue typing letters of the variable’s name until the required variable
is selected. The search string is not case sensitive.

A variable is added to the view by selecting it and clicking #dd selection button. The
component will then appear in the scrollable list box on the right of the dialog, und&vatehed =
Variables label.

More than one variable may be added in one operation. Select all the variables required whilst
holding down theshift key (consecutive selection) aontrol key (nonconsecutive selection), and
then click theAdd selectionbutton. All the available components may be added simultaneously by
clicking theAdd all button. =

As a program may contain a large number of variables, the number of variables shown in the

67

The Debugger Views HI-TIDE Views

Available Variables list can be limited to variables of a particular type. Checkboxes are present in
the centre of the dialog and have the following meanings.

Show all types Enables all the checkboxes under Waiable Type group.

Primitives Deselecting this option will remove primitive types (basic types sucihas, int etc)
from the list of available types which can be selected and displayed in the view. Conversely,
checking this option will show and allow selection of these variables.

Pointers Deselecting this option will remove all pointer types from the list of available types which
can be selected and displayed in the view. Conversely, checking this option will show and
allow selection of these variables.

Arrays Deselecting this option will remove all array types from the list of available types which can
be selected and displayed in the view. Conversely, checking this option will show and allow
selection of these variables.

Structures Deselecting this option will remove all structure and union types from the list of avail-
able types which can be selected and displayed in the view. Conversely, checking this option
will show and allow selection of these variables.

Absolutes Deselecting this option will remove all variables, regardless of their type, which are
defined as absolutes from the list of available types which can be selected and displayed in the
view. Conversely, checking this option will show and allow selection of these variables.

Locals Deselecting this option will remove all variables, regardless of their type, which are local
(defined within a function) from the list of available types which can be selected and displayed
in the view. Conversely, checking this option will show and allow selection of these variables.

Globals Deselecting this option will remove all variables, regardless of their type, which are global
(defined outside a function) from the list of available types which can be selected and displayed
in the view. Conversely, checking this option will show and allow selection of these variables.

Variables may be removed by opening #ad Watch Variables dialog by clicking theAdd/Remove
Variables menu item from the Variable Watch view popup menu. The variables already displayed
in the view will be shown in the scrollable list box under Watched Variableslabel. This list is
searchable. To find a connected variable quickly, start typing the name of the variable into the text
field above the list box. The first variable whose name matches the search string is selected in the
list box. Continue typing letters of the variable’s name until the required variable is selected. The
search string is not case sensitive.

A variable is removed by selecting it and clicking tRemove selectiorbutton. The variable
will then disappear from the list box.

68

HI-TIDE Views The Debugger Views

More than one variable may be removed in one operation. Select all the variables required whilst
holding down theshift key(consecutive selection) @ontrol key (nonconsecutive selection), and
then click theRemove selectiorbutton. All the available variables may be removed simultaneously
by clicking theRemove allbutton. =

4.4.4.5 Modifying Variables

The variables in the Variable Watch view can be modified by the user. To modify the value stored in
a variable, click (or double-click) on any of the desired variable’s contents columns (Decimal, HEX,
ASCII, binary) and type the new value. Pressamgeror clicking the mouse in any other column will
modify the location. Pressirgscapewill cancel the change. Changed values will appear highlighted

in red type.

To prevent accidental changes in this view, click the mouse on any column other than
the variable’s contents columns to deselect any selected variable contents cell.

The new value must be specified in the same radix as the selected contents cell displays, e.qg. if you
are changing ®ecimal display cell, then the new value is assumed to be decimal. If the new value

is not valid, no change is made. If the new value is valid, but is too large for the the register, it
will be truncated to fit. For example, if an attempt is made to change a 16-bit wide variable to the
hexadecimal value23456, the variable will be assigned the valgies6.

4.45 Local Watch View

The Local Watch view is a view for monitoring local program variables. Specifically it displays all
variables that are defined within a C function, keéto andstatic local objects whose scope is
limited to a function or a block within a function. As these variables cannot be accessed when they
are out of scope, this view automatically updates its contents during program execution with those
local variables currently in scope. Variables cannot be manually added to, or removed from this
view.

The operation of this view is identical to the Variable Watch view which is described in Section
4.4.4 with the exception of information relating to adding and removing variables from the view.

The name of the function in which scope is limited to is displayed in the title bar for this view.

69

The Debugger Views HI-TIDE Views

4.4.6 Virtual I/O View
4.4.6.1 Overview

The Virtual I/O view is like an electronic test area where virtual components can be placed and wired
to the microcontroller being simulated. A range of components is available which allow the operation
of the program to be seen as well as allow the user to interact with the program. For example, an
LED and push button switch might be wired to the peripheral port of the microcontroller. As a
program is simulated, the LED will turn on and off as values are written to the port, and the switch
may be clicked with the mouse which in turn changes values read back from the port. This might
be used to verify that the settings associated with the port, such as the data direction register etc, are
correctly configured.

The Virtual 1/O view is primarily intended to be used when the simulator is selected as the
debugger, in fact the simulator is considered as one of the available components that can be wired
and represent the simulated microcontroller. However it is possible to use the Virtual 10 without a
simulator connected.

To quickly see the operation of the Virtual 1O view without having to write or compile
a program, add a push button and an LED and wire them together. As you push the
button, you should see the LED illuminate.

The Virtual I/O view is initially empty when first opened. A grid is drawn over the view which
can be used to help align components on the screen. The items in the Virtual I/O popup menu are
described in the following sections.

4.4.6.2 Virtual I/O View Popup Menu

The view-control menu items for manipulating Workspace views are described in S2&i6rb
The following specific menu items are contained in the Virtual 1/O view popup menu.

Add/Remove/Edit Component. .. Clicking this item opens thEdit IO Components dialog show-
ing theSelect Componendisplay. This is shown in Figuré.17. The full details of how to
add and configure components are given in Sectidr5.3

Edit Wiring... Clicking this item opens thEdit IO Components dialog showing th&Vire Com-
ponentdisplay. This is shown in Figure . This menu item is only0 accessible after components
have been added to the Virtual 10 view. The full details of how to wire components are given
in Section4.4.6.6

70

HI-TIDE Views The Debugger Views

Figure 4.17: Edit IO Components dialog — Select component

i€ Edit 10 Components x|

r=elect Component

Available Componerts Added Components

LCD Display

LED Patel
MSP430 Simulator
Fuzh Buttaon SR

Properties

o T =

Eclit Wirirg |
OK | Cancel |

4.4.6.3 Adding Components

Components can be added by openingHdit |10 Components dialog from the Virtual 10 view
popup menu. This dialog is illustrated in Figutel7.

A list of the all the available components is shown in the scrollable list box on the left side of the
dialog, under thévailable Componentlabel. This list is searchable. To find a known component
quickly, start typing the name of the component into the text field above the list box. The first
component whose name matches the search string is selected in the list box. Continue typing letters

of the component’s name until the required component is selected. The search string is not case
sensitive.

A component is added by selecting it and clicking tad selectionbutton. The component
will then appear in the scrollable list box on the right of the dialog, undeAttsled Components =

label. A component may be added more than once by clicking the Add Selection button as many
times as required.

More than one component may be added in one operation. Select all the components required
whilst holding down theshift key (consecutive selection) oontrol key (nonconsecutive selection),
and then click thé\dd selectionbutton. All the available components may be added simultaneously
by clicking theAdd all button. ==
To complete the addition of the components, cli@K to close the dialog. The new components
will be shown in the Virtual 10 view. Alternatively clickdit Wiring to save any components added
and go to the next display in thedit IO Components dialog. Wiring is discussed in Sectidm.6.6

71

The Debugger Views HI-TIDE Views

4.4.6.4 Removing Component

Components may be removed from the Virtual 10 view several ways. Components may be removed
by selecting theAdd/Remove/Edit Component... menu item from the Virtual 1O view popup
menu. The components already added will be shown in the scrollable list box undéddiee
Componentslabel. This list is searchable. To find a connected component quickly, start typing
the name of the component into the text field above the list box. The first component whose name
matches the search string is selected in the list box. Continue typing letters of the component’s name
until the required component is selected. The search string is not case sensitive.

A component is removed by selecting it and clicking Remove selectiorbutton. The compo-
nent will then disappear from the list box.

More than one component may be removed in one operation. Select all the components required
whilst holding down theshift key(consecutive selection) control key (nonconsecutive selection),
and then click thé&kRemove selectiorbutton. All the available components may be removed simul-
taneously by clicking th&emove allbutton.

A component may also be removed from the Virtual 10 view itself. As described in Section , all
components are shown in a small window with a close button on the right. Clicking this button will
also remove the component.

4.4.6.5 Component Properties

Some components have properties that can be changed. Properties might include the number of
items within a component or the polarity of input or output pins. The properties of a component can
be set or changed by opening thdd/Remove/Edit Component... menu item from the Virtual

IO view popup menu. Select the desired component fronAtided Componentslist on the right

of the dialog. Then clickProperties. This will open theEdit Component Propertiesdialog. The
contents of this dialog is different for each component and is described in the section relating to that
component later in this chapter.

More than one component may be customized at the same time. Select all the desired compo-
nents from theAdded Componentslist on the right of the dialog whilst holding down tisift key
(consecutive selection) aontrol key (nonconsecutive selection),. After clickifgoperties, the
Edit component Propertiesdialog will open with one tab for each component. Configure each
component on every tab pane, then cliaK.

4.4.6.6 Wiring Components

After components have been added to the Virtual IO view, they can be connected.
The wiring dialog can be opened by selectidit Wiring... from the Virtual IO view popup
menu, or by clicking on th&dit Wiring button after having selected theld/Remove/Edit Com-

72

HI-TIDE Views The Debugger Views

ponent... menu item from the Virtual 1O view popup menu. There must be components added
before any wiring can take place.

A connection is made by first selecting a pin of one device and a pin of another device. All added
components listed in two scrollable text boxes on the left and right of the dialog. Select the desired
component from either list. This list is searchable. To find a known component quickly, start typing
the name of the component into the text field above the list box. The first component whose name
matches the search string is selected in the list box. Continue typing letters of the component’s name
until the required component is selected. The search string is not case sensitive.

With a component selected, the pins associated with that component are displayed in scrollable
text box under the components. The pins’ hames are display here, along with symbols to indicate
the type of the pin. The symbol showing an arrow pointing toward the pin is an input pin. “+he
symbol is coloured green if the pin is able to be connected. Some pins do not need connection. Such
pins include the components power supply or peripheral pins which have not been implemented in
HI-TIDE. These pins have greyed out names and pin symbols. The other pin types represented are
output pins, and bi-direction pins which can be either input or output. Select the desired pir"'jom
the list. w0

Select the device and pin from the other lists in the dialog. Clicking Connect will make the
connection which will then listed in théonnectionslist. A connection is displayed with a form:

device_name.pin_name - device_name.pin_name

The connection will not be allowed if the selected pins are incompatible, e.g. if both are inputs or
both are outputs. Bi-directional pins may be connected to either inputs or outputs, however the code
associated the the peripheral must ensure that the pin is set up in the desired state.

More than one pin can be connected with the same operation. Select the pins from each selected
component using thehift key (consecutive selection) @ontrol key (nonconsecutive selection),
then clickConnect The number of pins selected for each component must be the same otherwise
no connections will be made. Connections are made from the first (top to bottom) selected pin in
one pin list to the first selected pin in the other list, then the second pin in each list, etc. The pin pairs
must be compatible otherwis® connections will be made.

If multiple pins are to be connected, but the order in which the pins should be connected is the
reverse, clickConnect Reverse Ordemafter selecting the pins in the usual way. For example, if pins
A andB (top to bottom in that order) have been selected for componentand pinsx andy (top
to bottom in that order) have been selected for componentselecting Connect would make the
connections:

one.A - two.X
one.B - two.Y

but clicking Connect Reverse Order would make the connections:

73

The Debugger Views HI-TIDE Views

one.A - two.Y
one.B - two.X

If more devices need to be added, the button Edit Devices will take you tdihéO Components
dialog showing th&elect Componendisplay after first saving any connections made.

4.4.6.7 Peripheral Components

The following describe the individual components in detail. More than one of the same component,
except for the simulator component, can be added to the Virtual 10 view. If more than one compo-
nent of the same type has been added, they can be configured independently. The options for each
component can be specified by selecting the component frorAdded Componentslist in the

Edit 10 Components dialog and clicking théroperties button.

8051simulator The 8051simulator is considered a peripheral component. Adding a simulator is
not mandatory, although is typically done. The simulator component represents the microcontroller
being simulated by the debugger.

The available pins on the simulator correspond to the pins of the microcontroller. Not all pins
can be wired, e.g. the power supply pins and crystal oscillator pins are assumed to be wired in such
as way that the microcontroller would operate normally. Refer to your 8051 datasheet for more
information.

The simulator does not have a graphical representation in the Virtual 10 view, nor are there any
options that can be specified for this view.

LCD Display (Liquid Crystal Display) The LCD Display simulates a LCD with a standard 14
pin IDC connector and LCD controller, such as the Hitachi HD44780. Figur&shows theEdit
Components Propertiesdialog for the LCD panel. The default options and graphical display can
be seen.

The options are as follows.

Display Mode Specifies the size and configuration of the LCD panel. The number of characters
wide, and the number of rows can be specified.

Background Colour Specified the background colour of the LCD panel.

The LCD panel specifies twelve pins. The power pins are assumed to be pre-wired and do not appear
in the pin list. The pins’ operation is described as follows.

Contrast This input is not connected.

74

HI-TIDE Views The Debugger Views

Figure 4.18: LCD properties dialog

i
Dizplay maoce |1 Echars x 2lines ™ l
Background colar IGreen 'l

rPrevie

Cancel |

RS (register select) This input pin specifies whether the current read or write cycle is accessing data
in the internal RAM of the LCD (high) or is a control operation (low).

R/W (read / write) This input determines if the current memory access is a read (high) or write (low)
cycle.

E (enable) This input acts as a data strobe. A high-to-low transition indicates that the data bus is
valid.

DBO... DB7 Bidirectional data bus pins.

The 8051 simulator doe®wtsimulate the data setup and hold times associated with the LCD memory
interface.

LED Panel The LED panel simulates a bank of one or more light-emitting diodes. Figa
shows theEdit Components Propertiesdialog for a bank of four LEDs in a panel. The following
options are available.

Number of LEDs This specifies the number of LEDs that will appear in the panel. Up to 32 LEDs
may be specified.

LED colour This allows selection of the LED colour.

75

The Debugger Views HI-TIDE Views

Figure 4.19: LED properties dialog
x|

LED Panel |
rLED Panel Propettie:

Murnber of LEDs: I 43:

LED color Fed iy

¥ i
[active low inputs

rPrevie

-

76

HI-TIDE Views The Debugger Views

Figure 4.20: Push button properties dialog

Edit Component Properties x|

LS| oh Properie:

Switch has hounce u

Bounce period I 2,0003:

% High
Output wwhen pressed
7 Lowe

e |

rPreveie

Vertical orientation The LED panel can be shown with the LEDs aligned vertically by checking
this option.

Active low inputs With this checkbox in the default unchecked setting, the diode has its cathode
connect to ground and the anode as input. If a high voltage is applied to the diode’s input, the
LED illuminates. Enabling this checkbox connects the diode’s anode to the positive supply
rail and the cathode becomes the input. If a low voltage is applied to the diode’s input, the
LED illuminates.

LED panels have one input pin for each diode in the component. The input is either the anode or
cathode of the diode, and the other pin associated with each diode is connected to either the ground
or positive supply, respectively, depending on the diode’s property settings.

Push Button The push button simulates a single momentary switch. Figut@shows theEdit
Components Propertiedialog for the push button. The following options are available.

Switch has bounceEnabling this checkbox causes the output voltage of the switch to “bounce”
with each press, as would be expected with a mechanic switch. The bounce period can be
specified in thaBounce periodspin box. This period is specified in instruction cycles.

Output when pressed This option specifies the output voltage when the switch is pressed. Chang-
ing this setting changes the virtual wiring for the switch. Selecting High will result in the
output pin of the switch normally at a low voltage, but will become high whilst pressed.

Push buttons have one output pin.

77

The Debugger Views HI-TIDE Views

78

Chapter 5

HI-TIDE Projects

HI-TIDE encapsulates various aspects of an application being developed. This information is called
a projectand is saved on disk aspoject file The state and views of the project are part of the
information saved to disk and are restored upon reloading that project.

This chapter explains what information is stored in a project and how to create, open and manage
projects within HI-TIDE.

5.1 Toolsuites

A toolsuiteis a set of HI-TECH components with which projects can be created, built and executed.
A toolsuite typically includes the following tools.

e Compiler options and driver
e Debugger options and drivers
e Code wizard options

A project file is specific to both a toolsuite and the toolsuite’s version.

The components of a toolsuite are contained in files that are shipped with a compiler package
and a toolsuite has the same version number as the compiler with which it is distributed.

As more recent versions of a toolsuite are installed, a HI-TIDE project can be updated to make
use of the new toolsuite, see Sectiol.1for information on changing toolsuite versions. A new
toolsuite version may contain new devices that can then be selected, new compiler options, new
features in the Code wizard or even totally new debuggers and debugger options. Once the project
file has been updated to use the new toolsuite, these new features will become available via the

79

Project Information HI-TIDE Projects

menus and dialogs. A project converter is automatically run when you update toolsuite version to
maintain the project file, but as new options may be available, the options associated with all the
components should be reviewed.

It is also possible to change the toolsuite associated with a project, e.g. a project set up for HI-
TECH C for MSP430 could be changed to HI-TECH C for ARM. No project conversion takes place
when changing toolsuite, but those settings which are common to both toolsuites will be preserved
across the change. See SectioB.1for more information. With a different toolsuite set up with a
project, you can then select a different family of devices and debuggers available for these devices.

5.2 Project Information

HI-TIDE's project files can be given any file name with the extensiopr .

A project keeps track of all the files that are associated with the application, as well as what
options are selected. Information specifying the graphical layout of the views are also saved in the
project. Also saved in the project file are the tools used with the project. This includes the toolsuite,
its version, compiler and debugger used.

Some configuration information is not considered to be part of a project. This information relates
to general preference options for HI-TIDE. This information is stored in separate files in the .hitide
directory placed in the home directory of the user. It specifies such things as the general preferences,
the size of the HI-TIDE window, its relative screen position, recently opened files and plugin settings.

5.3 Creating A New Project

To create a new project, selédew Projectfrom theProject menu. TheProject wizardwill then be
displayed. The Project wizard will present a series of dialogs collecting the information needed to
create a new project. If there was a project opened prior to selecting the menu item, it will be saved
(depending on the preferences set - see Se2ti@n

When the project is created, it will then be displayed in HI-TIDE. The new project will
not be saved to file until it is explicitly saved by selecting Save Project from the Project
menu.

5.3.1 Project wizard

The Project wizard is broken up into seven scrgaogect filenameproject toolsuitetarget device
target device packageompiler, debuggerandproject source files

80

HI-TIDE Projects Creating A New Project

Figure 5.1: Project wizard — project details

Create New Project x|

rEnter Project Filename

Project Mame

frayerol

Project Location
Ih: hi-ticle |

Project File Path
h:hi-tiderypro hprj

Frew | et | Cancel

5.3.1.1 Project Filename

The project filename screen is where the name of the project file and the directory is setojElce
Name textfield is where the name of the project is specified. Filogect Location text field is
where the directory of the project is specified. The complete path of the project filename is shown
underneath in theroject File Path field. The path of the project file will be updated as the name or
directory is entered. Seel

When the project file is saved, if the name of the project file does not havetlg extension,
HI-TIDE will automatically append this extension to the filename.

The Project Location field specifies the directory where the project file and other compiler
generated files are to be placed. The directory can be entered manually or can be selected via the
directory chooser by clicking on tHerowse Directories(“...”) button.

The name of the project must be filename only and not a path. The file name must not
include any of the following characters: @ # $ % ~ &« * () -+ =1, <> :
PR B O VAR

When a filename is entered, thiext button will be enabled. When the next button is selected, the
Project wizard will check the validity of the filename. If the filename is not a valid filename, the
Project wizard will notify the user. If the filename points to a file that already exists, the user will be
asked whether the file should be overwritten.

81

Creating A New Project HI-TIDE Projects

Figure 5.2: Project wizard — toolsuite selection

& Create New Project x|

rSelect Tool Suite

d051-C 9.00

Available Tool Suites

Prew Cancel

5.3.1.2 Project Toolsuite

The project toolsuite selection screen is where a toolsuite to be used for the project is selected.
The left column of the project toolsuite screen, labelegbported Toolscontains the toolsuites
available for selection. Selecting a toolsuite from the list will populate the versions list, labelled
Supported Version®n the right hand side. The versions list shows the versions of a toolsuite that

are installed and are available for selection.

The Supported Versions list only displays the toolsuite version supported by that version
of HI-TIDE. A user may have more toolsuites installed that what is displayed, but those
versions not displayed are not supported by HI-TIDE and should not be used.

A typical project toolsuite selection screen is show in Figuze

Although a toolsuite is required to be selected to create a new project, it can be changed at
anytime once the project is created. See sechignl for more details on changing the project
toolsuite.

When a toolsuite is selected from tBepported Toolfst, the Project wizard will automatically
highlight the latest version of the toolsuite in tBapported Versionsst.

Selecting an item from the versions list will enable Nhext button. Clicking on théNext button
will prompt the Project wizard to proceed to the next screen. Clicking oRtéebutton will return
to the previous screen in the Project wizard.

82

HI-TIDE Projects Creating A New Project

Figure 5.3: Project wizard — target device

x
rSelect Device
Chip ROM R Inf. Memary |
rASP430F1 1014 [Ox400 0125 0125 - I
MSP430C1 101 O:c400 0128 J
rMSP430F11114 |0xS00 0125 0256
rSP430C1111 0500 0125
PSP430F1 1214 01000 0256 0256
rSPA30CT 121 01000 0256
rASP430C111 0500 0125
MSP430C112 021000 0256
rSP430P112 01000 0256
PhS430E112 0x1000 0256 - |
Prev | et | Cancel

5.3.1.3 Device Selection

The device is the chip that is to be used for the project. Although the device must be selected to
create a new project, it can be changed at any time once the project has been created. See Section
5.6.2for more details on changing the project target device.

The device selection screen contains a table with the chips. The chips shown in the list are the
chips available and supported in the version of the selected toolsuite. The data shown in the device
selection screen may differ depending on specific toolsuite, but will mainly consist of the name of
the chip, its manufacturer (if the chips are produced by more than one manufacturer) and its various
device memory. Figuré.3shows a typical target device selection screen.

When a chip is selected, théext button will be enabled. Clicking on thext button will
proceed to the next screen in the Project wizard. Selectingrnebutton will return to the previous
screen in the Project wizard.

5.3.1.4 Device Package

The device package selection screen is used to select the packaging type of the target chip. The chip
package may affect things such as thoele wizardor the simulator as the chips outputs may map
to different pins in different packages. Although a chip package must be selected to create a new
project, it can be changed at any time. See Sedii6ér3for more details on changing the device
package types.

The device package selection screen consists of a list of the packages available for the selected

83

Creating A New Project HI-TIDE Projects

Figure 5.4: Project wizard — device package

Create New Project x|

Select Package Type
i
IPE

Prew | et | Cancel

target device. Figur.4 shows a typical target device selection screen.

When a package type is selected, Mext button will be enabled. Clicking on théext button
will proceed to the next screen in the Project wizard. SelectindPtieg button will return to the
previous screen in the Project wizard.

If there is only one device package type, it will by automatically highlighted and the
Next button will be enabled as a result..

5.3.1.5 Compiler Selection

The compiler selection screen allows the user to select the compiler from the toolsuite to be used
with the project. The compiler is closely tied in with the toolsuite and cannot be changed without
changing toolsuite. For example if a project was using a compiler version 9.0 and was to be compiled
using version 9.20, the toolsuite will have to be changed to version 9.20 to use the compiler from
that version. Figur&.5shows a typical compiler selection screen.

If there is only one compiler available for selection from the toolsuite, the Project wizard
will automatically select the compiler and skip the compiler selection screen, This will

84

HI-TIDE Projects Creating A New Project

Figure 5.5: Project wizard — compiler selection

Create New Project x|

rSelect Toolsuite

MMSPA30Compiler

Prev | et | Cancel

be the case with most toolsuites.

5.3.1.6 Debugger Selection

The debugger selection screen allows the selection of the debugger to be used with the project. A
debugger must be selected for the project, but can be changed at any time, once the project is created.
Refer to Sectiorb.6.4for more information on changing the project debugger.

The debugger selection screen is similar to both the package type selection and compiler selec-
tion. Figure5.6 shows a typical debugger selection screen.

The debugger list shows the debuggers that are available in the selected toolsuite for the selected
target device. Some toolsuites (especially later versions) may have more debuggers available than
others. The debuggers shown are also affected by the selected device. A debugger may support one
device over another.

At the least, the list of debuggers will always contain the item No Debugger. Selection
of the No Debugger will set the project to, not having a debugger and the debugger
related menu items and toolbars will be disabled.

85

Creating A New Project HI-TIDE Projects

Figure 5.6: Project wizard — debugger selection

Create New Project x|

rSeIed Debugger

Mo Debugger
JTAG Emulatar
M=P430 Simulatar

Prew | et | Cancel

When a debugger (d¥o Debuggeris selected, thé&ext button will be enabled. Clicking on the
Next button will proceed to the next screen in the Project wizard. Selectin@ e button will
return to the previous screen in the Project wizard.

5.3.1.7 Project Source Files

The project source files selection screen is to allow the quick addition of source files into the project.
This step is not necessary in the creation of the project, and hendérisé button is enabled
without having to add any files.

To add files to the project, click on thedd button. This will display the file chooser dialog for
selection of files. Files can be selected one at a time or multiple files can be selected from this dialog.
When the files are selected from the file chooser dialog, they will be added to the list of source files
in the project source files screen. The order in which the files are added will be the order that they
appear in the list. Figurg.7 shows a typical source files selection screen with some files added.

To remove files from the list, select the file to be removed. This will enabl&#meovebutton.
Clicking on theRemovebutton will delete the file from the source files list.

The order in which the files appear in the source files selection screen is the order in
which the files will be added to the project. This will also be the order that they appear
in the project view. This is also the order in which the files are compiled and linked.

86

HI-TIDE Projects Managing Projects

Figure 5.7: Project wizard — source file selection

Create New Project x|

r&dd Source Files To Project

h: thi-tidenait .o
H:hi-tide'delay .o

H:hi-tide'=tartup .as Remowve |

Prev | Finizh | Cancel

As it is not necessary to select source files in the creation of a new projedgjriis button is
always enabled. Clicking on th&nish button will close the Project wizard and the new project will
be created and opened in HI-TIDE. Clicking on tev button will return to the previous screen in
the Project wizard.

5.4 Managing Projects

5.4.1 Opening Existing Projects

An existing project can be opened by selectiygen Project... from theProject menu. When this
menu is selected a file dialog will be shown allowing a project file to be selected.

A recently opened project can be opened quickly by selecting frolReéleent Projectssubmenu
in the Project menu. The submenu will display the paths to a number of project files that have been
recently opened. Selecting a project file will open that project in HI-TIDE. The number of files
stored in this menu can be configured in General Preferenceglialog.

HI-TIDE, by default, will load the last opened project when starting. This behaviour can be
configured in theGeneral Preferencesdialog as well. See Sectidh3 for more information on
setting and changing the preferences.

87

Managing Project Source Files HI-TIDE Projects

5.4.2 Saving Projects

To save the state of the project to disk, selgate Projectfrom the Project menu. Selecting the
SaveAll menu item from theFile menu orSave All button from the standard toolbar will also save
the project file, as well as all opened editor files.

To save the opened project file under a different filename and/or directory, sel8ewthroject
As from theProject menu. When th&ave Project Asmenu is selected a file dialog will be shown
which will allow a new file name and/or directory to be selected. This will change the name of the
project currently opened to the new name. The title of the project in the HI-TIDE window will also
be updated to show this change. The output node in the project view will also be updated.

5.4.3 Closing Projects

To close a project, sele@ose Projectform theProject menu. Opened projects will automatically
be closed when exiting HI-TIDE.

Saving of project files when a project is closed can be configured iGéreral Preferences
dialog. By default if the project has been modified and is about to be closed, a prompt will appear
requesting if the project file should be saved. Other settings are a project file should always be saved
when it is closed or a project file should never be saved when it is closed.

5.5 Managing Project Source Files

The managing of project source files, and library files, can easily be done via the project view or file
menus. Through the project view, the files are mainly managed by right-clicking on the file or folder
and using the associated popup menu.

The options available include adding and removing source files from the project, compiling
of files to intermediate files and setting of the compiler options for the files. These functions are
described in detail in the following sections.

5.5.1 Adding Files To The Project

There are several methods of adding files to the project. The files that can be added to a project
include C or assembler source files (.c or .as), library files (.lib) and object files (.obj). Source
files can be existing or new files can be created and added. The methods of adding source files are
described in the following.

A project cannot have two or more files (source or object) with the same filename (not
including extension). When adding a file, if a file with the same name is already in the

88

HI-TIDE Projects Managing Project Source Files

project exists, the second file will not be added and HI-TIDE will issue an error

The first method is the addition of existing source files to the project via the source file selection
screen in the Project wizard, when creating a new project (see Sécidn’j. This method adds
the source files into the project at the time when the project is created.

Another method of adding existing source files to the project is through the use of the popup
menu in the project view. Right clicking on tt Filesfolder or Assembler Filesolder will show
the popup menus for those folders respectively. Existing C or assembler files can be added by
selectingAdd Existing C File(s)... orAdd Existing Assembler File(s)... menu items from the
respective popup menus. This will open a file dialog to select any number of files. The files will
then be added in to their corresponding folders. When usindthkExisting C File(s)... option,
non-C files cannot be added. Similarly, when usingAlde Existing Assembler File(s)...option,
non-assembler files cannot be added.

Addition of existing source files can also be done throughPttgect menu, using thédd Files
To Project... menu option. This is similar to right-clicking and using the file folder popup menus,
except that it is not file specific like the folders. Both C and assembler files can be selected from the
file dialog and added. HI-TIDE will sort the file into their appropriate folders.

Alternatively, if a file is opened in the file editor, and a file of the same name is not already
included in the project, the file can be added to the project by selectingdtid-ile To Project
option from theProject menu. This menu item will only be enabled if the file is valid for addition
to the project.

A new source file can be created and added to the project in one action by the file folders’ popup
menu. If a new C file is to be created and added to the project, right-click o Hiles folder and
select the popup menu ite@reate And Add New C File. This will open a file dialog, prompting
for the filename to save the new file as. SelecBayein the file chooser dialog will create the
file and add that file to the project. The file will also be opened in an editor view and added to the
workspace in a new workspace tab labelled as the filename.

Existing object or library files can be added to their respective file folders by right-clicking on
theObject Filesfolder orLibraries folder. Selecting thé&dd Existing Object File(s)... menu item
or Add Existing Library File(s)... menu item (from the respective popup menus) will open a file
dialog for selection of the existing object files or library files. The file dialog supports selection of
one or more file at a time, but the files must be of the correct type - i.e. only .obj files can be selected
for object files and .lib files can be selected for libraries. Clicking@ipen button in the file dialog
will import the selected file(s) to the project.

With all of the file folders, pressing the Insert key on the selected file folder will open the file
dialog to add existing files of the folder type. This is the same as the selectidglthExisting ...
file type popup menu option for each of the respective folders.

89

Managing Project Source Files HI-TIDE Projects

5.5.2 Removing Files From The Project

To remove one or more files from the project, select the file that are to be removed from the project
view by right-clicking on it and seledemove From Projectfrom the popup menu.

To select more than one file at a time hold down ¢batrol key (for non-contiguous selection)
or Shift key (for contiguous selection) when selecting the files. Right-clicking over the files after
they have been selected will trigger the popup menu. SBentove From Projectto remove the
selected files.

The file folders cannot be removed from the project. Right-clicking on the folders only
allow files to be added.

Files can also be removed by pressing the Delete key on the selected file.

5.5.3 Changing Compiler Options

Compiler options can be set on a global basis or per file basis. Global options are handled by the
output file and apply to all files that do not hafile specific optionset. Global compiler options
are changed through th@lobal Compiler Optionsdialog. This dialog can be opened by double
clicking on the output node in the project view or by right-clicking on the output node and selecting
Global Compiler Options... from the popup menu. Tkdobal Compiler Optionglialog can also
be displayed by selectinglobal Compiler Options... from theProject menu.

Project source files can have compiler options that are specific to the file and different to the
global compiler options. These options are referred tlil@specific optionsBy default when a C
or assembler file is added to the project, global compiler options are applied to the file and used for
that file when it is compiled. To change the options of a file to be file-specific, right-click on the file
node in the project view and seldete Specific Optionsfrom the popup menu. This will show the
File Specific Optiongdialog, which is very similar to th&lobal Options Dialog where the options
can be set for that file only. To switch between using file-specific options and global options, select
or deselect theUse custonoptions” checkbox in th&ile Specific Optiongialog.

5.5.4 File Properties

HI-TIDE can display the properties of files in a project in #ike Propertiesdialog. The properties

tah are displayed include the filename, file path, file size and when a file was last modified.
To open aile Propertiesdialog, right-click on the file in the project view and sel@cbperties

from the popup menu of that file node. Figur@ shows a typicaFile Propertiesdialog for a file.

90

HI-TIDE Projects Changing Project Settings

5.5.5 Dependency Files (Header Files)

Dependency files are automatically handled by HI-TIDE. Dependency files are files, usually header

files, that are #included into another file. When a file is added to the current project, or it is compiled,

HI-TIDE does a scan for the dependencies of this file, and the dependencies are added to the project.
To view the dependencies of a particular file, right-click on that file node in the project view. If

the file has dependency files, tB@en Dependencymenu item in the popup menu will be enabled.

If the file does not have dependency files, the menu item will be disabledOphle Dependency

option is a sub-menu, which expands to list the dependency files of that particular file. Clicking on a

dependency file will open the file in an editor view in a new workspace tab. The workspace tab will

be labelled with the name of the file.

5.6 Changing Project Settings

When a project is created, certain options were selected in order to create a project. These included
the toolsuite, the target device to be used, the package type of the target device and the debugger.
Once the project is created, all these options can be changed. The following describe how to change
these settings.

5.6.1 Changing Toolsuite

Toolsuite is an essential part of a HI-TIDE project, and a project must always have a toolsuite set.
The toolsuite determines the chips that are available for the project as well as the tools to use to
compile and debug the project. A toolsuite must be selected when creating a project, but can be
changed at any time.

Once atoolsuite is selected for a project, a toolsuite from a different chip architecture type cannot
be selected to replace the original. Only toolsuites of the same architecture type can replace the
original. This allows you to change between different versions of toolsuites from the one toolsuite
family.

To change toolsuites, select tBhange Toolsuite..menu item from théroject menu. ASelect
Toolsuite dialog will appear to allow selection of a different toolsuite. The dialog will be similar in
appearance to the project toolsuite selection screen in the Project wizard (seeSEtgyure

The list of Supported Tooldist, however, will only display the name of the currently selected
toolsuite and it will be highlighted as well. THaupported Versionkst will display the different
toolsuite versions available for selection. The currently selected toolsuite version should be high-
lighted to indicate that it is currently selected.

Clicking on theFinish button will set the newly selected toolsuite as the toolsuite to use (if it has
changed). SelectinGancelwill cancel the operation and restore the current toolsuite.

91

Changing Project Settings HI-TIDE Projects

When a new toolsuite is selected, it may not have support for the currently selected

target device, especially if the newly selected toolsuite is older in version number to the

currently selected toolsuite. A different target device and device package type may need
to be selected as a result. Likewise, the newly selected toolsuite may not support the
debugger previously selected. A different debugger may need to be selected. HI-TIDE

will notify the user in all cases where the previous selections cannot be restored when a
new toolsuite is selected.

5.6.2 Changing Device

A project must always have a target device selected, however, the target device can be changed.
This can be done by selecti@hange Device..from theProject menu. This will display th&elect
Devicedialog, to select a different target, which is similar in appearance to the target device selection
screen in the Project wizard (see Figbré). The dialog should display the selected chip at the top
of the view. The list of chips available for selection will be the devices supported by the selected
toolsuite.

The target device can also be changed by double clicking on the target section of the status bar
(see Sectior.3). This will also display theSelect Devicelialog.

The package type for the current target device may not be supported in the new device.
Selecting a new device may also require selection of a package type for the new device.
HI-TIDE will notify the user of this requirement. Likewise, the debugger selected for
the current device may not support the new device. A different debugger selection may
also be required on selection of the new device. HI-TIDE will also notify the user of
this requirement.

Clicking onFinish will set the newly selected chip as the target device (if it has changed). Clicking
on Cancelwill restore the current device.

5.6.3 Changing Device Package

Some tools can be affected by the device package type. An example could be the simulator, where
it simulates the output of the device, and the output may map to different pins, depending on the

92

HI-TIDE Projects Changing Project Settings

package type of the target device. Target package types can be changed to accommodate such needs
when dealing with chips that have different package types.

To select a different package type, select @wnge Package..menu item from théProject
menu. TheSelect Device Packagdialog will appear to allow the selection of a different package.
The dialog will be similar in appearance to the target device package selection screen in the Project
wizard (see Figuré.4).

Clicking onFinish will set the newly selected device package type (if it has changed). Selecting
Cancelwill restore the current package type.

5.6.4 Changing Debugger

To change debuggers, select leange Debugger..menu item from thd’roject menu. This will
display theSelect Debuggedialog. The dialog is similar in appearance to the debugger selection
screen in the Project wizard (see FigGaré€).

Unlike the toolsuite, target device or device package type, a debugger does not need to be set for
the project. This can be set by selectiddp'Debugget from the debugger list.

The debugger can also be changed by double-clicking on the debugger name of the status bar
(see Sectior3.3). This will display theSelect Debuggedialog.

Clicking on Finish will set the newly selected debugger as the debugger to use. Clicking on
Cancelwill restore the current debugger.

93

Changing Project Settings HI-TIDE Projects

94

Chapter 6

C-Wiz — The Code Wizard

An advanced feature integrated with the HI-TIDE toolkit is C-Wiz, the Code wizard. This is a graph-
ical development tool designed to minimize the burden associated with setting up microcontrollers
and their on-board peripherals. Instead of searching through manufacturer’s data sheets to learn the
bit manipulations needed by each peripheral in order to get it to work, you can simply run the Code
wizard and let it do the job for you. The dialog lets you select which peripherals you intend to use
and describe how you would like each one to operate. The Code wizard translates these settings into
corresponding C code that can be executed on your selected target device to set up the peripherals to
the given specifications.

6.1 Starting the Code Wizard

As the Code wizard is a plug-in tool to HI-TIDE, it can be started by clickingGogle Wizard
button in the user-tools toolbar. Alternately, fhi@ols menu contains an item call€gbde Wizard,
selecting this item will also open tH#051 Code Wizarddialog. Figure6.1 shows the HI-TIDE
dialog indicating both methods to start the Code wizard.

If the button and menu item are deactivated, this indicates that the Code wizard doesn'’t support
the microcontroller selected in the HI-TIDE project.

6.2 The 8051 Code Wizard Dialog

The graphical interface of the Code wizard is composed of five smaller panels inside a dialog. A
typical screenshot of dialog is given in Figuse.
The panels which make up t8851 Code Wizarddialog are described as follows:

95

The 8051 Code Wizard Dialog C-Wiz — The Code Wizard

Figure 6.1: Starting the Code wizard from within HI-TIDE

NEFEEERCED -
B b

g testing

C Files
Azzembler Files
Ohject Files
Libraries

96

C-Wiz — The Code Wizard

The 8051 Code Wizard Dialog

Avyailable Peripherals,
Core
10 Ports:

MSP430 Code Wizard: MSP430F149

Figure 6.2: A typical Code wizard dialog

~Comparator A

Cormparator power on [Enabls interrugt

ADCIZ
Comparator A
Tiner &
Titter B
Serial port 0
Seril port 1

i R o B

Watchdog Timer

Messages:
- initialize.c exported
- Pin 33:URXD0 overrides
P3. 5

- Pin 32:UTxD0 owverrides
F3.4

- Pin 24:CAl overrides
P2.4

\~ Pin 23:CAD overrides
P2.3

- Dependency handling
enabled

Clear messages

Interrupt triggers on [Rising edge T

Generate an interrupt function [

~Camparator Config.

iz availabietn [Terminal & 7 |

Reference [ic

Terminal & |CA0 |
Terminal & a1 |

Invert Inputs [~ Enable output fiter [

i

P3IDIR = 0b0OOOOOODODO;

/* {P3.4) Pin 32 configured as UTXDO
* (P3.5) Pin 33 configured as URFDO
*

F3SEL = DbOOL1000O:

/% Port 4 direction (l=cutput)

Elix

/* Comparator A interrupt disabled
+ Comparator A power off

* Reference voltage is N/C

+ Reference applied to Terminal A
+ Comparator inputs not exchanged
"

CACTL1l = ObO0O0OOOOO;

/% Durput filter is dizsbled
+ Pin CAD commencted To comparator
* Pin CAl commencted to comparator
n

CACTLZ = ObOODOL100;

% Current module cos © mlcote

fA*FEEY Comparator A module initialization code #*#%#sy

Output sowrce file [ritiaiie o

"Save | saveas

Advanced Options

el

[V Import source file to project

97

The 8051 Code Wizard Dialog C-Wiz — The Code Wizard

6.2.1 Peripheral Selection Panel

The upper-left-most panel of 18051 Code Wizarddialog is the Peripheral Selection Panel. This
panel lists all of the configurable peripherals that are available to the microcontroller selected in the
current HI-TIDE project.

Each peripheral in this list will have a checkboxdotivate (indicate the peripheral is to be
initialized) and a button used &electthe peripheral. When a peripheral is selected its configurable
settings are displayed in the Configuration Panel.

6.2.2 Configuration Panel

The Configuration Panel occupies the main central area @&@b& Code Wizarddialog.

This panel displays the configurable settings available for the currently selected peripheral. Ini-
tialization code is generated for each peripheral based on the settings made in the Configuration
Panel.

6.2.3 Messaging Panel

The panel to the lower-left of the dialog is the Messaging Panel. The Code wizard will use this panel
to report any warnings or messages that result during the generation of initialization code.

In most cases these messages will result from conflicts which arise when multiple peripherals try
to access the same resource. Such messages are interpreted in@8ctidnis manual.

The newest messages appear at the top of the Messaging Panel. If the list of messages grows too
long, it can be cleared at any time by pushing @ear messagesutton.

6.2.4 Generated Code Display

The right-most panel contains a large text area used to display the generated initialization code.
The code in this window is dynamically generated and can be seen changing in accordance with
adjustments in the Peripheral Selection Panel and Configuration Panel.

Controls are available to switch between viewing the generated code for the whole system or
viewing the specific code generated for the currently selected peripheral. A comparison of the dif-
ferent views for the Generated Code Display is shown in Figuse

6.2.5 Control Panel

At the bottom of theB051 Code Wizarddialog is a small panel with controls which allow the
generated code to be output to a file. The facility is also available to automatically import this file
into the current HI-TIDE project. Also within this panel is tAelvanced options. .. button as well

as theOK andCancelbuttons used to exit the Code wizard.

98

C-Wiz — The Code Wizard Selecting Peripherals

Figure 6.3: The Advanced Options dialog
x|

Options

g

Initislization function narme init

6.2.6 Advanced Options Dialog

Apart from those options available in the Control Panel the Code wizard has various options that
can be configured using thedvanced Optionsdialog. This is shown by clicking th&dvanced
Options. .. button within the Control Panel of tH#051 Code Wizarddialog. The layout of the
Advanced Optionsdialog is shown in Figuré.3.

The advanced options that can be configured include:

6.2.6.1 Enable dependency handling

This checkbox enables you to toggle the Code wizard's automatic handling of shared resources
(dependency handling). This is discussed further in Seétian

6.2.6.2 Initialisation function name

This text field allows you to specify the name of the function the Code wizard will create when
saving a file. By default the function name is setitat. See Sectior®.6 for more information
about saving to files.

6.3 Selecting Peripherals

Microcontrollers can contain a large number of internal peripherals, so it would be unnecessary and
wasteful to generate initialization code for peripherals that you don’t intend to use. For this reason
the Code wizard allows you to select which peripherals you require code to be generated for. This is
done via the Peripheral Selection Panel by ticking the checkbox associated with each peripheral. As
this box is ticked, its corresponding selection button will be activated. Pushing the selection button

99

Configuring Peripherals C-Wiz — The Code Wizard

Figure 6.4: Peripheral selection panel of C-Wiz

Available Peripherals:

Care
v WOT
v 10 Ports
o LCD Cantroller
o Easic Timer
v Tirner &
o Timer B
| USART 0
Il LELRT
|| Supply Yoltage Superyvisar,
|7 Comparatar A
i ADC12

will select the peripheral so that its setting are displayed in the configuration window. The Peripheral
Selection Panel is illustrated by Figusel.

In this figure,USART 1 is a peripheral that has been deactivated. Its checkbox is clear and its
selectionbutton deactivated. No code will be generatedUexRT 1. Timer A has been activated
so initialization code will be generated for this peripheraarT 0 is activated and selected, this
means that code will be generated fmaRT 0 and its settings will presently be displaying in the
Configuration Panel.

It is important to understand that if a peripheral is deactivated in the Code wizard, that does
not guarantee that the peripheral will be inactive in your target system. If a peripheral receives no
initialization code it will operate in its default state, which in some cases might be active.

Code generation for each peripheral can be activated or deactivated at will, with the exception
of the Core module. Every microcontroller supported by the Code wizard will have a configurable
module calledCore. Initializing the Core module is required for setting up system-critical attributes
such as oscillator settings, global interrupt control or memory configuration.

6.4 Configuring Peripherals

As mentioned earlier, the Configuration Panel of the Code wizard can present the initialization op-
tions for each of the device’s peripherals in turn. To configure initialization code for a selected pe-
ripheral it must be activated (via the checkbox in the Peripheral Selection Panel) and selected. The
Configuration Panel only presents the settings that are available for the peripheral that is currently
selected.

100

C-Wiz — The Code Wizard Viewing Generated Code

Figure 6.5: Typical I/O port configuration panel

PORT1 PORT 2 | por 3| PorT 4 | porT 5| PorT 6]
Port configuration

Direction Irterrupt edge

In Out Mone Rising Falling
grol & O o (o
gri| * o (ol
gral &= o (S
srs = O o (ol o
T4l & O o IS
prs| @& COL_ G- O
[1f Facility disabled, line used by USART 0]
BTEl ™7 i* T T
sr7l * O o (ol o
Global Selections
All directions Irpaut Output
Al interrupts Mone Rizing Fallifg

When the Configuration Panel display is displaying settings for a particular peripheral, itis only a
matter of adjusting the selection components to describe your system’s needs. A brief description for
each setting will appear in a floating text box if the mouse is left to float over a selection component
for more than a second. If a selection component is deactivated or unavailable, the floating text box
will give the reason why the setting is unavailable. In Figéi® the floating text box explains that
all selections for 1/0 Port 2, bit 5 are unavailable because this I/O line is already in use by USART 0
(see Sectio®.9for information on shared resources).

As each setting is adjusted, the consequential code is automatically updated in the Generated
Code Display.

This process can be repeated for all of the peripherals that require to be initialized.

6.5 Viewing Generated Code
Program code generated by the Code wizard is shown in the Generated Code Display. Changes made
in the Configuration Panel will be dynamically updated in the Generated Code Display.

Generated program code is fully commented so that the selected modes/settings encoded with
each instruction can be clearly identified. This also makes for easier program maintenance if there

101

Viewing Generated Code

C-Wiz — The Code Wizard

Figure 6.6: Comparison of generated code display modes

/#%%%%% The general purpose, common code *FFEF%/ 4

/* Basic timer is running

* Interrupt frequency is ACLE:Z
* LCD framerate set to OFF

i

[ETCTL = O0bOOOOO0O0:

/* Oscillator fault interrupt disabled
* TUARTO interrupts enabled

*

IE1 = 0bll0O00000;

/% Basic timer interrupt diszabled
*
IEZ = 0b0O0OOOOOO;

/* UARTO enabled
*
|IMEL = 0bl1000000;

/% Port 1 direction (l=cutput)
*
PIDIE = 0bOOOOOO11:

/% (PlL.6) Pin 81 configured as CAOD
* (FL.7) Pin 80 configqured as Cal
i

F1SEL = 0bllOo00oo;

PEDIR = 0bOOO10000:

/% (PZ.3) Pin 11 configqured as CAO0
1| |

" Current module code o

102

/*¥****% The general purpose, common code **FFE*+; &

/% Basic timer is running

* INTerrupt fredquency is ACLK:Z
* LCD framerate set to OFF

*

[ETCTL = ObOOOOOOOO;

A* Oacillator fault interrupt disabled
* TARTO interrupts enabled

i

IE1 = 0Obll0O00000;

/* Basic timer interrupt disabled
*
IEZ = 0ObOOOOOOOOD;

=

JEEnTrEaEEE U3ARTO Initialisation Code ****1;***;‘

i

4% UART mode

One stop bit

Parity disabled

7 bit character length

Idle-line multiprocessor protocol
o feedback

EREE I

*
[UCTL_0 = Ob0O0O0OO0O00;

#* Clock source: ACLE
*
UTCTL_0 = 0b00O0L10000;

/% Character errors don't alter interrupt Elag_lll
| »

1% Current module code 8l code

is a need to modify the initialization code at a later date.

Radio button controls below the text area are used to select how the generated code will be
presented. If view is set tall code, one largecode viewarea will show the commented initialization

code for all of the activated peripherals. A scroll bar can be used to roll the view over the entire block
of generated code.

If the Current module codeoption is selected, the output display will split into two code views.

The code view shows initialization code that affects multiple or all periphecalaifhon code The

lower code view shows initialization code that is specific to the currently selected peripheral. The
border between the peripheral and common code views can be dragged by the mouse to adjust the
ratio between the two views. These two views are compared in Figére

C-Wiz — The Code Wizard Saving to Files

Figure 6.7: Control panel of C-Wiz

Output source file Iin'rtialise.c: | Save I Save As... | Advanced Options ...

OK | Cancel | v Import source file to project

6.6 Saving to Files

If it is desired to save a copy of the generated initialization code to a file, this can be done via the
Control Panel. To save the generated code to a file specify the path and file hameDiut o
source filetext field, then press th®avebutton. To search your file system for a specific directory,
press théSave As. . .button. This opens a dialog box to allow you to search your file system to find
a suitable directory to save the generated code to.

If the Import source file to project checkbox is ticked when either tigaveor Save As. ..
button is pushed, the source file named in the text box will also be imported to the current HI-TIDE
project.

The saved file will contain the initialization code and comments for all peripherals that have
been activated in the Code wizard. This is true even if the Generated Code Display has been set to
view only the code for the current peripheral. When the code is saved, the code wizard will create a
function definition, with a name specified in tAelvanced Optionsdialog (see Subsectich2.6),
which will contain the generated code. A small sample of the generated code is as follows:

#include <msp430.h>
/* Initialisation code generated for the HI-TECH Software
MSP430 C compiler by the HI-TIDE Peripheral Wizard */
void init (void)
{
/*¥**x%xx The general purpose, common code ****x*/
/* Oscillator fault interrupt disabled
* UARTO interrupts enabled
*/
IE1 = 0b11000000;
/* Basic timer interrupt enabled
* UART1 interrupts enabled
*/
IE2 = 0b10110000;
[****%%% System Clock initialization code *****%/
/* Global interrupts are enabled */

103

Saving to Files C-Wiz — The Code Wizard

_BIS_SR(GIE);
/****%*%* Watchdog module initialization code ******/
/* WDT operates in Off mode
* WDT interval is tSMCLK x 64
* NMI pin causes reset
*/
WDTCTL = 0b0101101010000000;
[*x¥%kxkxxkx Basic Timer initialization code *¥**x*xkxkxx/
/* Initial value on timer 1 is 0
* Initial value on timer 2 is 0

*/
BICNT1 = 0b00000000;
BICNT2 = 0b00000000;

}

Inside the function, the initialization code required for each peripheral is quite separate. Code for
each different peripheral is introduced with a large identifying comment. This makes it easier to sep-
arate specific code if it is intended to isolate individual peripheral segments to independent functions
or modules.

The only exception to the rule is in the case where a single instruction may have an effect on
multiple peripherals. An example of this is as follows:

/* Basic timer interrupt enabled
* UART1 interrupts enabled

*/

IE2 = 0b10110000;

This is a typical case where a single register is responsible for controlling attributes (in this case
interrupts) for several peripherals. Since such code can't be solely associated with any single periph-
eral, itis classified asommon codand will appear in a separate section to be found at the beginning

of the function.

It is important to remember at all times that the file saved to is a generated file. This is relevant
because any modifications you make to the file later will be lost if you later ask the Code wizard
to save the file again. In this event, the Code wizard will simply re-generate the code from the
peripheral settings it has been given and overwrite the specified file. It has no knowledge of any
changes that you have made to the file since last time. Take care and be aware of this consideration
if you are modifying the generated file.

104

C-Wiz — The Code Wizard Accessing the Initialization Code

6.7 Accessing the Initialization Code

If the Code wizard is instructed to save its generated code, it will be saved to the specified file in a
function with the name specified in tielvanced Optionsdialog (see Subsectidh2.9. Itis likely

that this file will ultimately be included as an additional file in your HI-TIDE project. If so, any
module that would call on this function will require a function prototype such as this:

extern void init (void);

Itis recommended for your program to call this function very early in its execution, so that the device
and its peripherals are ready before any peripherals are accessed and before any system events such
as interrupts or watchdog timeout. The function call would look like:

init(); // Initialize device and peripherals

Upon return from this function call, the microcontroller and its peripherals will have been set to the
modes specified in t@051 Code Wizarddialog. It is not a strict requirement for this function to be
calledinit so if you choose to rename the function, also adjust the function prototype and function
calls accordingly.

6.8 Generating Interrupt Service Routines

Some peripherals have the ability to trigger an interrupt on a particular condition or specific event. If
s0, the Code wizard can generate a function template to enable your program to service this interrupt.
To generate an interrupt service routine, simply tick the checkbox in the peripheral’s settings corre-
sponding to generating an interrupt function. Some peripherals can have multiple interrupt routines,
each triggered on a different event. In this case there may be a separate checkbox to generate each
different interrupt function.

It is important to realize that there is a difference between selectiegablean interrupt and
selecting togeneratean interrupt function. Enabling an interrupt sets up the device to trigger an
interrupt (and go to an interrupt function) upon the trigger condition being satisfied. It is quite valid
to have an interrupt function without enabling the interrupt - you may want to enable it later in your
program, but it is unwise to enable an interrupt trigger without also providing an interrupt function
to service it.

Of course the Code wizard has no idea of what you want your interrupt service routine to do,
so it will only generate a template of the interrupt function. In this way it sets up vectoring to the
function automatically, so all that is left for you to do is fill in the content of the interrupt service
routine in the template provided.

Any generated interrupt service routines can be found at the end of the source file that the Code
wizard saves to. It is recommended that you move them from the generated file and into a separate

105

Handling Shared Resources C-Wiz — The Code Wizard

Figure 6.8: Message panel of C-Wiz

Hessages

4 surrenders pin 3

Pin Z:43 overridezs P6.3
Pin 80:Cal owerrides P1.%

Kl |2

Cleat messages |

file. The reason for this is that if you were to make modifications to this file, all changes will be lost
if this file is regenerated at a later date.

6.9 Handling Shared Resources

If configuring several microcontroller peripherals, it is possible for select combinations of settings
to cause two or more peripherals to rely upon access to the same resource simultaneously. If the
device is allowed to operate in such a state, the devices can conflict it is possible that one or all the
peripherals involved will not function as expected.

The Code wizard has the ability to identify hazardous conflicts between peripherals and will
notify you whenever such a conflict occurs. In this event a brief report will appear in the code
wizard’'s Messaging Panel. Figu6e3 gives an example of a typical message generated when two
peripherals are contesting for the same output pin on a microcontroller.

In this example the Messaging Panel indicates while the user was setting up the device’s periph-
erals, four pin conflicts were identified. One of the reports from the messaging window is:

PIN 2:A3 overrides P6.3

This informs us that pin 2 of this microcontroller was initially septa 3 (an I/O port pin mode).

Later another peripheral also needed the use of pin2. The report explains that pin 2 switched from
P6.3 mode toa3 mode (an analog channel). The identities of these made<$6. 3, CA0 etc. can
be found in the manufacturer’'s data sheet for your selected microcontroller.

While a conflict is present, the Code wizard disables any settings and revokes any code that
involves the disputed pin functioning in the defeated mode. In this example, any code used to set-up
p6. 3 will be nullified while the settings that depend an still exist.

Resting the mouse over a disabled setting will produce a floating message identifying which

106

C-Wiz — The Code Wizard Closing the Code Wizard

peripheral has created the conflict so that you know where to go in order to fix the probleém.
shows an example of such a message. If the setting that created the conflict is reversed or adjusted
in a way that avoids the conflict, a message such as this will be reported:

A3 surrenders PIN2

Note that if a pin function has beenirrenderedthis does not mean that it has been disabled. It
simply means that in the current settings, that pin functionality is no longer required.

The handling of these shared resources (also known as dependency handling), can be toggled on
and off using theéddvanced Optionsdialog (see Subsectidh2.6. Whilst the handling is disabled,
all configurations are accepted and the code is generated accordingly. This means that two periph-
erals may be configured on the same pin and may operate unexpectedly. It is not recommended that
the dependency handling be disabled unless the peripheral interactions are understood intimately.

6.10 Closing the Code Wizard

When finished with the Code wizard, there are two different types of closing procedures.

Firstly, closing via theOK button (see Figuré.7): This type of exit will close the Code wizard
and record all of the settings that have been made in the dialog and import a saved file to HI-TIDE if
requested. Th®K button is convenient if you plan to run the Code wizard again later in this project
and don't want to have to start from scratch. Although closing viaQKebutton will record your
peripheral settings, a generated source file will only contain the initialization code that existed at the
time of the last file-save operation. This means that any changes made after the last save operation
will not be present in the Code wizard’s output file.

The alternative is to close via th@ancelbutton. Exiting this way will close the Code wizard
without recording any new changes to the peripheral settings. If you were to re-run HI-TIDE again
later and re-open the code wizard, it would only be restored to the point of the last file-dake or
operation. If neither of these events had ever occurred, the code wizard will not be able to restore
any settings and will open in its initial blank state with all peripherals deactivated.

Closing the Code wizard via the exit button in the top-right corner of the dialog has the same
effect as closing via th€ancelbutton.

107

Closing the Code Wizard C-Wiz — The Code Wizard

108

Chapter 7

HI-TIDE Compiler Options

This chapter of the manual will explain each of the HI-TECH C compiler specific options that can
be configured from within th&lobal Compiler Options dialog in HI-TIDE. To access th&lobal
Compiler Options dialog sele@lobal Compiler Options... from theProject menu.

Each compiler will have its own unique set of global compiler options which can be configured
through theGlobal Compiler Options dialog. The global compiler options have been divided up
into six sub-sections referred to by each tab in@®ebal Compiler Options dialog, these are:

Compiler options

Preprocessor options

Memory options

Files options

Linker options

Language options

The purpose and behaviour of these options will be described briefly in the following sections,
however you may want to refer to the HI-TECH C Compiler Options section (Setfioh for a
more detailed explanation on how each option controls the compiler.

7.1 Compiler Options

Figure7.1shows theCompiler Options tab of theGlobal Compiler Options dialog. Each specific
option is explained below.

109

Compiler Options

HI-TIDE Compiler Options

Figure 7.1: Compiler options dialog — compiler options

Global Compiler Options

Preprocessorl Memoryl Filesl Linkerl Languagel

x|

rBiiled Optio:

I E Warhing level

- Strip local symbals

rGlobal Optimization

¥ Enakle global optimization
% Optimize for space
 Optimize for speed

IE Lewel

[Enable azzembler optimization

részembler Optimization———

ridemary Model
" Smal
1 Medium
" Large
* Huge

rEanking Options
[Huge memary madel anly)
v Specify banking configuration

Starting address I 000 h
Banked size I d000 h
Starting bank I

0
Murnber of banks I 16

rCebugging MOPs

I~ Insert debugging NOPs

Cancel

:

110

HI-TIDE Compiler Options Compiler Options

7.1.1 Build options
7.1.1.1 Warning Level

Setting théNarning level value to anything other than zero enables the command-line driverN
option, (see Sectioh0.4.47 which is used to adjust the sensitivity level for compiler warning mes-
sages.

7.1.1.2 Strip Local Symbols

By
This option corresponds to the command-line driveoption (see Sectioh0.4.17, which strips
local symbols from any files compiled, assembled or linked.

7.1.2 Global Optimization
7.1.2.1 Enable Global Optimization

Selecting theEnable global optimization option will enable global code optimization. The level
of optimization is specified in thieevel option. Global optimization is also applied for speed or for
space. For more information on global optimization, see Sedtioh.34

7.1.2.2 Optimize For Speed / Space

Selecting theDptimize for speedor Optimize for spacewill respectively specify the suboptions
speed Of space to the--0PT= command-line driver option.

7.1.2.3 Level

The Level value will specific the level of optimization that will apply to theopT= command-line
driver option (see Sectioh0.4.3). Note thatEnable global optimization must be selected before
the value ofLevel can be set.

7.1.3 Assembler Optimization
7.1.3.1 Enable Assembler Optimization

Selecting th&nable assembler optimizatioroption will activate the assembler optimizer. This will
set the command-line driver-OPT option to--0PT=as_all. For more information on assembler
optimization, refer to Sectioh0.4.34

111

Preprocessor options HI-TIDE Compiler Options

Table 7.1: Memory model types

Memory model | Setting
small S
medium m
large I

huge h

7.1.4 Memory Model Settings

This option selects the memory model to implement. Figuteshow the memory models available
and the equivalent command-line driver optien, see Sectioi0.4.1

7.1.5 Banking Options

The Banking Options setting is on enabled when tivemory Model option is set tdHuge. This
option is disabled if thlemory Model option is set to any other mode.

Selecting thespecify banking configurationoption will enable the text fields to enter the bank-
ing configuration information. This will specify the-BANK option (see Sectioi0.4.19 on the
command-line driver. The text fields will be added as the appropriate arguments.

7.1.6 Debugging NOPs

Selecting the Insert Debugging NOPs option will cause NOP instructions to be placed within the
output code. These instructions are used to reserve space for certain debuggers. Se&Ge&ibn
for more information.

7.2 Preprocessor options

Figure 7.2 shows thePreprocessor Optionstab of theGlobal Compiler Options dialog. Each
preprocessor option is explained below.

7.2.1 Specify Include Paths

This is where you will specify the list of paths that the compiler will search in to fintt1uded
files. Include paths can be added by typing the include path in the list. Multiple include paths can
be listed by entering each on a new line. Alternatively you can presBriivese button and select

112

HI-TIDE Compiler Options

Preprocessor options

Figure 7.2: Compiler options dialog — preprocessor options

Global Con

Compiler

Memoryl Filesl Linkerl Languagel

X

rPreprocessor

r=pecify Ihclude Paths

«dinclude
. A /uypro] fsources)

Browse... |

raszembler Fies

= Preprocess assembler files

rDefine Preprocessor Symbols

rUndefine Preprocessar Symbols —

CHAR
'0UELE

Cancel |

113

Memory options HI-TIDE Compiler Options

a path from theBrowse dialog. This option will specify the parameters for the command-line
driver option (see Sectioh0.4.9.

7.2.2 Assembler Files
7.2.2.1 Preprocess assembler files

Selecting thePreprocess assembler filegption will set the compiler to preprocess assembiler files
prior to assembling, thus allowing the use of preprocessor directives sughasude. This is
equivalent settingP on the command-line driver, see Sectidh4.12

7.2.3 Define Preprocessor Symbols

This is where you will specify any symbols that you want to be defined and passed to the prepro-
cessor. Multiple symbols can be defined if each appears on a new line. The values in the list will
specify the parameters for the command-line driver option (see Sectibd.4.3.

7.2.4 Undefine Preprocessor Symbols

This is where you will specify any symbols that will be passed to the preprocessor that are to be
undefined during the preprocessing stage of the compile process. Symbols can be added to the list
by typing the symbol name in the list and separating multiple symbols by a new line. The values in
the list will specify the parameters for th& command-line driver option (see Sectibd.4.15

7.3 Memory options

Figure7.3shows theMemory Options tab of theGlobal Compiler Options dialog. Each specific
option is explained below.

7.3.1 Program Memory Ranges

This area is where you can specify any additional program memory ranges or ROM that the compiler
can use to store code in. If there are any areas of memory that you want to reserve from being used
as program memory then you can specify these ranges iBxtieded RangesThese options will
specify the parameters for theroOM command-line driver option (see Sectivd.4.40.

114

HI-TIDE Compiler Options

Memory options

Figure 7.3: Compiler options dialog — memory options

Global Compiler Options

Compiler | Preprocessor

Emary Filesl Linkerl Languagel

X

rhlermory

rData Memary Range:
[¥ Erabile on chip ranges

[Erabile includsd ranges

Included Ranges

Range |

rProgram Memory Range:
¥ Enakble on chip ranges

[~ Enable inciided ranges

Included Range:

Range |

el | Remove Selected

Aldlb | Remove Selected

l_ Enable excluded ranges

Excluded Range:

Ratne |

l_ Enahle excluded ranges

Excluded Range:

Ranme |

el | Remove Selected

Aot | Remaove Selected

rirternal Rk

v Specify internal RAM address

I 21 h

rMon-wolatile RAh

I Specify non-volatile RAM address

T

115

Memory options HI-TIDE Compiler Options

7.3.1.1 Enable on chip ranges

If the Enable on chip rangescheckbox is selected then the default memory ranges as specified
in the chipinfo file will be available for the compiler to use as program memory. Otherwise these
default memory ranges will not be used, unless specified iimttladed Ranges

7.3.1.2 Enable included ranges

If the Enable included rangescheckbox is selected then the memory ranges as specified in the
IncludedRanges list will be available for the compiler to use as program memory.

7.3.1.3 Included Ranges

This is where you can specify additional memory ranges that the compiler can use to store code in.
To add a memory range you will need to pressAlde... button, which will display thédd Range

dialog, where you can specify the start address and the end address of the memory range. Once you
have specified the start address and the end address,GKlégtadd the range to the list bicluded
RangesNote that you will not be able add memaory ranges that overlap.

7.3.1.4 Enable excluded ranges

If the Enable excluded rangesheckbox is selected then the memory ranges as specifieg-in
cludedRanges list will be made unavailable for the compiler to use as program memory.

7.3.1.5 Excluded Ranges

This is where you can specify memory ranges that the compiler will exclude from storing code in.
To add a memory range you will need to pressAlde... button, which will display thédd Range

dialog, where you can specify the start address and the end address of the memory range. Once
you have specified the start address and the end address,@Kldotadd the range to the list of
Excluded Ranges

7.3.2 Data Memory Ranges

This area is where you can specify any additional data memory ranges or RAM that the compiler
can use to store data in. If there are any areas of memory that you want to reserve from being used as
data memory then you can specify these ranges iEkotuded RangesThese options will specify

the parameters for the-RaM command-line driver option (see Sectib.4.39.

116

HI-TIDE Compiler Options Memory options

7.3.2.1 Enable on chip ranges

If the Enable on chip rangescheckbox is selected then the default memory ranges as specified in
the in the chipinfo file will be available for the compiler to use as data memory. Otherwise these
default memory locations will not be used, unless specified inntlededRanges.

7.3.2.2 Enable included ranges

If the Enable included rangescheckbox is selected then the memory ranges as specified ided
Ranges list will be available for the compiler to use as data memory.

7.3.2.3 Included Ranges

This is where you can specify additional memory ranges that the compiler can use to store data in.
To add a memory range you will need to pressAldd... button, which will display thé\dd Range

dialog, where you can specify the start address and the end address of the memory range. Once you
have specified the start address and the end address,3Kl¢atadd the range to the list ticluded
RangesNote that you will not be able add memory ranges that overlap.

7.3.2.4 Enable excluded ranges

If the Enable excluded rangesheckbox is selected then the memory ranges as specifieg-in
cludedRanges list will be made unavailable for the compiler to use as data memory.

7.3.2.5 Excluded Ranges

This is where you can specify memory ranges that the compiler will exclude from storing code in.
To add a memory range you will need to pressAlde... button, which will display thédd Range

dialog, where you can specify the start address and the end address of the memory range. Once
you have specified the start address and the end address,3Kldotadd the range to the list of
Excluded RangedNote that you will not be able add memory ranges that overlap.

7.3.3 Internal RAM

Selecting theSpecify internal RAM address option will enable the text field to enter the starting
address of the internal RAM. This will specify the parameter fortheNTRAM command-line driver
option (see Sectioh0.4.29.

117

Files options HI-TIDE Compiler Options

7.3.4 Non-volatile RAM

Selecting th&pecify non-volatile RAM addressoption will enable the text field to enter the starting
address of the non-volatile RAM. This will specify the parameter for-the/kRaM command-line
driver option (see Sectioh0.4.33.

7.4 Files options

Figure7.4shows thdile Optionstab of theGlobal Compiler Options dialog. Each specific option
is explained below.

7.4.1 Output File Type

This options allows the type of the output file to be set. The path of the output file is shown in the
text field. This option will specify the parameters for theuTPUT command-line driver option (see
Section10.4.3§. The default output file type is grey out in the list of file types.

7.4.2 Debug Information
7.4.2.1 Generate assembler listing

If the Generate assembler listingcheckbox is selected then an assembler listing file (.Ist) will be
generated for each C module in the project when compiled. This option will enablezBBLIST
command-line driver option (see Sectivd.4.19.

7.4.2.2 Generate map file

If the Generate map filecheckbox is selected then a Map File will be generated for the project when
compiled. This option will enable thet command-line driver option (see Sectivd.4.9.

7.5 Linker options

Figure 7.5 shows thelinker Options tab of theGlobal Compiler Options dialog. Each specific
option is explained below.

118

HI-TIDE Compiler Options Linker options

Figure 7.4: Compiler options dialog — file options

Global Compiler Options x|

Compilerl Preprocessor | Memory

Linker | Language |

Fil
File:

routput File Type rDebug Information

; [¥ Generate azsembler lizting
File Types |

Intel HEX al ¥ Generste map file

Tektronic
Ametican Automation HEX

Motorola HEX
LEROF

Einary LI

1=

Select Al Clear &)l Defauft |

Cancel |

119

Linker options

HI-TIDE Compiler Options

120

Figure 7.5: Compiler options dialog — linker options

Global Compiler Options

Compilerl Preprocessorl Memoryl Files

Language |

x|

rLinker

rRun-ime Code Configuration

Run-time Settings |
Initialize data psect
Clear bes psect
Link C libraries
Intialize stack pointer
Keep generated startup code file
Do nat link default startup module

1=

=
=

rAddtional Linker Options

™ Erabile additional linker options

Select Al Clear &l | Default |

radvanced Linker Options
[# Erabile advanced linker options

~prbit=0/20k, rbss=021h,rd |
—pnvran=xDATa J

—pheap=XDATA
-pdata=CODE+100h _|;|
4 I I 3

—phss=rDATA/idata
Get Default Options |

rvector Offset
[Enable vector offset

——

HI-TIDE Compiler Options Linker options

7.5.1 Run-time Code Configuration

This section allows you to customize the Run-time code generated by the compiler. These options
will specify the parameters for the-RUNTIME command-line driver option (see Sectibd.4.41for

more information on all the available suboptions).

7.5.1.1 Run-time Settings

Initialize data psect Selecting thénitialize data psectcheckbox will specify thenit suboption

to the--RUNTIME command-line driver option.

Clear bss psect Selecting theClear bss psecicheckbox will specify the:1ear suboption to the
--RUNTIME command-line driver option.

Link C library Selecting thetink C library checkbox will specify the:_1ibs suboption to the
--RUNTIME command-line driver option.

Initialize stack pointer Selecting thdnitialize stack pointer checkbox will specify thestack
suboption to the -RUNTIME command-line driver option.

Keep generated startup code file Selecting thékeep generated startup code fileheckbox will
remove theeep suboption from the-RUNTIME command-line driver option.

Do not link default startup module Selecting thédo not link default startup module checkbox
will specify theno_startup suboption to the-RUNTIME command-line driver option.

Enable stack checking Selecting th&nable stack checkingcheckbox will specify thetack_check
suboption to the-RUNTIME command-line driver option.

7.5.2 \Vector Offset

Enable vector offset Selecting theEnable vector offsetcheckbox will allow you to enter the

offset address. The address to offset can be entered in the text box. The address is in hexadecimal
format (without the leadingx). This will specify the--CODEOFFSET=address option on the
command-line driver (see Sectidn.4.23.

7.5.3 Additional Linker Options

TheAdditional Linker Optionsection allows you to add additional Linker options.

121

Language options HI-TIDE Compiler Options

7.5.3.1 Enable additional linker options

By selecting theEnable additional linker options you will be able to edit the list of additional
linker options, that will be passed to the Linker.

7.5.4 Advanced Linker Options

TheAdvanced Linker Optiorsection allows you to modify the default linker options. These options
are maintained by HI-TIDE and should only be modified by advanced users of HI-TECH Software’s
C compilers.

7.5.4.1 Enable advanced linker options

By selecting theEnable advanced linker optionscheckbox you will be able to edit the list of
advanced linker options, that will be passed to the Linker. By pressin@Gétédefault Options
button theAdvanced Linkeoptions list will be updated with the default linker options.

7.6 Language options

Figure7.6shows thd.anguage Optionstab of theGlobal Compiler Options dialog. Each specific
option is explained below.

7.6.1 Default Char Type

Thechar type unsigned as defaulwill enable or disable all variables of type char to be unsigned
or signed. This option will specify the parameters for theHAR command-line driver option (see
Section10.4.20).

7.6.2 Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. This option will specify the parameters forth@eommand-line
driver option (see Sectioh0.4.10.

7.6.3 ANSI Conformance
7.6.3.1 Enable strict ANSI conformance

This option will enable or disable strict ANSI compliance of all special keywords. This option will
enable or disable the-STRICT command-line driver option (see Sectibd.4.49.

122

HI-TIDE Compiler Options Language options

Figure 7.6: Compiler options dialog — language options

123

Language options HI-TIDE Compiler Options

124

Chapter 8

HI-TIDE Compilation

HI-TIDE provides a graphical, user-friendly way of running HI-TECH Software’s C compilers. Op-
tions are set through dialog boxes which allow for ease-of-use, but still provide access to the ad-
vanced features of the compiler, such as specifying custom linker options. Dependency checking
is also handled by the IDE by only compiling the files that need to be recompiled, thus decreasing
compilation time. Errors or warnings in the source code are reported in an easy-to-read format which
also allows the location of the error to be highlighted in the built-in editor.

8.1 Compiling Project Files

Building a project is broken into two main steps: compilation and linking, which are both detailed
below. Each step is accompanied by a description of what is involved in each step and a simple
example. The project must have at least one source or object file in the project to be able to be
compiled.

8.1.1 Compiling Source Files

Step one is compiling the C and/or assembler source files in the project. Compiling a source file
is the act of running the compiler with either the C or assembler file as an input file to produce a
relocatable object file. For brevity, C and assembler files for the rest of this chapter will be referred
to assource filesThe compiler is run by HI-TIDE for each source file in the project. The relocatable
object file produced will be placed into the project directory. Object and library files are not handled
in this step as they are both in a relocatable object file format, or a variation of this in the case of
library files.

125

Compiling Project Files HI-TIDE Compilation

Errors and warnings are issued by the compiler when the compiler detects an error or warning in
the files that are being compiled. If errors occur when compiling a source file, the compiler will stop
compiling the source file and, by default, compile the next source file. An option to stop compiling
source files if errors occur is available by deselectingStag on Errors option on theProject tab
of the General Preferencedlialog.

For example, a project callegtamplel contains the filegain.c, math.as, common.ob
andlcd.lib. To compile the source files the compiler will be run to compien.c
to the relocatable object fileain.obj. The compiler will be run again to compile
math.as to the relocatable object fileath.obj. The filescommon.obj andlcd.lib
are not used in this step.

8.1.2 Linking

Step two is linking. Linking is the act of running the compiler, with one or more relocatable object
and/or library files as input files, to produce one or more output files (for example, Intel HEX file).
The input files are the relocatable object files produced in the first step of compiling and any of the
object and/or library files specified in the project. The output file produced will be placed into the
project directory. The link step is run at most once when compiling.

Following on from the example in the previous step, to link, the compiler will be run
with main.obj, math.ob7j, common.obj andlcd.lib as input files and will produce
the output fileexamplel . hex.

8.1.3 Make

Make will compile the project files performing dependency checking, so that only source files that
are out-of-date are recompiled and linking is only performed when necessary. A list of conditions
which cause files to be recompiled and/or a link to be performed are sh®w.iifo invoke make,
selectMake from theBuild menu or theMake toolbar button.

Before a make begins the project source files that are being edited will be checked to see if they
have been modified. The action that is performed when a source file has been modified is specified
by the Save Modified File Before Buildingoption on theEditor tab of theGeneral Preferences

126

HI-TIDE Compilation Compiling Project Files

Table 8.1: Recompile Conditions

Cause Effect

global compiler options changed | all source files will be recompiled and the
program relinked

the file-specific compiler options | source file(s) whose options have changed

changed for one or more files will be recompiled and the program

relinked

one or more source files have the changed or new source file(s) will be

changed or have been added to the recompiled and the program relinked

project

a source file’s dependency has the source file will be recompiled and the

changed program relinked

object file or library file has the program will be relinked

changed

one or more files have been the program will be relinked

removed from the project

dialog. There are three options availabdways save modified fileNever save modified file and
Prompt to save modified file. By default this option is set to always save modified file.

The always save modified file option automatically saves the file before building. There isn’t
a prompt shown and the file is saved to disk. This means that when compilation begins, the most
up-to-date version of the file will be compiled.

The never save modified file option will not save the modified file. This means that when com-
pilation begins, the contents of the file saved to disk — not the modified file in the editor — is used
during compilation.

The prompt to save modified file option will show a dialog before make begins for each modified
project source file in the editor. The dialog will prompt to save the modified file. Selecting Yes will
save the file to disk. Selecting No will leave the file on disk unmodified.

If no errors are issued during a make it is considered a successful make. This also means that
the compiler was able to produce an updated HEX file. Warnings do not effect if the compilation
was successful but they may be important when debugging the application in development. After a
successful compilation, by default, HI-TIDE will automatically load the HEX file produced. This
functionality can be disabled by deselecting tload HEX File on Successful Buildoption on the
Project tab of theGeneral Preferenceglialog.

127

Compiler Options HI-TIDE Compilation

8.1.4 Make All

Make all, as the name suggests, will compile and link all files in the project. To perform this oper-
ation, selecMake All from theBuild menu. A check to ensure that each project source file open

in the editor is unmodified is preformed as per the Make operation, described above. The resultant
HEX file is loaded into the debugger after a successful make as described in the Make operation
above.

8.1.5 Individual Files

Each source file is able to be compiled to a number of intermediate files. Intermediate files are
various file types that can be produced from the compiler when compiling an individual file. The
intermediate files that can be produced for a C source file is assembiler files, function prototype files,
object files and preprocessed files. The intermediate files that can be produced for an assembler
source file are preprocessed files and object files. The intermediate files produced will be placed into
the project directory.

To compile a source file to an intermediate file right click on a source file icon in the Project view
and select th€ompile To sub menu. From the sub menu select the intermediate file to compile to.
If a project source file is open in the editor it can be compiled to an object file by sel&ximgile
To Object File from theBuild menu.

8.2 Compiler Options

Compiler options specify settings that will be passed to the compiler when the compiler is run. The
Global Compiler Options dialog is a common place where the options used for compiling and
linking are specified. By default all source files use the options specified iBltitmal Compiler
Options dialog when they are compiled. If the options for an individual file are required to be
different to that of the other files then a seffité-specificoptions may be specified for each file.

8.2.1 Global Compiler Options

Global options that apply to all files that do not have file-specific options set. These options are
always used in the link step. To open Bbal Compiler Options dialog selectGlobal Compiler
Options... menu from theProject menu or double click on the output file icon in the Project view.

8.2.2 File-Specific Compiler Options

To enable file-specific compiler options for a particular file, right click on the source file icon in the
Project view and sele¢tile Specific Compiler Options...from the popup menu. This will open a

128

HI-TIDE Compilation Build Results

dialog that is similar to th&lobal Compiler Options dialog. When this dialog is initially opened,
the state of the options will be the same as the current global options, however once they have been
enabled they will hold their state.

This contains the same options found in the global options dialog, only some options will be
disabled. These are options that do not apply to the file, for example, preprocess assembler file
options is disabled when setting file-specific options for a C file. Initially all of the available options
are disabled. To specify and use the file-specific options they need to be enabled by skleeting
File-specific Optionscheckbox which is present at the top of the dialog. This check box is always
visible regardless of which tab is selected and applies to all the tabs in the dialog.

Those options required may be selected in the usual way, however if an option is changed from
the corresponding option specified in the global compiler options, then the widget will change colour
to red. This allows the options that differ to the global compiler options to be easily identified.

All options under all tabs may be returned to those specified bysthbal Compiler Options
dialog by selecting thRevert to Global Compiler Options button.

8.3 Build Results

Build results displays messages issued by the compiler after compilation is finished. Finished com-
pilation is defined as the end of a make, make all or an individual file is compiled. The messages are
organised by the Build viewdiscussed in Sectioh 2. These messages are broken up into four cate-
gories, errors and warnings, memory usage, psect usage and build log. The categories are discussed
below.

8.3.1 Error and Warnings

Errors and warnings are issued by the compiler when the compiler detects an error or warning in
the files that are being compiled. The error or warning contains information on where the problem

occurred and a short description of what the error or warning means. The errors and/or warnings, if
any, are detected by HI-TIDE and displayed in Ereor Log tab of the Build view. Double-clicking

on an error or warning in the error log will, for most cases, open the file that caused the error in the

editor and place the caret on the line the error occurred. See Séciidrior more details on how

there errors are displayed and how the view is accessed.

8.3.2 Memory Usage

Memory usage displays memory information of the application being developed. This information
is only updated after successful completion dilake or Make All. It is not updated after an
individual file is compiled. It is displayed in tHdemory Usagetab of the Build view.

129

Build Results HI-TIDE Compilation

8.3.3 Psect Usage

Psect usage displays memory usage of program sections of the application being developed. This
information is only updated after successful completion bfake or Make All. It is not updated
after an individual file is compiled. It is displayed in tReect Usageab of the Build view.

8.3.4 Build Log

The build log displays detailed information on the commands used to run the compiler, messages
returned from the compiler, details on dependency checking, the type of options that are being used
and build times. The build log displayed in tBaiild Log tab of the Build view. See Sectigh2.4

for more details on how the view is accessed.

Each time the compiler is run, the command line that is used to run the compiler is displayed in
the build log. The command line will then be followed by a verbose output of the compiler.

Errors and warnings are displayed in the build log as well as the error log. The errors in the build
log are displayed in the format output by the compiler and are indicated by théetest) at the
end of a line. A warning will be indicated by the tetarning) at the end of a line. The errors and
warnings will appear after the verbose output of the compiler.

When performing &Make, dependency checking is performed and a description of the checking
process is shown in the build log. The description indicates if the file is up-to-date or, if it is not
up-to-date, why it is not up-to-date. The description appears before the compiler command line.

Just before the compiler command line a text description of the whether file-specific or global
compiler options are used to compile the file is displayed. The message global options...
indicates global options are being used to compile the source file. The messagefile specific
options... indicates file-specific options are being used to compile the file.

When aMake is performed the log is titled with the tekMaking Projectthat indicates a make
with dependency checking is performed. Fdvlake All the log is titled with the texMaking Al
Project Files. Following the title for both th#ake and theMake All is a message that indicates
the date and the time that the build was started.

130

Chapter 9

HI-TIDE Debugging

HI-TIDE provides a generic debugger interface which allows integration of a wide range of simula-
tors and emulators available for a particular chipset. At present HI-TIDE can be used to load HEX
files, manage breakpoints, perform C and assembly stepping, as well as animate (multi step) code
execution while watching program variables, registers, and memory.

9.1 Debugger Functions

The following sections provide an overview of the debugger’s functions available in HI-TIDE. More
specific information on debugger views and related user interface aspects may be fauad in
Related toolbar actions and buttons are describ&dAr

9.1.1 Debugger Initialization

Before debugging can be performed, a HEX file has to be loaded into the device, whether the de-
vice is a simulator, emulator or an actual microcontroller. In order to allow high-level debugging
features, such as source-level breakpoints and variable display, the compiler must have produced the
appropriate symbolic debug information. Typically this happens by default, but compiler options
can control this aspect of the compiler. S&e4.5for more information.

Once the HEX file is successfully loaded, the debug menus and buttons are enabled and further
debugging may be undertaken.

131

Debugger Functions HI-TIDE Debugging

9.1.2 Breakpoints

A breakpoint is a point in a program that, when reached, triggers some special behaviour. Generally,
breakpoints are used to pause program execution and allow the values of some or all of the program
variables to be inspected. Breakpoints may consist of instructions that form part of the program or
they may be temporarily set by the programmer through HI-TIDE.

In HI-TIDE a breakpoint can be set anywhere within the executable memory range. Breakpoints
can be set from a Disassembly view, see Seciignl.4 or from a source file open in the Editor
view, see Sectiod.3.9 A red breakpoint dot in the view gutter indicates that the breakpoint is set.
Once set, breakpoints can either be removed completely or disabled so that execution will no longer
stop at that location. Disabled breakpoints are indicated by a grey breakpoint dot in the view’s gultter.

Whilst running, animating or single stepping, if the program execution point reaches an enabled
breakpoint, the debugger will stop immediately without executing the C statement, or assembler
instruction, at which the breakpoint is set. That is, the next assembler of C statement to be executed
will be that marked with the red breakpoint dot.

A single C statement may correspond to several assembly instructions. When a breakpoint is set
on a C statement, the breakpoint is essentially set on the first assembly instruction that corresponds
to that statement. As well as the breakpoint indicator in the Editor view, another red breakpoint dot
will appear in the Disassembly view at the first assembly instruction that corresponds to the line
of C code on which the breakpoint was set. These two indicators represent the same breakpoint.
Disabling one will disable the other, and similarly removing one will remove both. The reverse is
also true: setting a breakpoint on the first assembly instruction associated with a C statement will
also set a breakpoint indicator in the Editor view.

9.1.2.1 Breakpoint Restoration

Not all breakpoints are preserved by HI-TIDE. After compilation some breakpoints are removed,
and when restoring a project file, some breakpoints that may have been set when the project was
saved will no longer be set. The breakpoints affected are those set on assembly instructions that are
not the first instruction associated with a C statement and those set on assembly instructions which
do not immediate follow a global assembly label.

These breakpoints are removed as there is no means available to track the position of these
instructions as the program is changed. All breakpoints set in the Editor view will be fully preserved.

Even if a breakpoint is preserved, its position in the program may change. As a program is edited,
the position of breakpoints will remain at the assembly address at which they were set. Breakpoints
setin the Editor view will also remain positioned at the assembly address which corresponds to the C
statement at which the breakpoint was set. If the contents of the Editor view change, the breakpoint
may map back to a different C statement to which it was originally assigned.

132

HI-TIDE Debugging Debugger Functions

9.1.3 Program execution

HI-TIDE provides several modes of program execution that are useful during the debugging process.
The important differences between modes are listed below.

9.1.3.1 Run

When Run mode is selected, the debugger executes code in real time (or near real time in case
of simulator). This mode is resource intensive for the microcontroller which prevents real-time
access to microcontroller registers and memory. Execution continues until stopped by the user or a
breakpoint is encountered.

No views are updated during Run mode, but will update as soon as the program is stopped.

9.1.3.2 Animate

When Animate mode is selected, the debugger executes one assembly instruction and then updates
any debugger view visible in the Workspace area. If the Editor view is visible, it is also updated to
indicate the current program position. Execution continues until stopped by the user or a breakpoint
is encountered.

Unlike Run mode, Animate does not allow for a real-time execution and so may be unsuitable
for time-critical programs, such as USART communication routines. This mode might be somewhat
slow when used with hardware emulators due to the amount of time required to acquire memory
and register information from the device, however Animate mode is faster and more convenient that
repeatedly single stepping through assembly code.

9.1.3.3 Assembly Step

Assembly Step mode causes debugger to execute a single assembly instruction then stop. All views
are updated after the step.

9.1.3.4 C Step

C step mode causes the debugger to execute a series of assembly steps that correspond to a single
line of C code. This mode is similar to Animate mode, but no views are updated after each step,
and execution will stop when the first assembly instruction corresponding to the next C statement is
encountered. C step mode does not perform real-time execution.

A compound C statement, e.g.far () or while () loop, is executed as one C statement. C
stepping a compound statement will run all iterations of the loop or the sub statements of the
etc.

133

8051 Debuggers HI-TIDE Debugging

C stepping a C function call will step into the function and execution will stop at the first C
statement in the function being called. If the function is a library function, or any function for which
there is no symbolic debug information, the entire C function called is run and execution will stop at
the C statement immediately following the function call. The same is also true if the function called
is written in assembly code.

9.1.3.5 Reset

Selecting reset either causes a hardware reset in the emulator or development board or a simulated
reset if the selected debugger is the simulator. The exact nature of a hardware reset depends on the
attached hardware. As a general rule, the program counter is set to starting location as specified by

the reset vector.

9.2 8051 Debuggers

HI-TIDE supports debugging of 8051 family microcontrollers through use of a 8051 simulator.

9.2.1 Simulator

The 8051 simulator is a software debugger that can be used with all chips supported in the HI-
TECH C for 8051 package. Code for chips which support memory banking cannot be simulated
when compiled with the huge (banked) memory model, but can be used when compiled with other
memory models.

The simulator provides the microcontroller, memory and SFR simulation.

The 8051 simulator poses no limitations, excluding those implicit to all simulators. The user
has to keep in mind that the simulator is only an approximation of the physical device and that a
hardware testing is generally required to ensure correctness of the implemented solution.

134

Chapter 10

C51 Command-line Driver

C51 is the driver invoked from the command line to compile and/or link C prograsishas the
following basic command format:

Cc51 [options] files [libraries]

It is conventional to supply the options (identified by a leadiagh“-" or double dash-") before
the filenames.

The options are discussed below. The files may be a mixture of source files (C or assembler) and
object files. The order of the files is not important, except that it will affect the order in which code
or data appears in memorlibraries are a list of library names, ot options. See Sectioh0.4.7
Source files, object files and library files are distinguisheddiysolely by thefile typeor extension
Recognized file types are listed in Tallle.1 This means, for example, that an assembler file must
always have a." as extension (alphabetic case is not important).

C51 will check each file argument and perform appropriate actions. C files will be compiled;
assembler files will be assembled. At the end, unless suppressed by one of the options discussed later,

Table 10.1: C51 file types

File Type Meaning

.Cc C source file

.as Assembler source file

.obj Relocatable object code file
.1ib Relocatable object library file

135

Long Command Lines C51 Command-line Driver

all object files resulting from compilation or assembly, or those listed explicitly on the command line,
will be linked together with the standard runtime code and libraries and any user-specified libraries.
Functions in libraries will be linked into the resulting output file only if referenced in the source
code.

Invoking 51 with only object files specified as the file arguments (i.e. no source files) will mean
only the link stage is performed. It is typical in Makefiles to use with a -c option to compile
several source files to object files, then to create the final program by invokinggain with only
the generated object files and appropriate libraries (and appropriate options).

10.1 Long Command Lines

Thec51 driver is capable of processing command lines exceeding any operating system limitation.
To do this, the driver may be passed options via a command file. The command file is read by using
the @ symbol. For example:

C51 @xyz.cmd

10.2 Default Libraries

C51 will search the appropriate standard C library by default for symbol definitions. This will always
be done last, after any user-specified libraries. The particular library used will be dependent on the
processor selected.

10.3 Standard Runtime Code

C51 will also automatically generate standard runtime start-up code appropriate for the processor
and options selected unless you have specified the to disable this viarther IME option. If you

require any special powerup initialization, you should usepihe@eruproutine feature (see Section
11.1.9.

10.4 C51 Compiler Options

Most aspects of the compilation can be controlled using the command-line driverThe driver

will configure and execute all required applications, such as the code generator, assembler and linker.
C51 recognizes the compiler options listed in Takile2 The case of the options is not important,

however UNIX shells are case sensitive when it comes to names of files.

136

C51 Command-line Driver

C51 Compiler Options

Table 10.251 command-line options

Option Meaning
-Bmodel Specify memory model
-C Compile to object file only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify-option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-ofile Output file name
-p Preprocess assembler files
-Q Specify quiet mode
-3 Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
——ASMLIST Generate assembler .LST file for each compilation
--BANK=argument Specify banking options
--CHAR=type Make the default char signed or unsigned
-—-CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
-—CODEOFFSET=address Specify a code offset
--CRr=file Generate cross-reference listing

--ERRFORMAT<=format>

Format error message strings to the given style

--GETOPTION=app,file

Get the command line options for the named application

—--HELP<=option>

Display the compiler's command line options

--IDE=ide Configure the compiler for use by the named IDE

--INTRAM=address Specify internal RAM address

--MEMMAP=file Display memory summary information for the map file

—--NOEXEC Go through the motions of compiling without actually com-
piling

--NOPS Insert debug NOPs

--NVRAM=address Specify non-volatile RAM address

continued. ..

137

C51 Compiler Options C51 Command-line Driver

Option Meaning
--OPT<=type> Enable compiler optimizations
--OUTDIR=directory Specify output directory
--QUTPUT=type Generate output file type
--PRE Produce preprocessed source files
-—PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<, lo-hi, ...>|tag | Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
-—-SCANDEP Generate file dependency “.DEP files”
--SETOPTION=app,file Set the command line options for the named application
—--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level

All single letter options are identified by a leadidgshcharacter;-, e.g.-C. Some single letter
options specify an additional data field which follows the option name immediately and without any
whitespace, e.g:-Ddebug.

Multi-letter, or word, options have two leadimigishcharacters, e.g:--ASMLIST. (Because of the
doubledash you can determine that the optienasMLIST, for example, is not aa option followed
by the argumentMLIST.) Some of these options define suboptions which typically appear as a
commaseparated list following aequalcharacters, e.g.--0UTPUT=hex, omf. The exact format of
the options varies and are described in detail in the following sections.

Some commonly used suboptions inclutkefault, which represent the default specification
that would be used if this option was absent altogether; which indicates that all the available
suboptions should be enabled as if they had each been listedjcandwhich indicates that all
suboptions should be disabled. Some suboptions may be prefixed with a plus charéatadicate
that they are in addition to the other suboptions present, or a minus charateendicate that they
should be excluded. In the following sectioaagle bracketss >, are used to indicate optional parts
of the command.

10.4.1 -B: Specify Memory Model

The-B option is used to select the type of code generation desired according to the requirements of
your program. The available memory models are shown in Tablg See sectiori1.6for more

details about the various memory models available, and settidrbfor further tips on choosing a
memory model which suits your program.

138

C51 Command-line Driver C51 Compiler Options

Table 10.3: Memory model options

Option | Memory Model
-Bs Small

-Bm Medium

-Bl Large

-Bh Huge

See Sectiorr.1.4for more information on how to specify the memory model from within HI-
TIDE.

10.4.2 -C: Compile to Object File

The -C option is used to halt compilation after generating a relocatable object file. This option is
frequently used when compiling multiple source files using a “make” utility. If multiple source files
are specified to the compiler each will be compiled to a separaté file. The object files will

be placed in the directory in which51 was invoked, to handle situations where source files are
located in read-only directories. To compile three sourceffiles . c, modulel.c andasmcode.as

to object files you could use a command similar to:

C51 --CHIP=8051AH -C main.c modulel.c asmcode.as

The compiler will produce three object filegin.obj, modulel.obj andasmcode.obj which
could then be linked to produce #&mel HEX file using the command:

C51 --CHIP=8051AH main.obj modulel.obj asmcode.ob]j

See Sectiond.1.1.3and4.1.1.5or more information on how to compile to object files from within
HI-TIDE.

10.4.3 -Dmacro : Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had
been defined using#define directive in the source code. This option may take one of two forms,
-Dmacro Which is equivalent to:

#define macro 1

139

C51 Compiler Options C51 Command-line Driver

placed at the top of each module compiled using this optiorpascro=textwhich is equivalent
to:

#define macro text
wheretextis the textual substitution required. Thus, the command:
C51 --CHIP=8051AH -Ddebug -Dbuffers=10 test.c
will compile test . c with macros defined exactly as if the C source code had included the directives:

#define debug 1
#define buffers 10

See Sectiof.2.3for information on how to define macros when compiling within HI-TIDE.

10.4.4 -Efile : Redirect Compiler Errors to a File

Some editors do not allow the standard command line redirection facilities to be used when invoking
the compiler. To work with these editors;1 allows an error listing filename to be specified as part

of the-E option. Error files generated using this option will always befriormat. For example, to
compilex.c and redirect all errors te.err, use the command:

C51 --CHIP=8051AH -Ex.err x.cC

The-E option also allows errors to be appended to an existing file by specifyiagditioncharac-
ter, +, at the start of the error filename, for example:

C51 --CHIP=8051AH -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use
the-E option to create the file then use+ when compiling all the other source files. For example,

to compile a number of files with all errors combined into a file calledject .err, you could use
the-E option as follows:

C51 --CHIP=8051AH -Eproject.err -0 -Zg -C main.c
C51 --CHIP=8051AH -E+project.err -0 -Zg -C partl.c
C51 --CHIP=8051AH -E+project.err -C asmcode.as

The fileproject.err will contain any errors fromnain.c, followed by the errors frompart1.c
and theresmcode . as, for example:

140

C51 Command-line Driver C51 Compiler Options

main.c 11 22:) expected

main.c 63 0: ; expected

partl.c 5 0: type redeclared

partl.c 5 0: argument list conflicts with prototype
asmcode.as 14 0: Syntax error

asmcode.as 355 0: Undefined symbol _putint

10.4.5 -Gfile : Generate source-level Symbol File

The -G option generates source-level symbol filg.e. a file which allows tools to determine which
line of source code is associated with machine code instructions, and determine which source-level
variable names correspond with areas of memory, etc.) for use with HI-TECH Software debuggers
and simulators such dsl-TIDE. If no filename is given, the symbol file will have the same base
name as the first source or object file specified on the command line, and an extension. dfor
example the optiorRGTEST. SYM generates a symbol file calledst . sym. Symbol files generated
using the-G option include source-level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with
the -G option. The option is also required at the link stage, if this is performed separately. For
example:

C51 --CHIP=8051AH -G -C test.c
C51 --CHIP=8051AH -C modulel.c
C51 --CHIP=8051AH -Gtest.sym test.obj modulel.ob]

will include source-level debugging information fogst . ¢ only becausewodulel.c was not com-
piled with the-G option.

The--1DE option will typically enable the-G option.

This option will also enable source-level debug information for assembler source files, see Sec-
tion 12.2 for the assembler’'sv option. Source-level debug information for the runtime startup
module will also be enabled if the startup module is not deleted. See Sédtibrfor information
on how to preserve the startup module.

10.4.6 -l path : Include Search Path

Use -1 to specify an additional directory to use when searching for header files which have been
included using thetinclude directive. The-I option can be used more than once if multiple
directories are to be searched. The default include directory containing all standard header files
are always searched even if AD option is present. The default search path is searched after any
user-specified directories have been searched. For example:

141

C51 Compiler Options C51 Command-line Driver

C51 --CHIP=8051AH -C -Ic:\include -Id:\myapp\include test.c

will search the directories:\include andd:\myapp\include for any header files included
into the source code, then search the default compiler include directory which is typically located at
c:\htsoft\8051-c_<version> \include.

See Sectiorr.2.1for information on how to specify include paths when compiling within HI-
TIDE.

10.4.7 -L library : Scan Library

The-L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using thel option are scanned before the standard C library, allowing additional versions
of standard library functions to be accessed.

The argument to -L is a library keyword to which the prefixand the suffix. 1ib are added.
Thus the option-Lmy1ib will, for example, scan the librarylmylib.lib and the optionLxx will
scan alibrary called1xx.1ib. All libraries must be located in the LIB subdirectory of the compiler
installation directory. As indicated, the argument to theption isnota complete library filename.

If you wish the linker to scan libraries whose names do not follow the above naming convention
or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the com-
mand line along with your source files. Alternatively, the linker may be invoked directly allowing
the user to manually specify all the libraries to be scanned.

10.4.8 -L -option : Adjust Linker Options Directly

The -1 option can also be used to specify an extra “-” option which will be passed directly to the
linker by c51. If -1 is followed immediately by any text starting withdashcharacter “-”, the text

will be passed directly to the linker without being interpreteddsy. For example, if the option
-L-F00 is specified, theFroo option will be passed on to the linker when it is invoked.

The -1 option is especially useful when linking code which contains extra program sections
(or psect}, as may be the case if the program contains C code which makes usefgfrtima
psect directive or assembler code which contains user-defined psects. See $éctidfor more
information. If this-L option did not exist, it would be necessary to invoke the linker manually to
link code which uses the extra psects.

One commonly used linker option is1, which sorts the symbol table in the map file by address,
rather than by name. This would be passeditobas the optior-L-N.

The -1 option can also be used to replace default linker options. If the string starting from the
first character after the -L up to the = character matches a default option, then the default option is
replaced by the option specified. For example;pstack=2000h will inform the linker to replace
the default option that places theack psect to be one that places the psect at the address 2000h.
The default option that you are replacing must contaieg@umalcharacter.

142

C51 Command-line Driver C51 Compiler Options

See Sectiong.5.3and7.5.4for information on how to define additional, and modify existing,
linker options when compiling within HI-TIDE.

10.4.9 -Mfile : Generate Map File

The-M option is used to request the generation of a map file. The map is generated by the linker an
includes information about where objects are located in memory. If no filename is specified, then
the name of the map file will have the same name as the first file listed on the command line, with
the extensionmap.

See Section.4.2.2for information on how to create map files when compiling within HI-TIDE.

10.4.10 -Nsize : Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. The option has no effect for all other values.

See Sectiory.6.2for information on how to specify identifier length when compiling within
HI-TIDE.

10.4.11 -Ofile : Specify Output File

This option allows the name of the output file(s) to be specified. Hanoption is given, the output
file(s) will be named after the first source or object file on the command line. The files controlled are
any produced by the linker or applications run subsequent to thatcrogWeLL. So for instance
the HEX file, map file and SYM file are all controlled by the option.

The -0 option can also change the directory in which the output file is located by include the
required path before the filename, e.g0c:\project\output\first.hex. This will then also
specify the output directory for any files produced by the linker or subsequently run applications.

10.4.12 -P: Preprocess Assembly Files

The-p option causes the assembler files to be preprocessed before they are assembled thus allowing
the use of preprocessor directives, suchas:-1ude, with assembler code. By default, assembler
files are not preprocessed.

See Sectio.2.2.1for information on how to preprocess assembler files when compiling within
HI-TIDE.

143

C51 Compiler Options C51 Command-line Driver

10.4.13 -Q: Quiet Mode

This option places the compiler incaiiet modewnhich suppresses the HI-TECH Software copyright
notice from being displayed.

10.4.14 -S: Compile to Assembler Code

The-s option stops compilation after generating an assembler source file. An assembiler file will be
generated for each C source file passed on the command line. The command:

C51 --CHIP=8051AH -S test.c

will produce an assembler file calle@st.as which contains the code generated framst . c.

This option is particularly useful for checking function calling conventions and signature values

when attempting to write external assembly language routines. The file produced by this option

differs to that produced by the-aSMLIST option in that it does not contain op-codes or addresses

and it may be used as a source file and subsequently passed to the assembler to be assembled.
See Sectiord.1.1.3for information on how to compile to assembler files when compiling within

HI-TIDE.

10.4.15 -Umacro : Undefine a Macro

The-U option, the inverse of thed option, is used taindefingpredefined macros. This option takes
the form-Umacro. The option-Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.
See Sectiofr.2.4for information on how to undefine macros when compiling within HI-TIDE.

10.4.16 -V: Verbose Compile

The-v is theverboseoption. The compiler will display the full command lines used to invoke each
of the compiler applications or compiler passes. This option may be useful for determining the exact
linker options if you need to directly invoke thie, INK command.

10.4.17 -X: Strip Local Symbols

The option-x strips local symbols from any files compiled, assembled or linked. Only global sym-
bols will remain in any object files or symbol files produced.

See SectiorY.1.1.2for information on how to strip local symbols when compiling within HI-
TIDE.

144

C51 Command-line Driver C51 Compiler Options

10.4.18 --ASMLIST : Generate Assembler .LST Files

The--ASMLIST option tellsc51 to generate aassembiler listing filéor each module being compiled.
The list file shows both the original C code, and the generated assembler code and the corresponding
binary op-codes. The listing file will have the same name as the source file, and a file type (extension)
of .1st. The listing file will be relative — instructions will be shown at an address offset within
their psect.

See Sectiory.4.2.1for information on how to create assembler listing files when compiling
within HI-TIDE.

10.4.19 --BANK: Specify Banking Options

The --BANK option tells C51 the banking information to use when using huge model. Attempting
to use this with a memory model other than huge will generate an error. Usiagx is optional and
overrides the defaults specified in thEs1-c . ini file. It takes the form- BaNK=base , size ,start ,num
where:

e base is the logical starting address of the banked area. This and the nextsiakie, define
a window which is mapped into ROM at various physical addresses.

e size isthe size of the banked area which is mapped into ROM at various physical addresses.

e start isthe bank number in which to commence placement of banked code. This parameter
is an ordinary decimal number, and will in most cases be zero.

e numis the number of banks. This parameter is an ordinary decimal number.

e For example, to specify a bank window starting at 8000, ending at FFFF, with 16 banks:
--BANK=8000,8000,0,16

See Sectiory.1.5for information on how to specify identifier length when compiling within HI-
TIDE.

10.4.20 --CHAR=type : Make Char Type Signed or Unsigned

Unless this option is used, the default behaviour of the compiler is to make all character values and
variables of typeinsigned char unless explicitly declared or cast 8dgned char. This option
will make the default char typeigned char. When using this option, any unsigned character object
will have to be explicitly declarednsigned char.

The range of aigned character type is -128 to +127 and the range of simitari gned objects
is 0 to 255.

145

C51 Compiler Options C51 Command-line Driver

See Section.6.1for information on how to specify the defauttar type when compiling within
HI-TIDE.

10.4.21 --CHIP= processor : Define Processor

This option defines the processor which is being used. To see a list of supported processors that can
be used with this option, use theCHIPINFO option.
See Sectioh.6.2for information on how to specify a processor when compiling within HI-TIDE.

10.4.22 --CHIPINFO : Display a List of Supported Processors

The--CHIPINFO option simply displays a list of processors the compiler supports. The names listed
are those chips defined in the chipinfo file and which may be used with-thieip option. All
devices are listed in Sectighin the Appendix.

10.4.23 --CODEOFFSET=address : Specify an Offset For Program Code

The --CODEOFFSET option is used to shift program entry from the default location by the specified
address. Any code, or data associated with this code, that is explicitly linked at a particular address
— this will be the reset vector and associate constants — will be shifted up by the address specified
with this option.

Psects that are placed anywhere within a linker class are linked as normak-fAdeoption
can be used in conjunction with theCODEOFFSET to move all compiler output. These two options
allow generation of code that is to be downloaded by a bootloader and needs to be executed from an
address other than zero.

See Sectio.5.2for information on how to specify an entry offset when compiling within HI-
TIDE.

10.4.24 --CR=file : Generate Cross Reference Listing

The --cRr option will produce across reference listinglf the file argument is omitted, the “raw”
cross reference information will be left in a temporary file, leaving the user to ruortre util-
ity. If a filename is supplied, for example-CR=test.crf, c51 will invoke CREF to process the
cross reference information into the listing file, in this caset.crf. If multiple source files are
to be included in the cross reference listing, all must be compiled and linked with thes bieem-
mand. For example, to generate a cross reference listing which includes the source maodules
modulel.c andnvram.c, compile and link using the command:

C51 --CHIP=8051AH --CR=main.crf main.c modulel.c nvram.c

146

C51 Command-line Driver C51 Compiler Options

10.4.25 --ERRFORMATand --WARNFORMATFormat For Compiler Mes-
sages

If the -—-ERRFORMAT option is not used, the default behaviour of the compiler is to display any errors
in a “human readable” format line with @aret“*” and error message pointing out the offending
characters in the source line, for example:

x.Cc: main()
4: PORT_A = xFF;
» undefined identifier: xFF

This standard format is perfectly acceptable to a person reading the error output, but is not usable
with environments which support compiler error handling. The following sections indicate how this
option may be used in such situations.

10.4.25.1 Using the-ERRFORMATand --WARNFORMADption

Using the these option instructs the compiler to generate error and warning messages in a format
which is acceptable to some text editors and development environments.

If the same source code as used in the example above were compiled usir@RREORMAT
option, the error output would be:

x.c 4 9: undefined identifier: xFF

indicating that the error occurred in file c at line 4, offset 9 characters into the statement. The
second numeric value - the column number - is relative to the left-most non-space character on the
source line. If an extrapaceor tabcharacter were inserted at the start of the source line, the compiler
would still report an error at line 4, column 9.

10.4.25.2 Modifying the Standard Format

If the default error and warning message format does not meet your editor’s requirement, you can
redefine its format by either using the ERRFORMAT and WARNFORMAT option or by setting two
environment variablesiTC_ERR_FORMAT andHTC_WARN_FORMAT. These options are in the form of

a printf-style string in which you can use the specifiers shown in Tablé For example:

--ERRFORMAT="file %f; line %1; column %c; %s”

The column number is relative to the left-most non-space character on the source line.
The environment variables can be set in a similar way, for example setting the environment
variables from within DOS can be done with the following DOS commands:

147

C51 Compiler Options C51 Command-line Driver

Table 10.4: Error format specifiers

Specifier Expands To
Filename

Line number
Column number
Error string

o
h

o\
=

o°
Q

o\
]

set HTC_WARN_FORMAT=WARNING: file %f; line %1; column %c; %s
set HTC_ERR_FORMAT=ERROR: file %f; line %1; column %c; %s

Using the previous source code, the output from the compiler when using the above environment
variables would be:

ERROR: file x.c; line 4; column 9; undefined identifier: XxFF

Remember that if these environment variables are set in a batch file, you must prepend the specifiers
with an additionalpercentcharacter to stop the specifiers being interpreted immediately by DOS,
e.g. the filename specifier would becoate

10.4.26 --GETOPTION=app,file : Get Command Line Options

This option is used to retrieve the command line options which are used for named compiler appli-
cation. The options are then saved into the given file. This option is not required for most projects.

10.4.27 --HELP<= option >: Display Help

The --HELP option displays information on the51 compiler options. To find out more about a
particular option, use the option’s name as a parameter. For example:

C51 --help=warn

This will display more detailed information about thewaRN option.

10.4.28 --IDE= type : Specify the IDE Being Used

This option is used to automatically configure the compiler for use by the named Integrated Devel-
opment Environment (IDE). The supported IDE’s are shown in Tablé

148

C51 Command-line Driver C51 Compiler Options

Table 10.5: Supported IDEs

Suboption IDE
hitide HI-TECH Software’s HI-TIDE

10.4.29 --INTRAM= address : Specify Internal RAM Address

This option defines the address in internal RAM whauto variables, function argumentilata
andnearvariables, collectively known daternal storage, will be located. Thatram value should
normally be set to address 20, starting user variables just aboveitavgriables. If this value is
supplied as 0 or 20, the linker options will be configured to concatenate all internal storage onto the
bit variables which always start at 20H. If a value of 21 or higher is uségtnal storage will start at
that address bugit variables will still start at 20H. Care should be taken to avoid overlaying internal
storage over thbit variables. For example, there will be a clash if internal storage is linked at 21H
and there are more tharb@ variables.

See Sectior’.3.3for information on how to specify the internal RAM when compiling within
HI-TIDE.

10.4.30 --MEMMAP4ile : Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,
but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through
the driver. This command would display the memory summary which is normally produced at the
end of compilation by the driver.

10.4.31 --NOEXEC: Do Not Execute Compiler

The --NOEXEC option causes the compiler to go through all the compilation steps, but without ac-
tually performing any compilation or producing any output. This is often useful when used in con-
junction with the-v (verbose) option in order to see all of the command lines the compiler uses to
drive the compiler applications.

10.4.32 --NOPS: Insert Debug NOPs

This option is intended for debuggers which uselth&Ll instruction to implement a breakpoint. It
will causeNop instructions to be strategically inserted into the object code, the purpose of which is
to reserve space for amALL to be inserted at a label. Because this causes differences in the object

149

C51 Compiler Options C51 Command-line Driver

code generated, this option is separate from, and should be supplied in addition-topthteon, if
desired.

See Section.1.6for information on how to specify an entry offset when compiling within HI-
TIDE.

10.4.33 --NVRAM=address : Specify Non-volatile RAM Address

This option defines the address in external RAM of a non-volatile RAM area used tgstsistent
variables. If this feature is not used or if all RAM is non-volatile then this option should not be
specified. See Sectidil.3.9.1for more information orpersistentvariables, and Section.3.4for
information on specifying the non-volatile RAM location when compiling from HI-TIDE.

10.4.34 --OPT<= type> : Invoke Compiler Optimizations

The --0PT option allows control of all the compiler optimizers. By default, without this option, all
optimizations are enabled. The optionsOPT or --0PT=all also enable all optimizations. Opti-
mizations may be disabled by usirgopPT=none, or individual optimizers may be controlled, e.g.
--0PT=as_all will only enable the assembler optimizer. The optieASPT=speed Or -—OPT=space
can also be used to control optimizations for speed or space accordingly.

See Sectiof.1.2and7.1.3for information on how to use the optimizers when compiling within
HI-TIDE.

10.4.35 --OUTDIR= directory : Specify Output Directory

This option allows control over the directory which output files from the compiler are placed. If
no --OUTDIR option is specified, the current working directory is used. Note that the directory
specified by the-0UTDIR option may be superseded by that specified by-theption for any files
produced by the linker or subsequently run applications.

10.4.36 --OUTPUT=type : Specify Output File Type

This option allows the type of the output file to be specified. IFROUTPUT option is specified, the
output file’'s name will be derived from the first source or object file specified on the command line.
The available output file format are shown in Tab®a

See Sectiofr.4.1for information on how to specify the output file type when compiling within
HI-TIDE.

150

C51 Command-line Driver C51 Compiler Options

Table 10.6: Output file formats

option hame File format
intel Intel HEX

tek Tektronic

aahex American Automatiosymbolic HEX file
mot Motorola S19 HEX file

ubrof UBROF format

bin Binary file

cof Common Object File Format
elf ELF/DWARF file format
omf51 OMF-51 format

eomf51 Extended OMF-51 format

10.4.37 --PRE : Produce Preprocessed Source Code

The--PRE option is used to generate preprocessed C source files with an extepsioThis may
be useful to ensure that preprocessor macros have expanded to what you think they should. Use
of this option can also create C source files which do not require any separate header files. This is
useful when sending files for technical support.

See Sectiod.1.1.3for information on how to produce preprocessed files when compiling within
HI-TIDE.

10.4.38 --PROTO: Generate Prototypes

The --PROTO option is used to generatero files containing both ANSI and K&R style function
declarations for all functions within the specified source files. Each file produced will have

the same base name as the corresponding source file. Prototype files contain both ANSI C-style
prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from eachro file should be edited into a global header file which is
included in all the source files comprising a project. Theo files may also contain static decla-
rations for functions which are local to a source file. These static declarations should be edited into
the start of the source file. To demonstrate the operation of-the0TO option, enter the following
source code as fileest . c:

#include <stdio.h>
add(argl, arg2)

151

C51 Compiler Options C51 Command-line Driver

int * argl;
int * argzl;
{
return *argl + *arg2;

}

void printlist(int * list, int count)
{
while (count--)
printf ("%d ", *list++);
putchar (\n’);
}

If compiled with the command:
C51 --CHIP=8051AH --PROTO test.c

C51 will producetest.pro containing the following declarations which may then be edited as
necessary:

/* Prototypes from test.c */

/* extern functions - include these in a header file */
#if PROTOTYPES

extern int add(int *, int *);

extern void printlist(int *, int);

#else/* PROTOTYPES */

extern int add();

extern void printlist();

#endif/* PROTOTYPES */

10.4.39 --RAM=lo-hi,<lo-hi,...> . Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which
should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory
which contain physical RAM. The output that will be placed in the ranges specified by this option
are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory
space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made
available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

152

C51 Command-line Driver C51 Compiler Options

--RAM=default,+1000-2fff
for example. To only use an external range and ignore any on-chip memory, use:
--RAM=1000-2fff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed withménuscharacter;, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h
for allocation of RAM objects.

See Sectio.3.2for information on how to specify data memory ranges when compiling within
HI-TIDE.

10.4.40 --ROM-=lo-hi,<lo-hi,...>|tag . Specify Additional ROM Ranges

This option is used to specify memory, in addition to any ROM specified in the chipinfo file, which
should be treated as available ROM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by read-only (ROM-based) objects, and not necessarily those areas of memory
which contain physical ROM. The output that will be placed in the ranges specified by this option
are typically executable code and any data variables that are qualified &s

When producing code that may be downloaded into a system via a bootloader the destination
memory may indeed by some sort of (volatile) RAM. To only use on-chip ROM memory, this option
is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+1000-2fff
for example. To only use an external range and ignore any on-chip memory, use:

--ROM=1000-2fff
For those chips that have an area of RAM that can be remapped in terms of its location in the
memory space, the tagmapram may be used to indicate that the destination is the remapable area,
for example:

—-—-ROM=remapram

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed withmenuscharacter;, for example:

153

C51 Compiler Options

C51 Command-line Driver

Table 10.7: Runtime environment suboptions

-—-ROM=default,-1000-1fff

will use all the defined on-chip memory, but not use the addresses in the range from 1000h to 1fffh

for allocation of ROM objects.

See Sectiory.3.1for information on how to specify program memory ranges when compiling

within HI-TIDE.

Suboption Controls On (+) implies

init The code present in the Thedata psect's ROM
startup module that copies | image is copied into RAM.
thedata psect’s
ROM-image to RAM.

clib The inclusion of library files| Library files are linked into
into the output code by the | the output.
linker.

clear The code present in the Thebss psectis cleared.
startup module that clears
thebss psects.

stack The code present in the The stack pointer is
startup module that initialized.
initializes the stack pointer.

keep Whether the startup module The startup module is not
source file is deleted after | deleted.
compilation.

no_startup | Whether a startup module is The startup module is not
produced and linked into generated or linked into the
the output. output.

10.4.41 --RUNTIME=type : Specify Runtime Environment

The--RUNTIME option is used to control what is included as part of the runtime environment. The
runtime environment encapsulates any code that is present at runtime which has not been defined by

the user, instead supplied by the compiler, typically as library code.

All runtime features are enabled by default and this option is not required for normal compilation.

The usable suboptions include those shown in Table&

154

C51 Command-line Driver C51 Compiler Options

See Section.5.1for information on how to specify runtime environment options when compil-
ing within HI-TIDE.

10.4.42 --SCANDEP: Scan For Dependencies

When this option is used, alep (dependency) file is generated. The dependency file lists those files
on which the source file is dependant. Dependencies result when onetitecisided into another.

10.4.43 --SETOPTION=app.file : Set the Command Line Options For
Application

This option is used to supply alternative command line options for the named application when
compiling. This option is not required for most projects.

10.4.44 --STRICT : Strict ANSI Conformance

The--sTRICT option is used to enable strict ANSI conformance of all special keywords. HI-TECH
C supports various special keywords (for examplepthies i stent type qualifier). If the--STRICT
option is used, these keywords are changed to includeihderscorecharacters at the beginning of
the keyword (e.g. _persistent) So as to strictly conform to the ANSI standard. Be warned that
use of this option may cause problems with some standard header filesi(e.gp«&. h>).

See Sectiof.6.3for information on ANSI conformance when compiling within HI-TIDE.

10.4.45 --SUMMARY#ype : Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,
or if themem suboption is selected, a memory summary is shown. This shows the memory usage for
all available linker classes.

A psect summary may be shown by enablinggbect suboption. This shows individual psects,
after they have been grouped by the linker, and the memory ranges they cover.

See Sectio8.3.4for information on compile summaries produced when compiling within HI-
TIDE.

10.4.46 --VER : Display the Compiler’s Version Information

The--VER option will display what version of the compiler is running.

155

C51 Compiler Options C51 Command-line Driver

10.4.47 --WARN=evel : Set Warning Level

The --WARN option is used to set the compiler warning level. Allowable warning levels range from
-9 to 9. The warning level determines how pedantic the compiler is about dubious type conver-
sions and constructs. The default warning leveiarRN=1v10 will allow all normal warning mes-
sages. Warning level-waRN=1v11 will suppress the messagenc () declared implicit int.
--WARN=1v13 is recommended for compiling code originally written with other, less strict, com-
pilers. ——waARN=1v19 will suppress all warning messages. Negative warning levetaRN=1v1-1,
--WARN=1v1-2 and--WARN=Ivl-3 enable special warning messages including compile-time check-
ing of arguments terintf () against the format string specified.

Use this option with care as some warning messages indicate code that is likely to fail during
execution, or compromise portability.

See Section.1.1.1for information on how to specify the warning level when compiling within
HI-TIDE.

156

Chapter 11

C Language Features

HI-TECH C supports a nhumber of special features and extensions to the C language which are
designed ease the task of producing ROM based applications. This chapter documents the compiler
options and special features which are available.

11.1 Files

11.1.1 Source Files

The extension used with source files is important as it is used by the compiler drivers to determine
their content. Source files containing C code should have the extensj@ssembler files should

have extensions ofas, relocatable object files require thebj extension, and library files should

be named with alib extension.

11.1.2 Symbol files

The C51 -G and -H options tell the compiler to produce a symbol file which can be used by debuggers
and simulators to perform symbolic and source level debugging. The -H option produces symbol
files which contain only assembler level information, whereas the -G option also includes C source
level information. If no symbol file name is specified, by default a file cdlleanwill be produced.

For example, to produce a symbol file called test.sym which includes C source level information

use:

c51 -8051 -Gtest.sym test.c

157

Files C Language Features

The UBROF output file format which can be produced by the compiler contains both object code
and symbolic debug information and should be used in preference to separate symbol files if you
have an in-circuit emulator which supports it.

11.1.3 Standard Libraries

C51 includes a number of standard libraries, each with the range of functions described in Chapter
A. The naming convention used for the standard libraries is in the $aphml . 1ib. The meaning
of each field is described here, where:

p Represents the processor Architecture which fer the generic 80517 for the 80C517 and
derivatives, and for the 80C751 based processors which lackthe andLCALL instructions
(small model available only).

b Represents the banking Scheme and is a letter representing the type of banking §¢s mod-
ule, see Sectiof1.5.3 used in huge model. For all other memory models, and for the generic
8051 huge model library, this will be the reserved letteiThis letter corresponds to the
BANKTYPE entry in the chipinfo file. For more information, see the following Sectibr?. 1

m Represents the memory model is onepin, 1, or h, which represent the small, medium, large,
and huge models, respectively.

| Represents the library yype andddor standard libraryl for the library which contains only
printf-related functions with additional support for longs, anfar the library which contains
only printf-related functions with additional support for longs and floats.

11.1.4 Run-time Startup Module

A C program requires certain objects to be initialised and the processor to be in a particular state
before it can begin execution of its functi@ain (). It is the job of theruntime startupcode to
perform these tasks.

Traditionally, runtime startup code is a generic, precompiled routine which is always linked into
a user’s program. Even if a user’'s program does not need all aspects of the runtime startup code,
redundant code is linked in which, albeit not harmful, takes up memory and slows execution. For
example, if a program does not use any uninitialized variables, then no routine is required to clear
thebss psects.

HI-TECH C differs from other compilers by using a novel method to determine exactly what
runtime startup code is required and links this into the program automatically. It does this by per-
forming an additional link step which does not produce any usable output, but which can be used
to determine the requirements of the program. From this information HI-TECH C then “writes” the

158

C Language Features Files

assembler code which will perform the runtime startup. This code is stored into a file which can then
be assembled and linked into the remainder of the program in the usual way.

Since the runtime startup code is generated automatically on every compilation, the generated
files associated with this process are deleted after they have been used. If required, the assembler
file which contains the runtime startup code can be kept after compilation and linking by using the
driver option--RUNTIME=keep. The residual file will be callettartup.as and will be located
in the current working directory. If you are using an IDE to perform the compilation the destination
directory is dictated by the IDE itself, however you may usetheUTDIR option to specify an
explicit output directory to the compiler. If the runtime startup module is not deleted and source-
level debug information is enabled, then source-level debug information is produced for the runtime
startup module. This allows the user to step through this module within an IDE.

This is an automatic process which does not require any user interaction, however some aspects
of the runtime code can be controlled, if required, using-trINTIME option. These are described
in the sections below.

11.1.4.1 Stack Initialization

The stack suboption to the-—RUNTIME option allows control over the initialization of the stack
pointer. By default, the stack pointer is initialized by the runtime startup code. The stack pointer is
set to an address equal to the lower bound of a psect calletk. This psect is normally empty, but
is used as a placeholder to mark the starting position of the stack pointer.
To disable initialization of the stack pointer, disable theck suboption, e.g--RUNTIME=default, -stack,
which specifies the default runtime startup code functionality, excluding the stack initialization.
Changing the address at which the stack pointer is initializeditiandled by this option, but
can be altered by linking thetack psect at the required location in memory. This allows much
better control over placement of the stack with respect to other RAM-based objects, which may
appear at different locations as the program changes. By defaulifth& psect is placed at the
top of RAM, which allows maximum growth of the stack downwards in memory. Adjustment of
the linker options can be made by using thecommand-line driver option, s€€.4.8or using the
HI-TIDE memory options described in the3.2

11.1.4.2 Initialization of Data Psects

Another job of the runtime startup code is ensure that any initialized variables contain their initial
value before the program begins execution. Initialized variables are those which arne natb-

jects and which are assigned an initial value in their definition, for examplet in the following
example.

int input = 88;
void main (void) {

159

Files C Language Features

Such initialized objects are placed within theta psect. These psects have two components. The
first is an area which contains the initial values. This is positioned in non-volatile memory at an
address known as thead address The other component is where the variables will reside, and be
accessed, once the program is executing. This area is positioned in RAM at an address known as the
link address The runtime startup code performs a block copy of the values from the load address to
the link address.

The block copy of thelata psect may be omitted by disabling thei t suboption of-RUNTIME.
For example:

--RUNTIME=default,-init

With this part of the runtime startup code absent, the contents of initialized variables will be unpre-
dictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent. Such variables are linked at a different area of memory and are not altered by the
runtime startup code in any way.

11.1.4.3 Clearing the Bss Psects

The ANSI standard dictates that those rwro objects which are not initialized must be cleared
before execution of the program begins. The compiler does this by grouping all such uninitialized
objects into thebss psect. This psect is then cleared as a block by the runtime startup code.

The block clear of thess psect may be omitted by disabling the=ar suboption of- -RUNTIME.
For example:

-—RUNTIME=default, -clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be
unpredictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent. Such variables are linked at a different area of memory and are not altered by the
runtime startup code in anyway.

11.1.4.4 Linking in the C Libraries

By default, a set of libraries are automatically passed to the linker to be linked in with user’s program.
The libraries can be omitted by disabling thieib suboption of--RUNTIME. For example:

--RUNTIME=default,-clib

160

C Language Features Processor-related Features

With this part of the runtime startup code absent, the user must provide alternative library or source
files to allow calls to library routines. This suboption may be useful if alternative library or source
files are available and you wish to ensure that no HI-TECH C library routines are present in the final
output.

11.1.4.5 Executing the Main Function

The last code executed as part of the runtime startup code is that to cadlithe) function — the
first user-defined C function in a program.

11.1.5 ThepowerupRoutine

Some hardware configurations require special initialization, often within the first few cycles of ex-
ecution after reset. To achieve this there is a hook to the reset vector provided yawkeup
routine. This is a user-supplied assembler module that will be executed immediately on reset. A
“dummy” powerup routine is included in the fileowerup.as. This file can be copied, modified
and included into your project to replace the default (empty) powerup routine that is present in the
standard libraries.

If you use a powerup routine, you will need to add a jump tosthert 1 label after your initial-
izations. Refer to comments in the powerup source file for further details.

If the powerup routine is included into a project — specifically if theierup psect is of non-
zero length — the runtime startup module will define a reset vector that points to this powerup
routine.

11.2 Processor-related Features

11.2.1 Processor Support

C51 currently supports many hundreds of 8051 derivatives. Additional code-compatible processors
may be added by editing tti®51-c. ini file in the LIB directory. User-defined processors should

be placed at the end of the file. The header of the file explains how to specify a processor. Newly
added processors will be available the next time you compile by selecting the name of the new
processor on the command line in the usual way.

11.3 Supported Data Types

The 8051 compiler supports basic data types of 1, 2 and 4 byte size. All multi-byte types follow
mostsignificant byte first format, also known &g endian Word size values thus have the most

161

Supported Data Types C Language Features

Table 11.1: Basic data types

Type Size (in bits) Arithmetic Type
bit 1 boolean
char 8 signed or unsigned integder
unsigned char | 8 unsigned integer
short 16 signed integer
unsigned short | 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long | 32 unsigned integer
float 32 real
double 32 real

significant byte at the lower address, and double word size values have the most significant byte
and most significant word at the lowest address. The 8051 is a byte oriented machine, there are no
alignment restrictions on word or long sized objects. Structures and structure elements are also free
of alignment restrictions, thus structures will never contain “holes”.

Note that when right-shifting an integer data type, a zero is places in the most significant bit,
whether the integer is signed or unsigned.

Table11.1shows the data types and their corresponding size and arithmetic type.

11.3.1 Radix Specifiers and Constants

The format of integral constants specifies their radixl supports the ANSI standard radix speci-
fiers as well as one which enables binary constants to specified in C code. The format used to specify
the radices are given in Tahlé..2 The letters used to specify binary or hexadecimal radices are case
insensitive, as are the letters used to specify the hexadecimal digits.

Any integral constant will have a type which is the smallest type that can hold the value without
overflow. The suffixt or L may be used with the constant to indicate that it must be assigned either
a signed long Of unsigned long type, and the suffixa or U may be used with the constant to
indicate that it must be assigned an unsigned type, andlbamth andu or U may be used to indicate
unsigned long int type.

Floating-point constants haveuble type unless suffixed by or F, in which case itis &loat
constant. The suffixes or L specify along double type which is considered an identical type to
double by C51.

162

C Language Features Supported Data Types

Table 11.2: Radix formats

Radix Format Example
binary Obnumberor OBnumber | 0b10011010
octal Onumber 0763
decimal number 129
hexadecimal| Oxnumberor OXnumber | Ox2F

Character constants are enclosed by single quote charactérédr example’ a’. A character
constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote charactersfér example
"hello world”. The type of string constants isnst char * and the strings are stored in ROM.
Assigning a string constant to a nanast char pointer will generate a warning from the compiler.
For example:

char * cp = "one”; // "one” in ROM, produces warning
const char * ccp = "two”; // "two” in ROM
char cal] = "two"”; // "two” different to the above

A non-const array initialised with a string, for example the last statement in the above example,
produces an array in RAM which is initialised at startup time with the stting>” (copied from
ROM), whereas a constant string used in other contexts represents an unsamedualified
array, accessed directly in ROM.

C51 will use the same storage location and label for strings that have identical character se-
guences, except where the strings are used to initialise an array residing in RAM as indicated in the
last statement in the above example.

Two adjacent string constants (i.e. two strings separatdgby white space) are concatenated
by the compiler. Thus:

const char * cp = "hello ” "world”;

assigned the pointer with the strifgello world”.

11.3.2 Bit Data Types

HI-TECH C allows single bit variables to be declared using the key\widrd\ variable declaredit,
for example:

static bit init_flag;

163

Supported Data Types C Language Features

will be allocated in the bit addressable pseait, and will be visible only in that module or function.
When the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible.

Therbit psect is linked into the 8051 bit addressable area from 20H to 2FH, limiting the number
of bit variables in a single program to 128.

Bit variables are manipulated using the efficient 8051 bit addressing modes. These variables
behave in all respects like normal unsigned char variables, except that they may only contain the
values 0 and 1, therefore they provide a convenient and efficient method of storing boolean flags
without consuming large amounts of internal RAM. Due to the lack of suitable addressing modes on
the 8051 it is not possible to declare pointerbitosariables or to statically initialiskit variables. If
the C51 flag -STRICT is used, thét keyword becomes_bit

11.3.2.1 Using Bit-Addressable Registers

The bit variable facility may be combined with absolute variable declarations to access the bit ad-
dressable special function registers at bit addresses 80H to FFH. The 128 bit addresses from 80H to
FFH map onto the 16 special function registers with addresses divisible by 8. Thus individual bits

in function registers at addresses 80H, 88H ... F8H may be accessed. For each bit addressable SFR,
address of bit 0 of the special function register is the same as its byte address. Thus, bit 0 of the SFR
at address A8H is bit address A8H, bit 1 is A9H, up to bit 7 which is AFH. For example, to access

bit 3 of port P2 at AOH, declarelait variable at absolute address A3H:

static bit P2_3 @ 0xA3;

Similarly, bits 0 to 7 of port PO at address 80H would be declared as:

static bit PO_0 @ 0x80;
static bit PO_1 @ 0x81;
static bit PO_2 @ 0x82;
static bit P0O_3 @ 0x83;
static bit PO_4 @ 0x84;
static bit P0_5 @ 0x85;
static bit PO_6 @ 0x86;
static bit PO_7 @ 0x87;

164

C Language Features Supported Data Types

11.3.3 8-Bit Data Types

HI-TECH C supports botlsigned charand unsigned cha8 bit integral types. The defauthar

type issigned chawnless the C51 option —char=unsigned is used, in which caserisigned char
Signed chais an 8 bit two’s complement signed integer type, representing integral values from -128
to +127 inclusive Unsigned chais an 8 bit unsigned integer type, representing integral values from
0 to 255 inclusive.

It is a common misconception that thedBar types are intended purely for ASCII character
manipulation. This is not true, indeed the C language makes no guarantee that the default character
representation is even ASCII. Tlobar types are simply the smallest of up to four possible integer
sizes, and behave in all respects like integers. The reason for theahamis historical and does
not mean thathar can only be used to represent characters. It is possible to freelglranvalues
with short int andlongin C expressions.

On the 8051 thehar types will commonly be used for a number of purposes, as 8 bit integers,
as storage for ASCII characters, and for access to I/O locatidmsigned chais the C type which
logically maps onto the format of most 8051 special function registersumbigned chatype is the
most efficient data type on the 8051 and maps directly onto the 8 bit bytes which are most efficiently
manipulated by 8051 instructions. It is suggested that types be used wherever possible so as to
maximize performance and minimize code size.

11.3.4 16-Bit Data Types

HI-TECH C supports four 16 bit integer typett andshortare 16 bit two’s complement signed
integer types, representing integral values from -32768 to +32767 includnsgned intandun-
signed shorare 16 bit unsigned integer types, representing integral values from 0 to 65535 inclusive.
16 bit integer values are representedig endianformat with the most significant byte at the lower
address.

Both int and short are 16 bits wide as this is the smallest integer size allowed by the ANSI
standard for C. 16 bit integers were chosen so as not to violate the ANSI standard. Allowing a
smaller integer size, such as 8 bits would lead to a serious incompatibility with the C standard. 8 bit
integers are already fully supported by tttear types and should be used in placeimtfwherever
possible.

11.3.5 32-Bit Data Types

HI-TECH C supports two 32 bit integer typdsongis a 32 bit two’s complement signed integer type,
representing integral values from -2147483648 to +2147483647 inclusnsigned longs a 32 bit
unsigned integer type, representing integral values from 0 to 4294967295 inclusive. 32 bit integer
values are representedbig endianformat with the most significant word and most significant byte

165

Supported Data Types C Language Features

Table 11.3: Floating-point formats

Format Sign | biased exponent mantissa
IEEE 754 32-bit| x XXXX XXXX XXX XXXX XXXX XXXX XXXX XXXX

Table 11.4: Floating-point format example IEEE 754

Number biased expo- 1.mantissa decimal
nent
7DA6B69Bh | 11111011b 1.01001101011011010011011k2.77000e+37
(251) (1.302447676659)

at the lowest address. 32 bits are useddag andunsigned longs this is the smallest long integer
size allowed by the ANSI standard for C. It is suggested that 32 bit integers be used sparingly due to

the code size and speed penalty imposed by 32 bit integer manipulation on a simple 8 bit architecture
like the 8051.

11.3.6 Floating Point Types and Variables

Floating point is implemented using the IEEE 754 32-bit format.
The 32-bit format is used for aflloat anddouble values.
This format is described in Tablel.3 where:

e sign is the sign bit
e The exponent is 8-bits which is storedexess 127i.e. an exponent of 0 is stored as 127).

e mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-§" x 2(exponent127) y 1 mantissa.
Here are some examples of the IEEE 754 32-bit formats:
Note that the most significant bit of the mantissa column in Tahld (that is the bit to the left

of the radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

The 32-bit example in Tablél.4can be calculated manually as follows.

166

C Language Features Supported Data Types

The sign bitis zero; the biased exponentis 251, so the exponent is 251-127=124. Take the binary
number to the right of the decimal point in the mantissa. Convert this to decimal and divide?it by 2
where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this
fraction. The floating-point number is then given by:

—10 % 2124 1.302447676659- 1x2.126764793256+ 37 x 1.30244767665€ 2.77000e} 37

Variables may be declared using thienat anddouble keywords, respectively, to hold values
of these types. Floating point types are always signed andrthigned keyword is illegal when
specifying a floating point type. Types declaredlasg double will use the same format as types
declared asouble.

11.3.7 Structures and Unions

HI-TECH C supportsstruct and union types of any size from one byte upwards. Structures and
unions may be passed freely as function arguments and return values. Pointers to structures and
unions are fully supported. The 8051 is a byte oriented machine, so there are no alignment restric-
tions on structure and union members.

11.3.7.1 Bit Fields in Structures

HI-TECH C fully supportshit fieldsin structures. Version 7 and later of the compiler allocate bit
fields starting with the most significant bit. Bit fields are allocated within 16 bit words, the first bit
allocated will be the most significant bit of the most significant byte of the word, corresponding to
the sign bit in a signed 16 bit word. Bit fields are always allocated in 16 bit units, starting from the
most significant bit. When a bit field is declared, it is allocated within the current 16 bit unit if it will
fit. Otherwise a new 16 bit word is allocated within the structure. Bit fields never cross the boundary
between 16 bit words, but may span the byte boundary within a given 16 bit allocation unit.

For example, the declaration:

struct {
unsigned hi : 1;
unsigned dummy : 14;
unsigned lo : 1;

} foo @ 0x10;

will produce a structure occupying 2 bytes from address 10h. TheHieldl be bit 15 of address
10h, lo will be bit 0 of address 11h. The most significant bidammywill be bit 14 of address
10h and the least significant bit dammywill be bit 1 of address 11h. Unnamed bit fields may be
declared to pad out unused space between active bits in control registers. For exadypteniis
never used the structure above could have been declared as:

167

Supported Data Types C Language Features

struct {
unsigned hi : 1;
unsigned : 14
unsigned lo : 1;
} foo @ 0x10;

11.3.8 Standard Type Qualifiers
11.3.8.1 Const and Volatile Type Qualifiers

HI-TECH C supports the use of the ANSI type qualifienstandvolatile. Theconsttype qualifier

is used to tell the compiler that an object has a constant value and will not be modified. If any attempt
is made to modify an object declarednst the compiler will issue a warning. User defined objects
declared const are placed in a spepwsgctcalledconst For example:

const int version = 3;

Thevolatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain
its value between successive accesses. This prevents the optimizer from eliminating apparently
redundant references to objects declareldtile because it may alter the behaviour of the program

to do so. All I/O ports and any variables which may be modified by interrupt routines should be
declaredvolatile, for example:

volatile unsigned char P1 @ 0x90;

11.3.9 Special Type Qualifiers

HI-TECH C supports special type qualifiepgrsistentnear, far, codeandidatato allow the user
to control placement ddtaticandexternclass variables into particular address spaces.

If the C51 —STRICT option is used, these type qualifiers are changedpersistent__ near,
__far, __codeand__idata These type qualifiers may also be applied to pointeesr andidata
allow the declaration of 8 bit pointers which use the register indirect addressing mode to access
internal RAM.

These type qualifiers may not be used on variables of eass If used on variables local to a
function they must be combined with th&atickeyword. You may not write:

void func(void)

{

near int intvar; /* WRONG! */
. other code ..

}

168

C Language Features Supported Data Types

This is becausetvar is of classauto. To declareintvar as anear variable local to functiorest()
write:

static near int intvar;.

11.3.9.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialized are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired
for some data to be preserved across resets or even power cycles (on-off-onper3istenttype
qualifier is used to qualify variables that should not be cleared on startup. In additiqmesigtent
variables will be stored in a different area of memory to other variables, and this area of memory
may be assigned to a specific address (with-the/ram option to C51). Thus if a small amount
of non-volatile RAM is provided thempersistentvariables may be assigned to that memory. On
the other hand if all memory is non-volatile, you may choose to have persistent variables allocated
to addresses by the compiler along with other variables (but they will still not be cleared). One
advantage of assigning an explicit address for persistent variables is that this can remain fixed even
if you change the program, and other variables get allocated to different addresses. This would
allow configuration information etc. to be preserved across a firmware upgrade. Note that persistent
variables are always allocated in external data memory, so in small model they will be trefated as
There are some library routines provided to check and initialize persistent data - see the functions
persist_check() and persist_validate() in the library functions calipter more information.

11.3.9.2 Near Type Qualifier

The near type qualifier is used to place variables in internal RAM, where they may be more effi-
ciently manipulated using 8051 instructions. This type qualifier is of most use in the medium, large,
and huge models which place static variables in external RAM by default. In the small model all
staticandexternvariables are placed in internal RAM sear need not be used. Variables declared
to benearare placed in the psediss which is linked into internal RAM in all memory models.

Use ofnearcan provide substantial improvements to code quality, as access to external RAM is
very inefficient due to the nature of the 8051 instruction sdhtifar is anint in external RAM, the
statement intvar = 10; will generate code:

MOV DPTR, #_intvar
MOV A, #0

MOVX @DPTR,A

INC DPTR

MOV A, #10

MOVX @DPTR, a

169

Supported Data Types C Language Features

If intvar is declared agear int the same statement will generate:

MOV _intvar, #high (10)
MOV _intvar+l,#low(10)

Near variables may be statically initialized, for example:
static near int bufsize = 128;

Initialized nearvariables such asufsizewill be placed in a psect calledataand copied from ROM
to internal RAM by the run-time startup moduldear can also be applied to pointers. A pointer of
classnear, for example:

near char * nptr;

is a single byte pointer which can only address objects in the range 00H to FFH.

Near pointers are much more efficient than the 16 bit pointer classes and should be used wherever
possible to maximize code efficiency. The compiler treats accesses via caregapbinters in a
special manner, generating instructions which directly address the internal addresses. For example,
the statement:

var = *(near char *)0x90;
will generate this code:
MOV _var, 90H.

This behaviour means that de-referencing a congtaat pointer in the range 80H to FFH will
access the SFR address space, not the indirect RAM areaeHrgointer variable containing 90H

is de-referenced, the register indirect addressing mode will be used and internal RAM location 90H
will be accessed, not SFR 90H.

11.3.9.3 Idata Type Qualifier

Idata is similar tnear, except it declares variables which will always be accessed using the register
indirect addressing mode of the 80%earvariables must always reside at addresses below 80H, as
direct addressing above 7FH accesses special function regldisvariables, which do not suffer

from this limitation, can be used to access the indirectly addressable internal RAM area from 80H
to FFH. For example, the declaration:

idata int intvar;

170

C Language Features Supported Data Types

creates a variable calledtvar which is always accessed indirectly.
The statement:

intvar = 0x1234;

will generate this code:

MOV RO, #_intvar
MOV @RO, #12H
INC RO

MOV @RO, #34H

Statically initializedidata variables may be declared, such as:
idata int count = 10;

Initializedidatavariables are allocated in a psect calitehta which is copied from ROM to internal
RAM by the startup code. Pointersittata may be declared, for example:

idata char * iptr;
Pointers tadatasuch asptr occupy only a single byte of storage and are capable of addressing any
object in internal RAM from O0H to FFH using the register indirect addressing mode.

The statementh = *iptr; would generate this code:

MOV RO, _iptr
MOV _ch, @RO

If a constanidata pointer is de-referenced, the compiler will load the constant address into RO or
R1 and use the indirect addressing mode. Unlike a conatartpointer,idata pointers can never
be used to access special function registers. For example, the statement:

var = *(idata char *)0x90;

will generate this code:

MOV RO, #90H
MOV _var, @R0O

171

Supported Data Types C Language Features

11.3.9.4 Far Type Qualifier

The type qualifieffar is used to place objects in external RAM (the XDATA address space). This
type qualifier is of the most use in teeallmemory model where all variables are placed in internal
RAM unless declarefar. The medium large, andhugemodels already use external RAM for all
staticandexternvariables, if using these models you will not need to fase Thefar type qualifier

is used to declare static variables as follows:

far int f_int;

All accesses td_int will use the MOVX instruction to access the XDATA address space. For exam-
ple, the statement:

intvar = f_int;

will generate the code:

MOV DPTR, #_f_int
MOVX A, @DPTR

MOV _intvar,A
INC DPTR

MOVX A, @DPTR

MOV _intvar+l,A

Far may also be used to declare variables at absolute locations in the external address space, for
example:

far unsigned char sio_a_cmd @ 0xFFO0O;
far unsigned char sio_a_data @ OxFFO1;

This will declare two externally mapped I/O ports at external addresses FFOOH and FFO1H. Pointers
to objects of clasar may be declared:

far char * fptr;

Far pointers can access a “combined” address space which is the concatenation of internal RAM
from O0H to FFH and external RAM from 100H to FFFFH. Accessedafigointers generate code

(or library calls) which check the high byte of the pointer and access internal RAM or external RAM
as appropriate. For example, the statememntr = 0; will write O to internal ram address 6EH

if fptr contains 006EH. Ifptr contains 016EH, the same statement will write 0 to external RAM
address 016EH.

172

C Language Features Supported Data Types

11.3.9.5 Code Type Qualifier

Thecodetype qualifier is used to place initialized static objects into the CODE address space of the
8051. Objects declared to lsedemust be statically initialized, for example:

code int count = 0x1234;

The compiler will placecountin the codepsect, which is linked into program ROM immediately
after thetextpsect.Codeobjects can not be modified, indeed the 8051 instruction set does not even
allow the CODE address space to be written. The statefnenint = count; will generate this
code:

MOV DPTR, #_count
CLR A

MOvC A, @A+DPTR
MOV _icount,A
INC DPTR

CLR A

MOvC A, QA+DPTR
MOV _icount+l,A

All access tocodeobjects takes place via th®vc A, @A+DPTR instruction. Objects of classode
occupy a completely separate address space to normal variables and constants. Standard pointers
andfar pointers cannot even address objects of ataskein the medium and large models. In order
to access data of classde the 8051 compiler supports pointersciade

The most common application cbdeobjects is to store strings in ROM. Clearly, such strings
cannot be accessed by routines Igntf() and puts()which accept normathar * arguments. A
routine to write acodestring in the same manner pats()could be encoded as:

void
code_puts (code char * codeptr)

{

char ch;

while (ch = *codeptr++)
putch (ch);

putch(’\n’);

}
Code_puts() could then be used to display strings directly from ROM as follows:

extern void code_puts (code char *);

173

Supported Data Types C Language Features

code char hello[] = "Hello, world\n";
main ()
{
code_puts (hello);
}

Care must be taken to avoid passing pointersddeto any routine which expects a default or

far pointer. Likewise, normal anthr pointers should not be passed to routines tikele_puts()
Naturally the compiler will assist with appropriate warning messages if it detects casts between
incompatible pointer classes.

11.3.10 Pointer Types

HI-TECH C supports several different classes of pointer, of both 8 and 16 bit size. 8 bit pointers
may only access data objects which reside in internal RAM. 16 bit pointers may access be used to
access objects in internal RAM, external RAM and the CODE address space depending on the usage
and the class of the pointer. The default pointer class, unmodified by any class keywords such as
code is a 16 bit pointer which addresses a 64K address space which is the concatenation of internal
RAM (00H to FFH) and either the CODE space (in small model), or the external RAM space (in the
medium and large models).

11.3.10.1 Pointers in small model

It is important to remember that in small model, pointers to addresses above FFH do not address
any RAM. When using small model, if you wish to access external RAM you will need to use the
far or xdatatype qualifier both to declare external RAM variables and to declare pointers which can
address external RAM. To illustrate the behaviour of pointers in small model, the code:

char chl, ch2;
main ()
{
char * ptr;
ptr = (char *) 0x60;

chl = *ptr;
ptr = (char *) 0x1060;
ch2 = *ptr;

}

will read internal RAM location 60H into ch1 and ROM location 1060H into ch2. To access external
RAM location 1060H a pointer of clagar would need to be used, for example:

174

C Language Features Supported Data Types

Table 11.5: Pointer classes — small model

Pointer class | Address space| Size Example
default IRAM+CODE | 16 bit | char *ptr
near IRAM 8 bit | near char *ptr
idata IRAM 8 bit | idata char “*ptr
const IRAM+CODE | 16 bit | const char ‘*ptr
far XDATA 16 bit | far char *ptr
xdata XDATA 16 bit | xdata char *ptr
pdata XDATA 8 bit | pdata char ‘*ptr
char ch2;
main()
{
far char * ptr;
ptr = (far char *) 0x1060;
ch2 = *ptr;

}

Attempts to write to memory via pointers with values above FFH cause undefined results as the 8051
does not have instructions to write to CODE memory. Once again, if you want to write to external
RAM in small model, you must use variables and pointers of dissr xdata If only 8 bits of the
external data bus are decoded then you can also ugelt#tapointer, which will usenovx a, @rl
type instructionsPdatapointers are 8 bits wide.

The available pointer classes in small model are listed in Tablgé All of the pointer classes
listed may also be combined with the ANSIdonstand volatile type qualifiers. Theconsttype
qualifier has the effect of prohibiting indirect writes via pointers,tbatile type qualifier disables
optimization of apparently redundant accesses and should be used when declaring pointers to mem-
ory mapped I/O devices.

11.3.10.2 Pointers in the medium, large and huge models

In the medium, large and huge memory models, the default pointer classes address internal RAM
when pointing to addresses 00H to FFH and external RAM when pointing to addresses 0100H to
FFFFH. In these models, the default pointer classes suffer from none of the limitations of pointers
in small model.

To use the same example shown for small model:

175

Supported Data Types C Language Features

Table 11.6: Pointer classes — medium, large and huge models

Pointer class | Address space| Size Example

default IRAM+XDATA | 16 bit | char *ptr
near IRAM 8 bit | near char *ptr
idata IRAM 8 bit | idata char ‘*ptr
const IRAM+XDATA | 16 bit | const char *ptr
code CODE 16 bit | code char *ptr
far IRAM+XDATA | 16 bit | far char *ptr
xdata XDATA 16 bit | xdata char “*ptr

char chl, ch2;
main ()

char * ptr;
ptr = (char *) 0x60;

chl = *ptr;
ptr = (char *) 0x1060;
ch2 = *ptr;

If compiled as either medium, large or huge model code, this example will read the contents of
internal RAM location 60H into chl and the contents of external RAM location 1060H into ch2.
Attempts to write to memory locations above FFH will behave as expected, writing to external
RAM. In the medium and large models it is necessary to useddequalifier to access data stored

in ROM.

The available pointer classes in the medium, large and huge models are listed it TT&bkd|
of the pointer classes listed may also be combined with the ANS®InStandvolatiletype qualifiers.
The consttype qualifier has the effect of prohibiting indirect writes via pointers,vblatile type
qualifier disables optimization of apparently redundant accesses and should be used when declaring
pointers to memory mapped I/O devices.

To access external data memory unconditionally in medium, large, and huge model,xdztshe
qualifier.

176

C Language Features Supported Data Types

11.3.10.3 Function Pointers

Function pointers can be defined to indirectly call functions or routines in the program space. The
size of these pointers are 16 bits wide, with the exception of far functions in huge model which are
32 bits wide. Note that 16 bit function pointersrear andbasenearfunctions in huge model are
currently unsupported. The addresses for all code labels are always shown in the map file as an
untruncated byte address regardless of the options used.

11.3.10.4 Combining type modifiers and pointers

The const volatile, idata, near, far andcodemaodifiers may also be applied to pointers, controlling
the behaviour of the object which the pointer addresses. For example, you may declare a pointer to
near, which is an 8 bit pointer addressing only objects in internal RAM.

When using these modifiers with pointer declarations, care must be taken to avoid confusion as
to whether the modifier applies to the pointer, or the object addressed by the pointer. The rule is
as follows: if the modifier is to the left of the “*” in the pointer declaration, it applies to the object
which the pointer addresses. If the maodifier is to the right of the “*”, it applies to the pointer variable
itself. Using theneartype qualifier to illustrate, the declaration:

near char * nptr;

declares a pointer to @ear character, i.e. a character which is located within internal RAM. The
near modifier applies to the object which the pointer addresses because it is to the left of the “*” in
the pointer declaration.

In small model, the C statementptr = 1; will generate this code:

MOV RO, _nptr
MOV @RO, #1

The declarationchar * near ptr; behaves quite differently however. Thearqualifier is to the
right of the “*” and thus applies to the actual pointer variaptg not the object which the pointer
addresses. This declaration produces a pointer variable which residesaattazldress space.

Finally, the declarationnear char * near nnptr; will generate a pointer variable which
resides in internal RAM and which can only address objects in the first 256 bytes of memory. This
is the most efficient possible pointer type on the 8051. Note that if you are using small model, all
variables are placed in internal RAM unless specifically declared tarb&@he type qualifier&data,
far, code constandvolatile may also be applied to pointers.

11.3.10.5 Near and Idata pointers

Pointers to classasarandidatamay be declared by prefixing the “*" in the declaration witbar
oridata. For example:

177

Supported Data Types C Language Features

near char * near_ptr;
idata char * idata_ptr;

declare pointers to clasearandidatarespectively.
The positioning of the qualifier to the left of the “*” is not important, thus:

near char * near_ptr;
and
char near * near_ptr;

are equivalent declarations. Pointersniar andidata are both 8 bit pointers which can address

the 256 internal RAM area. Note that pointers to addresses 80H to FFH access the indirect internal
RAM area, NOT the special function registers at the same addrdg$sasandidata may be mixed

with the ANSI standard modifiexonstandvolatile to declare variables and pointers which are both
nearor idataandconstor volatile.

Variables of claspointer to nearandpointer to idatabehave identically in all cases. However,
there is one case wherear andidata are not equivalent, that is, the de-referencing of constant
pointers.

The C language allows a constant value to be cast to a pointer and then de-referenced. HI-TECH
C extends this type casting capability to include all special pointer classes inchengndidata.

Itis possible to de-reference a constant pointer with a statementlike: * (near char *)0x90;

A constant de-reference ofreear pointer such as the above example will generate code which
accesses SFR location 90H, NOT internal RAM location 90H.

On the other hand, the statement: = * (data char *)0x90; will generate code which ac-
cesses internal RAM location 90H, not SFR location 90H.

Put another way, de-referencing a constagdr pointer generates code using the DIRECT ad-
dressing mode of the 8051, such &sv _ch, 90H whereas de-referencing a constatata pointer
will generate code which uses the INDIRECT address mode, such as:

MOV RO, #90H
MOV _ch, @RO

Use of constant pointers to access internal RAM or SFR space is strongly discouraged. Direct access
to special function registers should be achieved using the absolute variable facility.

178

C Language Features Supported Data Types

11.3.10.6 Far pointers

HI-TECH C allows pointers to cladar to be declared. Pointers far are 16 bit pointers which can
be used to access the 64K external RAM (XDATA) area on the 8B&tlpointers are of most use in
the small memory model and probably will not be required in medium, large, or huge model code,
since afar pointer in these models is the same as a default pointer - it accesses internal memory
below 100h.

A variable of claspointer to farcan be declared as follows:

far char * far_ptr;

The above declaration produces a 16 bit poifderptr which can be used to access external RAM.
All accesses tdfar_ptr are performed via th#ovx a, @DPTR andMOVX @DPTR, A instructions of
the 8051.

11.3.10.7 Xdata pointers

An xdata pointer will always access external data memory, in all models. It will produce movx
instructions.

11.3.10.8 Pdata pointers

If small model is used, and only 8 bits of external data address are decode, tipelathqualifier
may be useful. A pointer tpdatawill occupy only 8 bits, and when the pointer is dereferenced a
movx @,@rl instruction or similar will be generated.

11.3.10.9 Code pointers

Thecodetype qualifier is used to declare constants which are placed in ROM and accessed using the
MOVC A, @A+DPTR instruction. HI-TECH C allows variables of clapsinter to coddo be declared.
Pointers tocodeare of most use in the medium, large, and huge models where the default pointer
class addresses external RAM. Small model code will not need to usedequalifier. A common
use ofcodeconstants and variables of clgssinter to codes to access string constants such as
menus and prompts which have been placed in ROM.

The following code illustrates this technique:

#include <conio.h>

static code char hello[] = "Hello, world\n";
static void

code_puts (code char * cptr)

{

179

Storage Class and Object Placement C Language Features

char ch;
while (ch = *cptr++)
putch(ch);
}
main ()
{
code_puts (hello);
}

Use ofcodeconstants and pointers can reduce external RAM usage, particularly in the medium,
large, and huge memory models, which copy initialized variables to external RAM.

11.3.10.10 Const pointers

Pointers taconstshould be used when indirectly accessing objects which have been declared using
the constqualifier. Constpointers behave in nearly the same manner as the default pointer class
in each memory model, the only difference being that the compiler forbids attempts to write via a
pointer toconst

Thus, given the declaration:

const char * cptr;

the statementch = *cptr; is legal, but the statementcptr = ch; is not.

In the small model, const pointers always access program ROM, because const declared objects
are stored in ROM. In the other models const pointers behave like normal pointers, except that you
may not write to memory via a const pointer. The const class may be combined with the classes near
and far to produce variables and pointers to constant objects in either of these address spaces.

Thus the declaration:

near const * ncptr;

produces a variablecptr which is an 8 bit pointer teonstcharacters in internal RAM. It is possible
to read internal RAM by de-referencimgptr, but the statementincptr = 0; will be rejected by
the compiler.

11.4 Storage Class and Object Placement

11.4.1 Local variables

C supports two classes of local variables in functicssto variables which are normally allocated
on some sort of stack arfiaticvariables which are always given a fixed memory location.

180

C Language Features Storage Class and Object Placement

11.4.1.1 Auto Variables

Auto variables are the default type of local variable. Unless explicitly declared $takiea local
variable will be madeauto.

Due to architectural limitations on the 8051, in the small and medium medéds/ariables are
not allocated on the stack and are instead given fixed addresses withbs#ipsect. The name of
theautovariable block for a function will be the name of the function w?h_prepended.

For example, the following function:

void test (void)

{

int i;
char c, k;
i=10;

c 20;

k = 30;

}

has 4 bytes o&utovariables in a block calle@a_testas is illustrated by the code generated for the
three assignments:

MOV ?a_test, #0

MOV ?a_test+1, #10
;jx.c: T c = 2;

MOV ?a_test+2, #20
;x.c: 8: k = 3;

MOV ?a_test+3,#30

Auto variables may be overlaid by storage allocated for other functions. The 8051 does have an
addressable stack, but the linker will allocate the same local variable addresses to functions which
can never be active at the same tirAatovariables are not guaranteed to retain their value between
successive calls to a function.

A function in small or medium model may be declared tadentrantin which case arguments
and auto variables will be stored on the 8051 stack. This allows a function to be called re-entrantly
or recursively.

In the large and huge modebljtovariables are allocated on the external stack and accessed via
the MOVX instruction. These models permit fully re-entrant and recursive code; any function may
be invoked more than once without corruption of function argumentsaatamivariables. If global
optimization is used, someutovariables may be placed in registers.

181

Storage Class and Object Placement C Language Features

11.4.1.2 Static Variables

Static variables are allocated in thespsect and occupy fixed memory locations which will not be
overlapped by storage for other functior®&aticvariables are local in the function which they are
declared in, but may be accessed by other functions via poir¢éaticvariables are guaranteed to
retain their value between calls to a function, unless explicitly modified via a poBtegicvariables
are not subject to any architectural limitations on the 8051.

11.4.2 Absolute Variables

A global or static variable can be located at an absolute address by following its declaration with the
construct@ addressfor example:

volatile unsigned char P1 @ 0x90;

will declare a variable called P1 located at 90H in the special function register area of the 8051
address space.

Note that the compiler does not reserve any storage, but merely equates the variable to that
address, the compiler generated assembler will include a line of the form:

_P1 equ 90h
Absolute variables provide a convenient method of accessing the built in special function registers
of the 8051. Absolute variable declarations may be combined witlfathigype qualifier to access

memory mapped I/O devices in the external address space.
For example:

volatile far unsigned char SIO_A_DATA @ 0x1FFO;
will declare a variable calle&lO_A_DATAocated at 1FFOH in the XDATA address space. This
location will be accessed using the 804DV X instruction.
For example the C statement
SIO_A_DATA = 'A/;
will produce these 8051 instructions:
MOV DPTR, #1FFOH

MOV A, #65
MOVX @DPTR, A

182

C Language Features Functions

11.5 Functions

11.5.1 Function Argument passing

Although the 8051 processor does have an addressable stack, the small and medium memory models
only use the stack to store function return addresses. A combination of register based argument
passing and static memory allocation is used for function arguments.

Auto variables are allocated to static locations or registers in the small and medium models. If
global optimization is used, registers may be used to hold surtevariables and arguments. The
large and huge memory models use an external stackutoivariables and some argument passing.

The large and huge models will also use registers to pass arguments, in the same manner as the
small and medium models. If global optimization is used, registers may be used to holdgtame
variables and arguments.

11.5.1.1 Small and medium model argument passing

The small and medium models use the same scheme for function arguments, a combination of reg-
ister and static memory based argument passing. Generally function arguments are passed in static
memory locations in internal RAM (except rentrantfunctions), with the left most argument at

the lowest address. The name of the argument block for a function is the name of the function with
the characte?_prepended. Thus the arguments for a function caet{)will be passed in a block

of internal memory calle@_test The function argument block will be allocated in tHEsspsects

and such arguments will be accessed in the same manner as any other internal memory variable.

In addition to the static argument scheme detailed above, HI-TECH C will pass up to 4 bytes of
function arguments in registers R2, R3, R4 and R5. Register based argument passing only occurs
with functions which have an ANSI C style function prototype. Functions which use old style C
declarations will receive all arguments in static memory locations. For functions which have an
ANSI style prototype, some arguments will be passed in registers R2, R3, R4 and R5.

The rules for register based argument passing are as follows:

Only the left most two arguments to a function will be passed in registers. All other arguments
will be passed in static memory locations.

e Only 8 bit and 16 bit arguments will be passed in registers. 32 bit arguments and structures of
size 24 bits and larger will be passed in static memory locations.

Any argument followed by a variable argument list (...) will be passed in static memory
locations.

If the first argument to a function is an 8 bit quantity, it will be passed in register R5.

183

Functions C Language Features

o If the first argument to a function is a 16 bit quantity, it will be passed in registers R4 and R5
with the high order byte in R4 and the low order byte in R5. Structures and unions of size 16
bits will also be passed in R4 and R5.

o If the second argument to a function is an 8 bit quantity, it will be passed in register R3.

o If the second argument to a function is a 16 bit quantity, it will be passed in registers R2 and
R3 with the high order byte in R2 and the low order byte in R3. Structures and unions of size
16 bits will also be passed in R2 and R3.

The following examples demonstrate the argument passing mechanisms used by the small and
medium memory models:

void char_func(char ch);

will receive argumenth in register R5. For example, the call char_func(10) will generate the
code:

MOV R5,#10
LCALL _char_func

void int_func(int i);
will receive argumenit in register R4 and R5. The C statement:

int_func (0x1234);

will call int_func()with 12H in R4 and 34H in R5.
void long_func(long 1);

will receive argumentin a 4 byte block of internal RAM calle@_long_func The call:
long_func (0x12345678);

will generate this code:

MOV ?_long_func, #12H

MOV ?_long_func+1, #34H
MOV ?_long_func+2, #56H
MOV ?_long_func+3, #78H

LCALL _long_func
The call:

void var_args(char * str, ...);

184

C Language Features Functions

will receive argument str in locatiord var_argsand?_var_args+1becausestr is followed by a
variable argument list. See the manual Sectidrb.1.5for a discussion of variable argument list
passing in the small and medium models.

void multi_args(long 1, int il, int i2);
will receive argumentsandi2 in static memory locations aritl in R2 and R3. The call:

multi_args(l, 2, 3);

will generate this code:

MOV ?_multi_args+4, #0
MOV ?_multi_args+5, #3
MOV R2, #0

MOV R3, #2

MOV ?_multi_args, #0
MOV ?_multi_args+1l, #0
MOV ?_multi_args+2, #0
MOV ?_multi_args+3, #1

LCALL _multi_args

11.5.1.2 Reentrant functions

In small and medium model it is possible to declare a function teebatrant which will have the

effect of allocating auto variables and parameters on the 8051 stack, instead of statically in memory.
This will mean the function can be called re-entrantly or recursively. The keyword is simply inserted
before the function name e.g.

char * reentrant a_func(int arg)

{
/* function body here */

}

11.5.1.3 Large and huge model argument passing

The large and huge memory models use a combination of register and external stack based argument

passing. The rules for register based argument passing are the same as in the small and medium

memory models, as are the registers used. External stack based arguments are pushed onto a down-
ward growing stack using library routines. The calling function is responsible for both pushing and

185

Functions C Language Features

removing the arguments. In order to minimize stack usage in these models, the function return ad-
dress is saved on the external stack on entry, and restored on exit. This allows functions to be called
in a fully re-entrant and recursive manner, limited only by the amount of external RAM available for
the stack.

11.5.1.4 Variable argument lists

Thesmallandmediummodels pass variable argument lists by storing any unnamed arguments into a
local variable block, belonging to the caller and passing the address of the variable argument block in
the accumulator. This scheme allows variable argument lists to be passed with the same efficiency as
normal arguments. Variable argument lists work in the normal manner in the large and huge memory
models, each argument is pushed onto the stack in right to left order resulting in the argument list
appearing in the correct order in memory.

11.5.1.5 Small and medium model variable argument lists

Each function which calls another function using a variable argument list will use extra local variable
space equal in size to the largest variable argument list passed within that function.

For example, ifmain() calls printf() twice, with 4 bytes of variable arguments for the first call
and 10 bytes of variable arguments for the second call, the local variabl@ aregnwill include
10 bytes for the variable argument block. If a call to a different function using 8 bytes of variable
arguments were added, the variable argument area would not be enlarged.

To illustrate the behaviour of variable argument lists, the following code:

extern void printf (char *, ...);
int var;

char * name;

char * format = "%s = %d\n";

main ()

{

printf (format, name, var);

}

produces this code when compiled:

MOV ?a_main+2,_var

MOV ?a_main+3,_var+l

MOV ?a_main,_name

MOV ?a_main+l, _name+l

MOV ?_printf,#high _format

186

C Language Features Functions

MOV ?_printf+l, #low _format
MOV A, #?a_main
LCALL _printf

11.5.1.6 Indirect function calls

HI-TECH C fully supports the use of function pointers to indirectly call functions. In the large and
huge models, indirect functions occur in the normal C manner with arguments passed in registers
and on the stack.

11.5.1.7 Small and medium model indirect function calls

In order for indirect calls to functions which take memory based arguments to work in these models,
the compiled code needs to be able to locate where the static argument block for a particular function
resides. Two functions which have the same prototype but different argument addresses may both be
called via the same function pointer. This problem is overcome by embedding the argument block
address in the code, one byte before the start of the function. When performing an indirect function
call the code will be able to find the argument block address by looking one byte before the address
specified by the pointer.

For example, the function:

long
add_10(long argl)
{

return argl + 10;

}

will generate this code:

DB ?_add_10
_add_10:

MOV A,?_add_10+3

ADD A, #10

MOV R5, A

MOV A,?_add_10+2

ADDC A, #0

MOV R4, A

MOV A,?_add_10+1

ADDC A, #0

MOV R3, A

187

Functions C Language Features

MOV A,?_add_10
ADDC A, #0

MOV R2,A

RET

The byte just before labeladd_1(oints at the argument block for the functidnadd_10Add_10()
could be indirectly accessed by a function pointer such as:

long (*funcptr) (long);
The C statement:
res = (*funcptr) (value);

will generate this code:

MOV A, _funcptr+l
ADD A, #255

MOV DPL,A

MOV A, _funcptr
ADDC A, #255

MOV DPH, A

CLR A

MOvC A, QA+DPTR
MOV R1,A

MOV @R1,_value
INC R1

MOV @R1,_value+l
INC R1

MOV @R1,_value+2
INC R1

MOV @R1,_value+3
MOV RO, _funcptr
MOV R1, _funcptr+l
LCALL indir

MOV _res,R2

MOV _res+1,R3
MOV _res+2,R4
MOV _res+3,R5

Note the use of the library routiniadir to call the function indirectly. The code above loads the
argument block address into R1 and then uses indirect addressing to store the arguments into the
correct area in memory for the function which is to be called.

188

C Language Features Functions

11.5.2 Function return values

Function return values are passed to the calling function as follows:

11.5.2.1 8 Bit return values

8 bit values Char, near pointerandidata pointe) are returned in register R3. For example, the C
function:

char
return_zero (void)

{

return 0;

}
will exit with the following code:

MOV R3, #0
RET

11.5.2.2 16 Bit return values

16 bit values int, shortandpointer) are returned in the R2 and R3 registers with the least significant
byte in R3 and the most significant byte in R2. Thus the following function:

int test (void)

{
return 0x1234;

}

will return with 0x34 in R3 and 0x12 in R2.

11.5.2.3 32 Bit return values

32 bit values lpng andfloat) are returned in registers R2, R3, R4 and R5 with the most significant
byte in R2 and the least significant byte in R5. This is illustrated by the following code:

long return_long(void)

{
return 0x01020304;

}

189

Functions C Language Features

which will exit using the sequence of instructions:

MOV R2, #1
MOV R3, #2
MOV R4, #3
MOV RS, #4
RET

11.5.2.4 Structure return values

Composite return valuestfuctandunion) are returned by various means depending on size. 8 bit
structures are returned in register R3, 16 bit structures in R2 and R3 and 32 bit structures in R2, R3,
R4 and R5. Large structures are returned by reference and copied by calling a library routine called
str_copy.

11.5.3 Function Calling Conventions for Huge Model

When using the huge (bankswitched) model, the calling conventions are similar to large model
except for the actual call. Rather than calling the function directly, register B is loaded with the bank
number of the function to be called, DPTR is loaded with its address within that bank, and then a
call is made to thécall routine in common memory which performs the necessary bank switching
before jumping to the function. The current bank is saved on the internal stack. On return from
the function, a jump to thbretroutine is performed which retrieves the old bank number from the
stack before a return is made to the calling function. This implies a maximum restriction on nested
banked subroutine calls, depending on internal stack usage for interrupts, temporary usage and so
forth. Functions qualified asearor baseneaire not affected by this restriction.

To implement a custom banking scheme, a replacetyeaitmodule must be implemented. See
the bcall.asfile in the SOURCES directory of the compiler for code used in the standard libraries.
This file includes cases when a bank select register mapped into both internal and external memory.
Care must be taken when implementing a cusbmall module to preserve all registers apart from
DPTR, B, and the accumulator.

11.5.3.1 Near and Basenear Functions in Huge Model

When using thdwuge(i.e. banked) model, functions are called using the mechanism described above
by default. It is, however, possible to define functions that are called via a sicafifeest sequence,
thus speeding up the code. The two ways to do this are matr functions and withbasenear
functions.

A nearfunction can be called only from within the same bank, whiteaeneafunction resides
in the common area and can be called from any bank. Near functions should be declared static and

190

C Language Features Functions

called and called only from within the same module. The following code shows an example of these
kind of functions.

static near int
read (void)
{
while (!RI)
7
return SBUF;
}

basenear void
reset (void)
{

RI = 0;

11.5.4 The call graph

In order to preserve memory, the linker performs stack like allocation of function arguments and
local variables using a technique called “call graphing”. Call graph analysis allows the linker to
determine which functions call and are called by other functions and build a graph of dependencies.
The linker will analyse the call graph and determine which functions can never be active at the same
time, making it safe to overlap their local variable and argument areas.

For example, consider the following C code:

void func_a(int argl)
{

int varl, var2;

}
void func_b(int arg)
{

long 1_var;

191

Memory Models and Usage C Language Features

main ()
{
func_a(l, 2);
func_b (0x1000);
}

main() calls bothfunc_a()andfunc_b() so the variable block fomain() cannot occupy the same
memory as the variable blocks for either functioRunc_a()is never called at the same time as
func_b() so it is safe for the local variables and arguments belonging to both functions to occupy the
same memory, exactly as would occur if a stack were used for variable storage. The call graphing
technique makes it possible to write code containing a large number of functions and local variables
without worrying too much about using all of the available internal RAM on the 8051. Even if there
are 100 functions with 10 bytes of local variables each, if none of the functions are ever active at the
same time only 10 bytes of local variable space will be used.

11.6 Memory Models and Usage

The compiler makes few assumptions about memory. With the exception of variables declared using
the @addressconstruct, absolute addresses are not allocated until link time. Certain classes of
variable are assumed to reside within particular address ranges and address spaces, as limited by the
8051 architecture.

The memory used is based upon information in the chipinfo file (which defautssto. ini in
the LIB directory). The linker will automatically locate code anmshst-qualified data into all the
available memory pages and ensure that psects do not straddle any memory boundary.

There are four memory models available for C51: small, medium, large, and huge, the default of
which is small. The memory model is selected viathe command line option. See Sectibvf.4.1

Small model is a fully static model which does not support re-entrant or recursive Exigen
staticandauto variables, and function arguments, are allocated statically in internal REérn
andstaticvariables may be allocated in external RAM using fdwequalifier.

Medium model is also a fully static model which does not support re-entrant or recursive code.
However, externand static variables are allocated in external RAMuto variables and function
arguments are allocated statically in internal RABAternandstatic variables may be allocated in
internal RAM using thenearandidata qualifiers.

In both small and medium models, call graphing is used by the linker to ovaudwariables
and arguments of functions which can never be active at the same time.

Large model is a fully re-entrant code generation model which uses a downward growing stack in
external RAM to bypass the 8 bit stack pointer limit imposed by the 8051, the top address of which
is calculated from the highest usable address in external RA#&rn staticandautovariables are

192

C Language Features Register usage

all allocated in external RAMauto variables and function arguments are allocated on the external
stack.Externandstaticvariables may be placed in internal RAM using tlearandidata qualifiers.

Huge model is equivalent to large model, with the added functionality of utilising a banked code
configuration. When using huge model, functions are by default qual#red his places them into
the banked region in tHeext psect (See Sectidiil.§ filling additional banks as required. Functions
may be placed in the common region by usinghhseneanualifier. See Sectiohl.5.3

Function addresses in huge model are 24 bits, but 32 bits is actually allocated where a function
pointer is stored in memory. A limitation on the levels of nested banked calls exists due to the storage
of the segment number (bits 16-24 of the function address) on the internal stack.

11.7 Register usage

With two exceptions, compiled code always assumes that register bank 0 is selected. The exceptions
are code withirbank2 interruptfunctions which assume that register bank 2 is selectedbanki3
interrupt functions which assume that register bank 3 is selected.

Some library routines use register bank 1, but restore register select bits on return to re-select
bank 0.

Registers RO and R1 are used as temporary values and for indirectly addressing data in internal
RAM. All accesses to variables of clastawill make use of either RO or R1, as will de-references
of nearpointers and standard points with values less than 100H.

Registers R2, R3, R4 and R5 are used for register based argument passing and for function return
values. These registers will also be used to hold temporary values within functions and may also be
used to contain arguments or local variables if code is compiled with global optimization.

Registers R6 and R7 are used to hold register variables in the small and medium models, and for
the external stack pointer in the large and huge memory models. R6 and R7 should be preserved by
any assembly language routines which are called.

The accumulator (ACC) and B register are used for arithmetic operations and as a scratch pad. B
is used as an operand to the MUL and DIV, and in huge model, is used to load the segment selector
for a banked subroutine call.

The PSW register varies depending on the operation of user code, however the register bank
select bits should be preserved by assembly language routines.

The DPTR register (DPL and DPH) is used as a scratch pad, and for pointer operations which
access external RAM or program ROM.

11.8 Compiler generated psects

The compiler splits code and data objects into a number of standard program sections, referred to
as psects. The HI-TECH assembler allows an arbitrary number of named psects to be included in

193

Compiler generated psects C Language Features

assembler code. The linker groups all data for a particular psect into a single segment.

If you are using C51 to invoke the linker, you don’t need to worry about the information docu-
mented here, except as background knowledge.

If you want to run the linker manually, or write your own assembly language subroutines you
should read this section carefully.

The psects used by compiler generated code are:

vectors The vectorspsect contains the reset vector followed by all initialized interrupt vectors.
Vectorsis normally linked for address 0 in ROM so that the LIMP start instruction at the
beginning of the psect aligns with the 8051 reset vector.

text is used for all executable code. By default the C compiler places all executable codéeixtthe
psect (with the exception of huge model, st below). User written assembly language
subroutines should also be placed in teet psect.

Itext In huge model only, thétext psect contains all executable code to be placed in the banked
region. The linker will automatically fill additional banks as required. This is the default psect
for executable code in huge model unless functions are quétiéisednear

code is used for any statically initialized constants of clasde For exampleiode int maxdata
= 10; declares a constamtaxdatawith value 10 which resides in theodepsect. Codeis
linked into program ROM after thiext psect, objects in theodepsect are accessed using the
MOVC instruction.

const is used for all initialized constants of classnst for exampleconst char masks[] = {
1,2,4,8,16,32,64,128} ;

strings Thestringspsect is used for all unnamed string constants, such as string constants passed
as arguments to routines liegintf() andputs()

data The data psect is used to contain all statically initialized data except those in classes
codeandconst For the small memory model, tlata psect is linked into ROM, statically
initialized data items are not modifiable and are accessed using the MOVC instruction.

For the medium, large and huge memory modelsg#tapsect is linked into external RAM,
with a copy in ROM (placed in thedatapsect) which is transferred to external RAM by the
run-time startup code. Statically initialized data items may be modified like any other variable
in these models.

zconst In the medium, large, and huge models, #oenstpsect contains the ROM image of any
initialized constants which are copied into ttenstpsect at startup.

194

C Language Features Compiler generated psects

zstrings In the medium, large, and huge models, #s&ringspsect contains the ROM image of any
unnamed string constants which are copied intcsthiegspsect at startup.

zdata In the medium, large, and huge models, #umtapsect contains the ROM image of any
statically initialized data (except those in classear, codeandcons), which are copied into
thedatapsect at startup.

rdata contains all statically initialized variables of classar, for examplestatic near int size
= 256;
The rdata psect behaves in the same manner for all memory models. Initialized data will only
be placed in rdata if declared to be near, otherwise it will be placed in the data psect.
A copy of the rdata psect is stored in ROM and transferred to internal RAM by the run-time
startup code beformmain()is invoked.

irdata contains all statically initialized variables of clas&ta, for exampletdata int isize =
128;

The irdata psect behaves in the same manner for all memory models. Initialized data will only
be placed inrdata if declared to badata. A copy of the irdata psect is stored in ROM and
transferred to internal RAM by the startup code befman()is invoked.Irdata objects may
reside atinternal addresses above 7FH and are always accessed via register indirect addressing.

bss The bsspsect is used for all uninitialized static and extern variables which reside in external
RAM. Bssis cleared to all zeros by the run-time startup code befwa@n()is invoked.
For the small memory moddbssonly contains variables which have been declarefdas
For the medium, large and huge modelstibspsect contains all uninitialized static and extern
variables except those which have been declared to be of class near or idata.

rbss contains any uninitialized variables of classar. Therbsspsect is linked into internal RAM
at addresses below 7FH, and is accessed using the direct addressing mode of the 8051. This
psect is cleared to all zeros by the run-time startup code bafame()is invoked.
The actual classes of variable which galissdepend on which memory model is being used.
In the small memory modethsswill be used for allnear variablesautovariables, function
arguments and any static and extern variables which are not declared to be in any other class.
In the medium memory modeibsswill be used only fomear variables,auto variables and
function arguments.
In the large and huge memory modetlssswill only be used for variables declared rasar.

idata contains any variables of clagkata, for examplestatic idata unsigned char counter;
declaregounterto be of classdata. Variables in thédatapsect are always accessed using the
register indirect addressing mode of the 8051. Thus, the C statement ++counter will generate
this code¥ov RO, #_counter

195

Using memory mapped I/0O and SFRs C Language Features

INC @RO
Idata class variables may reside at addresses in the range 80H to FFH, allowing the “hidden”
internal RAM on the 8052, 80C552 and 80C517 to be accessed.

rbit contains albit variables except those declared at absolute locations. The declaradior:
bit unsigned char flag;
will allocated flag as a single bit in thebit psect. Therbit psect is always linked for bit
addresses in the range 0 to 7FH. Bit addresses 80H to FFH are in the 8051 special function
register area and should not be used forrtliepsect.

11.9 Using memory mapped I/O and SFRs

The 8051 processor uses memory mapped I/O for all devices. In order to declare memory mapped
I/O ports you should use thabsolutevariable facility to map identifiers onto the appropriate special
function register locations. Theolatile type qualifier should be used for most 1/O locations to
prevent the optimizer from removing apparently redundant reads and writes to ports. When written
to, read only 1/O ports which do not perform any sensible function, should be declamstso that
the compiler will detect any attempt to write to them.

Almost all I/O locations on the 8051 family are 8 bits wide, so you should usertbigned char
type in your port declarations. Thensigned chatype is guaranteed to be an 8 bit wide unsigned
integer regardless of the compiler options used. The default behaviourafahigy/pe is signed, but
will behave like an 8 bit unsigned integer if the C51 option —char=unsigned is used.

To give a practical example, the on-board serial port on the 8051 could be declared as follows:

static unsigned char SCON @ 0x98;
static unsigned char SBUF @ 0x99;

Any of the 1/O ports declared above could then be used freely in C code, exactly like any other C
variable. For example, to write the character "X’ to the serial port buffer SBUF use the C statement:

SBUF = 'X’;

Declarations for all of the standard 8051 ports may be found in the standard header file <8051.h>.
See the appropriate processor handbook for documentation of the special function registers on your
hardware.

11.10 Interrupt handlingin C

The compiler incorporates features allowing interrupts to be handled without writing any assembler
code. The type qualifignterrupt may be applied to a function to allow it to be called directly from

196

C Language Features Interrupt handling in C

a hardware or software interrupt. The compiler will prodessrrupt functions differently to normal
functions, generating code to save and restore any registers used and exit &g iastead

of a RET at the end of the function. If the C51 option -STRICT is used, this keyword becomes
__interrupt Wherever this manual refers to tigerrupt keyword, assume _interruptif you are
using —STRICT.

An interrupt function must be declared as typgerrupt void and may not have parameters.
It may not be called directly from C code, but it may call other functions itself, subject to certain
limitations.

In the small and medium memory models, static locations are usediforvariables and func-
tion argument passing. As a result of the static allocation schemeerupt functions may not make
a function call to any function which uses static memory variables, and which is also called from
the main program or by a differemterrupt function. This limitation is imposed because such a
call may result in corruption of variables and arguments if another instance of the function is already
active. Interrupt functions may call any function, with any number of arguments of local variables,
if the function called is not used by any other part of the program. In the large model, interrupt
functions reserve 256 bytes of memory for their own stack space. At present, the size of this stack
space is fixed.

If the linker detects a function call which breaks these rules, it will issue the watRuntction
nameoccurs in multiple call graphs, rooted at NAME1 and NAME2" where NAME1 and NAME?2
are the name of thimterrupt function and the name of youmain() function or anotheinterrupt
function. Functions which use no static storage may be freely called by any numbgsraipt and
standard functions.

An example arinterrupt function which services the standard on-board serial port of the 8051
follows:

char rxbuf[l6];
volatile char head, tail;
interrupt void
serial_intr(void)
{

rxbuf [head] = SBUF;

head = (head + 1) % sizeof (rxbuf);
if (head == tail)

tail = (tail + 1) % sizeof (rxbuf);
RI = 0;

197

Interrupt handling in C C Language Features

11.10.1 Bank2 andBank3interrupts

HI-TECH C supports two special classesiterrupt function which switch to register bank 2 or

3 before executing any user code. This saves some processing time compared to standard interrupt
functions which push any registers used onto the stack. The keyward®2andbank3are used to

access this facility. You may declare an interrupt function which uses register bank 2 as follows:

bank2 interrupt void func (void);
Similarly, an interrupt function using register bank 3 could be declared as:
bank3 interrupt void func(void);

If the C51 option —STRICT is used, these keywords are changeditankZand___bank3 Interrupt
functions using bank 2 or 3 do not generate code to save the registers used, thus reducing the interrupt
overhead substantially. Due to the register bank dependant nature of most compiler generated code,
banked interrupt functions may not call any other C function. You should not allow more than one
interrupt function using the same alternate register bank to be active at a time. You can have as many
standard interrupt functions as you like, limited only by the available stack space.

In general, interrupt functions using banks 2 or 3 should be used only to handle interrupts where
a very fast response, requiring minimal processing, is desired. For example, an interrupt handler
for a timer generating interrupts at a fast rate may be better handled by a bank2 interrupt or bank3
interrupt function.

It is possible to write interrupt handlers which are actually slower when compiled as a banked
interrupt function. If the code generated for an interrupt function does not use any of the registers RO
to R7, the code generated to save and restore the register bank will actually make a banked interrupt
function larger and slower than a standard interrupt function. If in doubt, compile your C code to an
assembly language source file and examine the code which has been generated by the compiler.

11.10.2 Interrupt Levels in small and medium model

Normally it is assumed by the compiler that any interrupt may occur at any time, and an error will
be issued by the linker if a function appears to be called bynaarrupt function and by main-line
code, or another interrupt. Since it is often possible for the user to guarantee this will not happen for
a specific routine, the compiler supports an interrupt level feature to suppress the errors generated.
This is achieved with thépragma interrupt_level directive. There are two interrupt levels
available, and anynterrupt functions at the same level will be assumed by the compiler to be
mutually exclusive. This exclusion must be guaranteed by the user, i.e. the compiler is not able to
control interrupt priorities. Eachnterrupt function may be assigned a single level, either 0 or 1.
In addition, any noninterrupt functions that are called from amterrupt function and also
from main-line code may also use theragma interrupt_level directive to specify that they

198

C Language Features Interrupt handling in C

will never be called by interrupts of one or more levels. This will prevent linker from issuing an
error message because the function was included in more than one call graph. Note that it is entirely
up to the user to ensure that the functiomat called by both main-line and interrupt code at the
same time. This will normally be ensured by disabling interrupts before calling the function. It is
not sufficient to disable interrupts inside the function after it has been called.

An example of using the interrupt levels is given below. Note tha#thegma directive applies
to only the immediately following function. Multiplépragma interrupt_level directives may
precede a non-interrupt function to specify that it will be protected from multiple interrupt levels.

/* non-interrupt function called by interrupt and main-line code */
#pragma interrupt_level 1
void bill () {
inti;
i=23;
}

/* two interrupt functions calling the same non-interrupt function */
#pragma interrupt_level 1

void interrupt fred(void)
{

bill();

}

#pragma interrupt_level 1
void interrupt joh()

{

bill();
}
main ()
{
bill();

}

Both the low- and high-prioritynterrupt functions may use the interrupt level feature.

199

Interrupt handling in C C Language Features

Table 11.7: Interrupt handling macros

Macro Purpose

di() Disable interrupts

ei() enable interrupts
ROM_VECTOR Set up “hard” interrupt vecto
set_vector Setup “hard” interrupt vector
RAM_VECTOR Setup “soft” interrupt vector
CHANGE_VECTOR | Modify “soft” interrupt vector
READ_RAM_VECTOR | Read a “soft” interrupt vector

11.10.3 Interrupt handling macros

The standard header fildntrpt.h> contains several macros which are useful when handling inter-
rupts using C code. These are listed in Tabler.

11.10.4 The ei() and di() macros

Thedi() andei() macros may be used to disable and enable maskable interrupts. It may useful to
disable interrupts while initializing or servicing 1/O devices.

Di() disables interrupts by clearing the EA flag in the ICON special function register using the
instruction CLR EA. Similarlygi() enables interrupts by setting EA with the instruction SETB EA.

The 8051 global interrupt enable flag is bit addressable and may accessed from C code using the
following bit variable declaration:

static bit unsigned char EA @ OxAF;

The declaration above makes it possible to test the interrupt enable state, enable and disable inter-
rupts using C statements. For example, to enable interrupts:

EA = 1;

11.10.5 ROM_VECTOR and set_vector

ROM_VECTOR is used to set up a “hard coded” vector in ROM which points an 8051 LIMP in-
struction directly to an interrupt handler. It takes the form:

ROM_VECTOR (itt vector, itt handler)

200

C Language Features Interrupt handling in C

wherevectoris the address of the interrupt vector arahdleris the name of the interrupt function
which will be used.

For example, to set the serial interrupt vector at address 23h to point to an interrupt function
calledserial_intr() you could write:

ROM_VECTOR (0x23, serial_intr)

ROM_VECTOR does not generate any code which is executed at run-time, so it can be placed
anywhere in your code. To continue the example above, ROM_VECTOR would have generated the
following code:

GLOBAL _serial_intr
PSECT vectors,ovrld
ORG 0x23

LJMP _serial_intr
PSECT text

This results in the instructioniMP _serial_intr being placed at offset 23H in thectorspsect.
ROM_VECTOR generates in-line assembler code, so the vector address passed to it may be
in any format acceptable to the assembler. Hexadecimal interrupt vector addresses may be passed
either as C style hex (0x23) or as assembler style hex (23H).
Set_vector is equivalent ROM_VECTORand is present only for compatibility with version 5
and 6 HI-TECH compilers. It is suggested tiR®OM_VECTORbe used in place adet_vectoifor
maximum compatibility with future versions of HI-TECH C.

11.10.6 RAM based interrupt vectors

HI-TECH C supports internal RAM based interrupt vectors which can be dynamically modified by
user code, so as to point to different interrupt handlers at different points during program execution.

RAM based interrupt vectors work by setting the ROM based interrupt vector to point to code
which transfers control to the actual interrupt handler via an internal RAM based pointer. The
transfer of control to the user specified interrupt handler can be achieved with minimal overhead by
PUSHing the handler address onto the stack and then executing a RET instruction.

The RAM_VECTORCHANGE_VECTORNAREAD_ RAM_VECTORacros are used to ini-
tialize, modify and read interrupt vectors which are directed through internal RAM based inter-
rupt vectors in thedata psect. These macros should only be used for vectors which need to be
modifiable, so as to point at differemterrupt functions at different points in the program. The
CHANGE_VECTOR and READ_RAM_VECTOR macros should only be used with interrupt vec-
tors which have been initialized using RAM_VECTOR, otherwise strange things will happen.

201

Interrupt handling in C C Language Features

11.10.7 RAM_VECTOR

The RAM_VECTOR macro sets up a “soft” interrupt vector which can be modified to point to a
differentinterrupt function if necessary. This is accomplished by setting up code at the vector in
ROM to perform an indirect jump to the interrupt function, via a vector address in internal RAM.
When the interrupt occurs, the code at the interrupt vector uses two PUSH instruction to place the
address of the handler on the stack, then executes a RET instruction to jump to the handler address
which has just been pushed. If the interrupt vector needs to be changed, the address operand of the
PUSH instruction at the vector points to the “soft” vector which is in internal RAM.

RAM_VECTOR takes the same arguments as ROM_VECTOR and can be used anywhere ROM_VECT
is used. Each use of RAM_VECTOR results in an extra two bytes of initialized data iddbee
psect. For example, the code:

RAM_VECTOR (0x23, serial_intr)

will place code at interrupt vector 23h which indirectly jumps to the actual interrupt handler.
The internal RAM locations used for the vector will be initialized to contain the address of the
interrupt functionserial_intr(). The code generated will be:

GLOBAL _serial_intr
PSECT vectors,ovrld
ORG 0x23

PUSH 999f+1

PUSH 999f

RET
PSECT rdata, class=DATA
999 :DW _serial_intr

PSECT text

This results in the code at vector 23h pushing the addressradl_intr() onto the stack and then
jumping to it via a RET instruction.

11.10.8 CHANGE_VECTOR

The CHANGE_VECTOR macro is used to modify a vector which has been set up by RAM_VECTOR.
This is accomplished by modifying the interrupt handler address in internal RAM. For example:

EA = 0;
CHANGE_VECTOR (23h, new_handler)
EA = 1;

202

C Language Features Interrupt handling in C

will change the handler address used by vector 23H to point to an interrupt functionrealletdandler()
The address of the vector word in internal RAM is found by indirecting from the operand byte
of the second PUSH instruction at the vector; if the code at the vector is:

PUSH 45H
PUSH 44H
RET

CHANGE_VECTOR will place the new handler address at 44H and 45H in internal RAM, with the
high order byte of the address at 44H.

Itis a good idea to disable interrupts before using the CHANGE_VECTOR macro, as it is possi-
ble for an interrupt to be generated while the RAM based interrupt vector is in an inconsistent state.
The 8051 is a byte oriented machine, so the two bytes of the handler address are updated by separate
instructions.

If a vector has been modified and you want to change it back to the original value, you will
need to use CHANGE_VECTOR to change it back. Re-executing the code which contains the
RAM_VECTOR macro will not reset the vector because RAM_VECTOR statically initializes the
vector without generating any executable code. CHANGE_VECTOR is the only vector initialization
macro which generates instructions which are actually executed at run-time, ROM_VECTOR and
RAM_VECTOR just force initial values into the vectors.

11.10.9 READ_RAM_VECTOR

The READ_RAM_VECTOR macro may be used to read the value of a RAM based interrupt vec-
tor which has been set up by RAM_VECTOR. It must never be used on vectors which have been
initialized using ROM_VECTOR as garbage will be returned. READ_RAM_VECTOR can be used
along with CHANGE_VECTOR to preserve an old interrupt handler address, set a new address and
then restore the original address. For example:

volatile unsigned char wait_flag;
interrupt void
walt_handler (void)
{
++wait_flag;
RI = 0;
}
void
wait_for_serial_intr(void)
{

interrupt void (*old_handler) (void);

203

Interrupt handling in C

C Language Features

EA = 0;
old_handler = READ_RAM VECTOR(23H);
wait_flag = 0;
CHANGE_VECTOR (23H, wait_handler);
EA = 1;
while (wait_flag == 0)
continue;
EA = 0;
CHANGE_VECTOR (23H, old_handler);
EA = 1;

11.10.10 Pre-defined interrupt vector names

The header file<8051.h>includes declarations for all of the standard 8051 interrupt vectors. These
vector names may be used as the vector address argument to the ROM_VECTOR, set_vector, RAM_VECT

CHANGE_VECTOR and READ_RAM_VECTOR macros.

The interrupt vectors defined ¥B051.h> are listed in Tablel1.8 Interrupt vectors other than
those in<8051.h>may be declared using pre-procesgaefine directives, or the vector address
may be directly used with the vector macros.

For example the extra interrupt vectors on the 80C552 microcontroller could be declared as

follows:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

I2CINT O0x2B
CAPOINT 0x33
CAP1INT O0x3B
CAP2INT 0x43
CAP3INT 0x4B
ADCINT 0x53
CMPOINT 0x5B
CMP1INT 0x63
CMP2INT Ox6B
T2INT 0x73

An interrupt handler for the 80C552 timer 2 interrupt (T2INT) could be installed either by using the
declarations above and writing:

ROM_VECTOR (T2INT, t2int_handler);

or by directly using the vector address:

ROM_VECTOR (0x73, t2int_handler);

204

C Language Features Mixing C and 8051 assembler code

Table 11.8: Interrupt vector names

Name | Vector | Interrupting device
EXTIO | 034 External Interrupt O
TIMERO | OBH Timer O
EXTI1 13H External Interrupt 1
TIMER1 | 1BH Timer 1
SINT 23H Onboard serial port
TIMER2 | 2BH Timer 2 (8052 only)

11.11 Mixing C and 8051 assembler code

8051 assembly language code can be mixed with C code using three different techniques.

11.11.1 External Assembly Language Functions

Entire functions may be coded in assembly language, assembled by AS51 as sapsaoatee files
and combined into the binary image using the linker. This technique allows arguments and return
values to be passed between C and assembler code.

To access an external function, first include an approprisggt€ndeclaration in the calling C
code. For example, suppose you need an assembly language function to provide access to the rotate
left instruction on the 8051

extern char rotate_left (char);

declares an external function calleatate left()which has a return value type ohar and takes a
single argument of typehar. The actual code fomtate_left()will be supplied by an externaas
file which will be separately assembled with AS51.

The full 8051 assembler code fantate left()would be something like:

PSECT text,class=CODE
GLOBAL _rotate_left
SIGNAT _rotate_left,4201

PSECT text

_rotate_left:
MOV A,R5

RL A

MOV R3,A

205

Mixing C and 8051 assembler code C Language Features

RET

The name of the assembly language function is the name declared in C, with an underscore prepended.
The GLOBALdirective is the assembler equivalent to thexernkeyword and thesSIGNATdirec-

tive is used to enforce link time calling convention checking. Signature checking arf®IGNAT

directive are discussed in more detail later in this chapter.

Note that in order for assembly language functions to work properly they must look in the right
place for any arguments passed and must correctly set up any return values. In the example above,
the R5 register was used for the argument to the function, and the R3 register was used for the return
value. In small and medium model, the compiler uses a combination of register based argument
passing and static allocation of arguments and local variables. Local variable allocation, argument
and return value passing mechanisms are discussed in detail later in the manual. They should be
understood before attempting to write assembly language routines.

11.11.2 Accessing C objects from within assembler

Global C objects may be directly accessed from within assembly code using their name prepended
with anunderscorecharacter. For example, the obj&eb defined globally in a C module:

near char foo;
may be access from assembler as follows.

GLOBAL _foo
mov r0,_foo

If the assembler is contained in a different module, then the GLOBAL assembler directive should
be used in the assembler code to make the symbol name available, as above. If the object is being
accessed from in-line assembly in another module, therxagrn declaration for the object can be

made in the C code, for example:

extern near char foo;

This declaration will only take effect in the module if the object is also accessed from within C code.
If this is not the case then, an in-line GLOBAL assembler directive should be used.

11.11.3 #asm, #endasm and asm()

8051 instructions may also be directly embedded in C code using the direttisesttendasnand
asm() The#asmand#endasndirectives are used to start and end a block of assembler instructions

206

C Language Features Preprocessing

which are to be embedded inside C code. @bm()directive is used to embed a single assembler
instruction in the code generated by the C compiler.

To continue our example from above, you could directly code a rotate left on a memory byte
using either technique, as the following example shows:

#include <stdio.h>
unsigned char var;

main ()
{
var = 1;
printf ("var = 0x%2.2X\n", var);
#asm
MOV A,_var
RL A
MOV _var,A
#endasm

printf ("var = 0x%2.2X\n", var);
asm("MOV A,_var");

asm("RL A");

asm("MOV _var,A");

printf ("var = 0x%2.2X\n", var);

When using inline assembler code, great care must be taken to avoid interacting with compiler
generated code. If in doubt, compile your program with the xiption and examine the assembler
code generated by the compiler.

IMPORTANT NOTE: thettasmand#endasntonstruct is not syntactically part of the C program,
and thus it does NOT obey normal C flow-of-control rules. For example, you cannot#essra
block with an if statement and expect it to work correctly. If you use in-line assembler around any
C constructs such as if, while, do etc. they you should use onlashg("™) form, which is a C
statement and will correctly interact with all C flow-of-control structures.

11.12 Preprocessing

All C source files are preprocessed before compilation. Assembiler files can also be preprocessed if
the-p command-line option is issued.

207

Preprocessing C Language Features

11.12.1 Preprocessor Directives

C51 accepts several specialised preprocessor directives in addition to the standard directives. These
are listed in Table.1.9

Table 11.9 Preprocessor directives

Directive Meaning Example
preprocessor null directive, do nothing
#assert | generate error if condition false #assert SIZE > 10
#asm signifies the beginning of in-line #asm
assembly inc dptr
#endasm
#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))
felif short forfelse #if seefifdef
felse conditionally include source lines seefif
#endasm | terminate in-line assembly seetasm
fendif terminate conditional source inclusion see#if
#error generate an error message #error Size too big
#if include source lines if constant #if SIZE < 10
expression true c = process (10)
felse
skip();
tendif
#ifdef include source lines if preprocessor | #ifdef FLAG
symbol defined do_loop () ;
#elif SIZE ==
skip_loop();
fendif
#ifndef | include source lines if preprocessor | #ifndef FLAG
symbol not defined Jump () ;
fendif
#include | include text file into source #include <stdio.h>
#include "proiject.h"
#line specify line number and filename for | #1ine 3 final
listing
#nn (wherenn is a number) short for #20
#line nNn
continued. ..

208

C Language Features Preprocessing

Directive Meaning Example
#pragma | compiler specific options See Sectioni1.12.3

#undef undefines preprocessor symbol #undef FLAG

#warning | generate a warning message #warning Length not set

Macro expansion using arguments can usettblearacter to convert an argument to a string, and
the ## sequence to concatenate tokens.

11.12.2 Predefined Macros

The compiler drivers define certain symbols to the preprocesssgy,(allowing conditional compi-

lation based on chip type and other parameters. The symbols listed inTakléshow the more
common symbols defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise
stated.

11.12.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standarey#a facility. The format of a
pragma is:

#pragma keyword options

wherekeywordis one of a set of keywords, some of which are followed by cedptions A list of
the keywords is given in Tablel.11 Those keywords not discussed elsewhere are detailed below.

11.12.3.1 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-
tional characters, th&pragma jis directive will enable proper handling of these characters, specif-
ically not interpreting éackslash‘\” character when it appears as the second half of a two byte
character. Theoijis directive disables this special handling. JIS character handling is disabled by
default.

11.12.3.2 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner ofprintf (). Although the format string is interpreted at run-time, it can be compile-
time checked for consistency with the remaining arguments. This directive enables this checking
for the named function, e.g. the system header 4ifedio.h> includes the directivétpragma

209

Preprocessing C Language Features

Table 11.10: Predefined CPP symbols

Symbol When set Usage

HI_TECH_C Always To indicate that the compiler in use
is HI-TECH C.

_HTC_VER_MAJOR_ | Always To indicate the integer component
of the compiler’s version number.

_HTC_VER_MINOR_ | Always To indicate the decimal component
of the compiler’s version number.

_HTC_VER_PATCH_ | Always To indicate the patch level of the
compiler’s version number.

LARGE_DATA -Bm, -B1, -Bh To indicate that extern and statjc
variables are by default allocated |n
external RAM.

SMALL_DATA -Bs To indicate that extern and statjc
variables are by default allocated |n
internal RAM.

HUGE_MODEL -Bh To indicate that code is compiled in
huge memory model.

LARGE_MODEL -B1 To indicate that code is compiled in
large memory model.

MEDIUM_MODEL -Bm To indicate that code is compiled in
medium memory model.

SMALL_MODEL -Bs To indicate that code is compiled in
small memory model.

18051 Always To indicate that this is an 8051 de-
vice.

_XXXXX When chip selected To indicate the specific chip type se-
lected.

__FILE__ Always To indicate this source file being
preprocessed.

__LINE__ Always To indicate this source line numbaer.

_ DATE_ Always To indicate the current date, e.g.
May 21 2004

__TIME__ Always To indicate the current time, e.g.
08:06:31.

210

C Language Features Preprocessing

printf_check(printf) const to enable this checking farintf (). You may also use this for any
user-defined function that accepts printf-style format strings. The qualifier following the function
name is to allow automatic conversion of pointers in variable argument lists. The above example
would cast any pointers to strings in RAM to be pointers of the typed{t char *)

Note that the warning level must be set to -1 or below for this option to have effect.

11.12.3.3 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as already
documented. This is fine for most applications, but sometimes it is necessary to redirect variables
or code into different psects when a special memory configuration is desired. For example, if the
hardware includes an area of memory which is battery backed, it may be desirable to redirect certain
variables frombssinto a psect which is not cleared at startup. Code and data for any of the standard
C psects may be redirected usingragma psect directive. For example, if all executable code
generated by a particular C source file is to be placed into a psect editediethe following
directive should be used:

#pragma psect text=altcode

This directive tells the compiler that anything which would normally be placed inekigpsect
should now be placed in tha@tcodepsect. Any given psect should only be redirected once in a
particular source file, and all psect redirections for a particular source file should be placed at the top
of the file, below any #includes and above any other declarations.

For example, to declare a group of uninitialized variables which are all placed in a psect called
nvram the following technique should be used:

-—--File NVRAM.C
#pragma psect bss=nvram
char buffer([20];

int varl, var2, var3;

Any files which need to access the variables defined in NVRAM.C shifdd1ude the following
header file:

--File NVRAM.H

extern char buffer[20];
extern int varl, var2, var3;

211

Preprocessing C Language Features

Table 11.11: Pragma directives

Directive Meaning Example
interrupt_level | Allow interrupt function| #pragma interrupt_level 1
to be called from main-
line code. See Section
11.10.2
jis Enable JIS character #pragma jis
handling in strings
nojis Disable JIS character #pragma nojis
handling (default)
printf_check Enable printf-style for-| #pragma
mat string checking printf_check (printf) const
psect Rename compileri #pragma psect text=mytext
defined psect
regsused Specify registers which #pragma regsused r0
are used in an interrupt
strings Define constant string #pragma strings code
qualifiers
switch Specify code generation #pragma switch direct
for switch statements

The#pragma psect directive allows code and data to be split into arbitrary memory areas. Defini-
tions of code or data for non-standard psects should be kept in separate source files as documented
above. When you link code which uses non-standard psect names, you will not be able to use the
C51 -A option to specify the link addresses for the new psects. Instead, you will need to use the C51
-L option to specify an extra linker option.

If you want a nearly standard configuration with the addition of only an extra pseaiJiken
you can use the C51 -L option to add an extra -P specification to the linker command.

For example:

c51 --chip=8051 -Bm -L-Pnvram=1000h/20000h --ram=2000-2fff test.obj nv.obj
will link test.objand nv.objwith a standard configuration of ROM at Oh, internal RAM at 20h,

external RAM at 2000h and the extnarampsect at 1000h in RAM, but not overlapping any valid
ROM load address.

212

C Language Features Preprocessing

Table 11.12: Valid regsused register names

Register Name Description
r0..r7 bank 0 general purpose registers
8..15 address of bank 1 general purpose registers
a accumulator
b B register
dph, dpl, dptr | data pointer: high, low, both

11.12.3.4 The #pragma regsused Directive

C51 will automatically save context when an interrupt occurs. The compiler will determine only
those registers and objects which need to be saved for the particular interrupt function defined. The
#pragma regsused directive allows the programmer to further limit the registers and objects that the
compiler might save and retrieve on interrupt.

Tablel1.12shows registers names that would commonly be used with this directive. The register
names are not case sensitive and a warning will be produced if the register name is not recognised.
Note that the names in bank 1 represent the memory address of the register.

This pragma affects the first interrupt function following in the source code. Code which contains
multiple interrupt functions should include one directive for each interrupt function.

For example, to limit the compiler to saving no registers for an interrupt function other than the
accumulator, B register, and the RO and R1 registers in banks 0 and 1, use:

#pragma regsused a,b,r0,rl,8,9

Even if a register other than these has been used and that register would normally be saveuhtit will
be saved if this pragma is in effect. The registers will only be automatically saved by the compiler if
required.

11.12.3.5 The #pragma strings Directive

Any user-defined variables can be qualified by a number of type qualifiers (see Sédtidraand

11.3.9 but constant strings (i.e. anonymous strings embedded in expressions) are normally unqual-
ified. This means they will be put into the data segment. To control this behavioutp thema

psect strings directive allows you to specify a set of qualifiers to be applied to all subsequent con-
stant strings. If a qualifier is specified, it will be added to any qualifiers specified previously. Using
the directive without a qualifier will remove all qualifiers from any subsequent strings, i.e. restore to
normal.

213

Linking programs C Language Features

For example., to qualify strings wittbde you should use the example given in Table11 Note
that all constant strings will then have typede char * and will not be usable where a simplear
* type is expected.

11.12.3.6 The #pragma switch Directive

Normally the compiler decides the code generation method for switch statements which results in
the smallest possible code size. Specifying dheect option to the#pragma switch directive

forces the compiler to generate the table look-up style switch method. This is mostly useful where
either timing or code size is an issue for switch statements (ie: state machines) and a jump table is
preferred over direct comparison or vice versa. This pragma affects all code generated onwards. The
auto option may be used to revert to the default behaviour.

11.13 Linking programs

The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (C51 -S option) or object code (C51 -C option).

C51 by default generatdatel hexfiles. If you use the —OUTPUT=bin option or specify an
output file with a.bin file type using the C51 -O option, the compiler will generate a binary image
instead. The file will contain code starting from the lowest initialized address in the program. For
example:

c51 --chip=8051 -v -oxx.bin

will produce a binary file starting with the RESET vector at address OH, followed by the other
interrupt vectors, user code, initialized data and library code.

When producing code which is to be downloaded using a debuggeodeeffsevalue specified
should be the address of the area in RAM where the downloaded code will be located. Code which
is to be run using a simulator should be compiled using the normal addresses for one of the 8051
variants which the simulator supports.

After linking, the compiler will automatically generate a memory usage map which shows the
address and size of all memory areas which are used by the compiled code. For example:

Memory Usage Map:
Program space:

CODE used B3h (179) of 10000h bytes (0.3%)
Internal Data:

BITSEG used Oh (0) of 80h bits (0.8%)

DATA used 23h ¢ 35) of EOh bytes (15.6%)

214

C Language Features Linking programs

External Data:

XDATA used 2h (2) of FFO0Oh bytes (0.0%)
Summary:

Program space used B3h (179) of 10000h bytes (0.3%)

Internal Data used 24h (36) of 100h bytes (14.1%)

External Data used 2h (2) of 10000h bytes (0.0%)

More detailed memory usage information, listed in ascending order of individual psects, may be
obtained by using the C51 —summary=all option.

11.13.1 Replacing Library Modules

Although C51 comes with a librarian.{BR) which allows you to unpack a library files and replace
modules with your own modified versions, you can easily replace a module within a library without
having to do this. If you add the source file which contains the library routine you wish to replace on
the command-line list of source files then the routine will replace the routine in the library file with
the same name. For example, if you wished to make changes to the library funstionwhich
resides in the filaax. c in the SOURCES directory, you could make a copy of this source file, make
the appropriate changes and then compile and use it as follows.

c51 --chip=8051 main.c init.c max.c

The code fomax () in max.c will be linked into the program rather than thex () function con-

tained in the standard libraries. Note, that if you replace an assembler module, you may need the
-P option to preprocess assembler files as the library assembler files often contain C preprocessor
directives.

11.13.2 Signature checking

The compiler automatically produces signatures for all functions. A signature is a 16 bit value
computed from a combination of the function’s return data type, the number of its parameters and
other information affecting the calling sequence for the function. This signature is output in the
object code of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. Thus if a function is declared in
one module in a different way (for example, @sar instead ofshorf then the linker will report an
error.

It is sometimes necessary to write assembly language routines which are called from C using an
externdeclaration. Such assembly language functions need to include a signature which is compati-
ble with the C prototype used to call them. The simplest method of determining the correct signature

215

Linking programs C Language Features

for a function is to write a dummy C function with the same prototype and compile it to assembly
language using the C58 option.

For example, suppose you have an assembly language routine oalégketwhich takes two
int arguments and returnschar value. The prototype used to call this function from C would be:

extern char widget (int, int);

Where a call to _widget is made in the C code, the signature for a function witmtveoguments

and achar return value would be generated. In order to match the correct signature the source code
for widget needs to contain an ASSIGNATdirective which defines the same signature value. To
determine the correct value, you would write the following code:

char widget (int argl, int arg2)
{
}

Now compile it to assembler code using:
c51l --chip=8051 -S x.c

The resultant assembler code includes the following line:
signat _widget, 8249

The SIGNAT directive tells the assembler to include a record in.tig file which associates the
value 8249 with symbolwidget The value 8249 is the correct signature for a function with itwto
arguments and ehar return value. If this line is copied into thasfile where_widgetis defined, it
will associate the correct signature with the function and the linker will be able to check for correct
argument passing.

For example, if anothec file contains the declaration:

extern char widget (long);

a different signature will be generated and the linker will report a signature mismatch. This will alert
you to the possible existence of incompatible calling conventions.

11.13.3 Linker-Defined Symbols

The link address of a psect can be obtained from the value of a global symbol with ndmeame
wherenameis the name of the psect. For examplel bssis the low bound of thésspsect. The
highest address of a psect (i.e. the link address plus the size) is syntboame If the psect has
different load and link addresses, as may be the case datepsect is linked for RAM operation,
the load address is Bname

216

C Language Features Standard 1/0 Functions and Serial I/0

Table 11.13: Console I/O functions

Function Purpose
void init_uart (void); | Initialise the console (Serial port)
void putch(char ch); Write character to the console
char getch(void); Get a character from the console
char getche (void); Get and echo a console character
int kbhit (void); Returns 1 if a character is available

11.14 Standard I/O Functions and Serial I1/0O

In order to use the standard I/O functionsiftf(), puts() scanf() gets(), etc.), you will need to
implement library routines which implement low level console 1/0O on your target hardware. This
is usually achieved by communicating via a serial port. All standard I/O routines perform character
I/O by calling the<conio.h>routines listed in Tablé1.13

The generi&1xxNxC.liblibraries are supplied with standard versions of these routines installed.
If you attempt to run a program which uses console 1/0O before you have customised an appropriate
console 1/0 module in the library, it will probably not work. The SOURCES directory includes a
source filegetch.cwhich implements console I/O via standard 8051 serial port. These routines will
probably require modification to the baud rate initializationnit_uart(). See Sectiori1.13.1for
information on easily replacing library modules.

If you are using a HI-TECH Software debugger or simulator, use the console I/O routines sup-
plied with the debugger when creating code which is to be downloaded.

11.15 Optimizing Code for the 8051

Due to the limitations imposed by the 8051 instruction set, care needs to be taken to avoid writing
code which will be large or inefficient. To improve execution speed and reduce code size, some or
all of these suggestions can be used:

e Usechar, signed charor unsigned chatypes instead aht wherever possible. The 8051 can
manipulate 8 bit quantities much more efficiently than 16 bit quantities.

e In the small and medium memory models, loaatovariables always reside in internal RAM

and can be manipulated using the direct addressing mode. Since storage used by function
arguments andutovariables can be reused by other functions, try toaugevariables where

217

Optimizing Code for the 8051 C Language Features

possible to reduce internal RAM usage. Any variable which is declared within a function and
which is notstaticis anautovariable and will be placed in internal RAM.

¢ In the medium, large, and huge models, variables which are critical to performance should be
declarechear, which places them in internal RAM.

e Variables which are less critical to performance, but still frequently accessed, can be placed in
the indirectly accessible area from 80H to FFH usingittaa qualifier. Idata variables are
slower to access than normal internal RAM variables, but are more efficient than variables in
external RAM.

e Choose a memory model which is applicable to the application. If you have no need for
recursive or re-entrant code then you should be using either small or medium model.

e Use small model for applications which require less than around 200 bytes of variables and
no large buffers. Small model applications which need only a small amount of external RAM
for buffers may be written using tHar qualifier to declare external RAM variables.

e Medium model should be used for applications which require a large number of static variables
and buffers. Performance critical variables should be placed in internal RAM by making them
local, or using thenearandidata qualifiers.

e Pointer manipulation can be improved substantially by using pointers ofmbaster to near
or pointer to idatawherever possibleNear andidata pointers occupy only a single byte of
storage and can only address objects in internal RAM. Near pointers can be easily derefer-
enced using the register indirect mode of the 8051, while normal pointers frequently require
time consuming library calls.

e You can declare aointer to nearby including thenear qualifier anywhere to the left of the
“*" in the declaration, for examplehear char * nptr; declares a pointer to @ear char.
Similarly apointer to idatamay be declared asdata char * iptr;

o If you require a pointer which you know will only ever address objects in internal RAM use
declarations such as the ones above to maximise the efficiency of your code.

e Use unsigned types likensigned chawherever possible as the 8051 handles unsigned quan-
tities more readily than signed quantities. Remember that the default behaviolbaras
signed.

Each of the techniques listed above should gain you some ROM space and improve execution speed.
If all of these techniques are used to their fullest, the compiler will produce very good code indeed.
The 8051 imposes some limitations but if used intelligently the HI-TECH compiler will give results
which frequently could not be improved with hand coding of assembly language.

218

Chapter 12

Macro Assembler

The HI-TECH Software 8051 Macro Assembler assembles source files for the Intel 8051 family of
Microprocessors.

This chapter describes the usage of the assembler and the directives (assembler pseudo-ops)
accepted by the assembler. The 8051 instruction set, listing all mnemonics, opcodes and addressing
forms, is listed at the end of this chapter.

For a description of the available special function registers and any extra instructions refer to the
appropriate processor handbook.

The HI-TECH assembler package includes a linker, librarian, cross reference generator and an
object code converter.

12.1 Assembler Usage

The assembler is called AS51 and is available to run on PC and UNIX operating systems.
The usage of the assembler is similar under all of these operating systems. All command line
options are recognised in either upper or lower case. The basic command format is shown is:

asb5l [options] files ...

Files is a space-separated list of one or more assembler source files. Where more than one source file
is specified the assembler treats them as a single module, i.e. a single assembly will be performed
on the concatenation of all the source files specified. The files must be specified in full, no default
extensions or suffixes are assumed.

Options is an optional space separated list of assembler options, each with a minus sign (-) as
the first character. A full list of possible options is given in Tabkel, and a full description of each
option follows.

219

Assembler options Macro Assembler

Table 12.1: AS51 command-line options

Option Meaning Default
-A 80C751 codexJMP/ACALL) 8051 CODE
-0 Quick assembly Optimized assembly
-U No undef'd symbol messages
-3 No size error messages
-X No local symbols in OBJ file
-ooutfile Specify object name srcfile.OBJ
-Llistfile Produce listing No listing
-Wwidth Specify listing page width 80 or 132
-Flength Specify listing form length 66
-I List macro expansions Don't list macros
-C Produce cross-reference No cross reference
-V Include assembler line numbers jnNo line numbers

object file

12.2 Assembler options
The command line options recognised by AS51 are as follows:

-A The Philips/Signetics 80C751 series of processors do not supparttheand L.CALL instruc-
tions. If the-2 option is used, AS51 will assemble these instructionsjtee and ACALL
respectively. This assembler option is used by the C compiler when generating 80C751 code.

-Q The default mode of operation of the assembler is to iterate over the source code until the smallest
possible code is produced, by optimizing jumps. If theoption is used then only two passes
over the source code will be made, thereby speeding up assembly. This may regwlt in
instructions being generated in the code where an optimization was performed on the second
pass but not the first.

-U Undefined symbols encountered during assembly are treated as external, however an error mes-
sage is issued for each undefined symbol unless the -U option is given. Use of this option
suppresses the error messages only, it does not change the generated code.

-S If a byte-size memory location is intialized with a value which is too large to fit in 8 bits, then
the assembler will generate a "Size error" message. Use efstbption will suppress these
messages.

220

Macro Assembler 8051 Assembly language

-X The object file created by the assembler contains symbol information, including local symbols,
i.e. symbols that are neither public or external. Fheoption will prevent the local symbols
from being included in the object file, thereby reducing the file size.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source file name and
appending obj. The-0 option allows the user to override the default and specify and explicit
filename for the object file.

-Llistfile This option requests the generation of an assembly listing. If listfile is specified then the
listing will be written to that file, otherwise it will be written to the standard output.

-Wwidth This option allows specification of the listfile paper width, in characters. Width should be
a decimal number greater than 41. The default width is 80 characters if the listfile is a device
(terminal, printer etc.) or 132 if it is a file.

-Flength The default listing pagelength is 66 lines (11 inches at 6 lines per inch). The -F option
allows a different page length to be specified.

-I This option overrides anyoLIST assembler controls and forces listing of macro expansions and
unassembled conditionals.

-C A cross reference file will be produced when this option is used. This file, caibdite .crf
wheresrcfile is the base portion of the first source file name, will contain raw cross refer-
ence information. The cross reference utitigeF must then be run to produce the formatted
cross reference listing.

-V Include assembler line numbers and file names in the object file, for debugging purposes.

12.3 8051 Assembly language

The source language accepted by the HI-TECH Software 8051 Macro Assembler is described below.
All opcode mnemonics and operand syntax are strictly as described in the Intel MCS-51 Program-
mer’s Guide.

12.3.1 Character set

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
opcodes and reserved words. Tabs are treated as equivalent to spaces.

221

8051 Assembly language Macro Assembler

Table 12.2: AS51 numbers and bases

Radix Format
Binary digits 0 and 1 followed by
Octal digits 0 to 7 followed byO, Q, 00rq
Decimal digits 0 to 9 followed byD, d or nothing
Hexadecimal| digits 0to 9, A to F preceded b9x or followed by H or h

12.3.2 Numbers

The assembler performs all arithmetic as signed 32 bit. Errors will be caused if a quantity is too large
to fit in a memory location. The default radix for all numbers is 10. Other radices may be specified
by a trailing base specifier as given in Tahle2

Hexadecimal numbers must have a leading digit to differentiate them from identifiers. Hexadec-
imal constants are accepted in either upper or lower case.

Note that a binary constant must have an upper case B following it, as a lower case b is used for
temporary (numeric) label backward references.

Real numbers are accepted in the usual format for DF directives only. The exponent and mantissa
of a real number must be decimal. Real numbers are stored in IEEE 32 bit format.

12.3.3 Delimiters

All numbers and identifiers must be delimited by white space, non alphanumeric characters or the
end of a line.

12.3.4 Identifiers

Identifiers are user-defined symbols representing memory locations or numbers. A symbol may
contain any number of characters drawn from the alphabetics, numerics and the special characters
dollar ($), question mark (?) and underscore(). The first character of an identifier may not be
numeric. The case of alphabetics is significant, Ergd is not the same symbol &®d.

12.3.4.1 Assembler generated identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have
the form??nnnnwherennnnis a 4 digit number. The user should avoid defining symbols with the
same form.

222

Macro Assembler 8051 Assembly language

12.3.4.2 Location counter

The current location within the active program section is accessible via the sgmbol

12.3.4.3 Predefined ldentifiers

Some identifies representing registers, bits within registers, and interrupt vector locations have been
predefined. These predefined identifiers are case-insensitive, therefore you cannot redefine one in a
different case.

12.3.5 Strings

A string is a sequence of characters not including carriage return or newline, enclosed within match-
ing quotes. Either single () or double (") quotes may be used, but the opening and closing quotes
must be the same. A string used as an operand to a DB directive may be any length, but a string used
as operand to an instruction must not exceed 1 or 2 characters, depending on the size of the operand
required.

12.3.6 Temporary labels

The assembler implements a system of temporary labels (as distinct from the local labels used in
macros) which relieves the programmer from creating new labels within a block of code. A tem-
porary label is defined as a numeric string, and may be referenced by the same numeric string with
either an ‘f’ or ‘b’ suffix. When used with an ‘f’ suffix, the label reference is the first label with the
same number found by lookirfgorward from the current location, and conversely a ‘b’ will cause
the assembler to lodbackward for the label.

For example:

entry:
mov r0,ploc
1:
mov a,@r0
jz 1f ;end of string
inc r0
cjne a,r2,1b
sjmp 2f ;found it

clr a ;return zero
ret

223

8051 Assembly language Macro Assembler

dec r0
mov a,r0 ;return pointer
ret

Note that even though there are two 1: labels, no ambiguity occurs, since each is referred to uniquely.
Thecjne 1brefers to a label further back in the source code, wjziléf refers to a label further
forward. In general, to avoid confusion, it is recommended that within a routine you do not duplicate
numeric labels.

12.3.7 Expressions

Expressions are made up of numbers, symbols, strings and operators. The available operators are
listed in Table12.3 in order of precedence. The usual rules governing the syntax of expressions
apply.

The operators above may all be freely combined in both constant and relocatable expressions.
The HI-TECH linker permits relocation of complex expressions, so the results of expressions in-
volving relocatable identifiers may not be resolved until link time.

12.3.8 Statement format

Legal statement formats are shown in table Taldlel The second form is only legal with certain
directives, such as MACRO, SET and EQU. Takelfield is optional and if present should contain
one identifier. Thenamefield is mandatory and should also contain one identifier.

12.3.9 Addressing modes

The assembler recognises all standard 8051 addressing modes. All SFRs and bit addresses are
accepted by the assembler. Consult an Intel handbook for full information.

12.3.10 Program sections

Program sections, gusects are a way of grouping together parts of a program even though the
source code may not be physically adjacent in the source file, or even where spread over several
source files. A psect is identified by a name and has several attributes. The psect directive is used
to define psects. It takes as arguments a name and an optional comma-separated list of flags. See
the Sectionl2.3.11.5for full information. The assembler associates no significance to the name of

a psect.

224

Macro Assembler 8051 Assembly language

Table 12.3: AS51 operators

Operator Purpose Precedence
NUL Test for null argument 8
~ Exponentation 7
,/, MOD multiply divide modulus 6
SHR, SHL shift right, shift left 6
ROR, ROL rotate right, rotate left 6
+, - plus, minus (unary or binary)| 5
HIGHWORD high 16 bits of dword operand 5
HIGH high byte of word expression| 5
LOW low byte of word expression | 5
SEG segment part of address 5
EQ,NE, GT,GE,LT,LE | Relational operators 4
=,<>,>,>=,<, <= Relational operators 4
NOT bitwise inversion 3
AND bitwise conjunction 2
OR bitwise disjunction 1
XOR exclusive OR 1
Table 12.4: AS51 statement formats
label: opcode operands ;comment
name pseudo-op operands ;comment
;comment only

225

8051 Assembly language Macro Assembler

12.3.11 Assembler directives

Assembler directives, gseudo-opsare used in a similar way to opcodes, but either, do not generate
code, or generate non-executable code, i.e. data bytes.The directives are listed in tabl@ Bable
and detailed below.

12.3.11.1 PUBLIC

The PUBLIC directive takes a comma separated list of symbols defined in the current module and
which are to be accessible to other modules at link time. Example:

PUBLIC labl, lab2,lab3

12.3.11.2 EXTRN

This is the complement of PUBLIC; it declares symbols which may then be referenced even though
they are defined in another module. Example:

EXTRN labl, lab2, lab3

12.3.11.3 GLOBAL

GLOBAL is a combination of PUBLIC and EXTRN; it declares a list of symbols which, if defined
within the current module, are made public, otherwise are made external. Example:

GLOBAL labl, lab2,1ab3

12.3.11.4 END

END is optional, but if present should be at the very end of the program. It will terminate the
assembly. If an expression is supplied as an argument, that expression will be used to define the start
address of the program. Whether this is of any use will depend on the linker. For example:

END start_label

12.3.11.5 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and
optionally a comma separated list of flags. The allowed flags are detailed below. Once a psect has

been declared it may be resumed later by simply giving its name as an argument to another psect

directive; the flags need not be repeated. The psect flags are listed inl Zable

226

Macro Assembler

8051 Assembly langu

age

Table 12.5: AS51 directives

Directive

Purpose

PUBLIC

Make symbols accessible to other modules

EXTRN

Allow reference to other modules symbols

GLOBAL

Public or extrn as appropriate

END

End assembly

PSECT

Declare or resume program selection

ORG

Set location counter

EQU

Define symbol value

SET

Re-define symbol value

DB

Define constant byte(s)

DW

Define constant word(s)

DF

Define constant real(s)

DS

Reserve storage

FNADDR

Inform linker that a function may be indirectly called

FNARG

Inform linker that evaluation of arguments for one fun
tion requires calling another

FNBREAK

Break call graph links

FNCALL

Inform linker that one function calls another

FNCONF

Supply call graph configuration info to linker

FNINDIR

Inform linker that all functions with a particular signatu
may be indirectly called

re

FNROOT

Inform linker that a function is the “root” of a call grapk

N

FNSIZE

Inform linker of argument and local variable sizes fo
function

IF

Conditional assembly

ELSE

Alternate conditional assembly

ENDIF

End conditional assembly

MACRO

Macro definition

ENDM

End macro definition

LOCAL

Define local tabs

REPT

Repeat a block of code n times

IRP

Repeat a block of code with a list

IRPC

Repeat a block of code with a character list

EXITM

Terminate macro expansion

SIGNAT

Define function signature

227

8051 Assembly language

Macro Assembler

Table 12.6: Psect flags

Flag

Meaning

ABS

Psect is absolute

BIT

Psect holds bit objects

GLOBAL

Psect is global (default)

LOCAL

Psect is not global

OVRLD

Psect will overlap same psect in other modu

PURE

Psect is to be read-only

RELOC

Start psect on specified boundary

SIZE

Maximum size of psect

SPACE

Represents area in which psect will reside

es

BIT TheBsiT flag defines the current psect as being bit addressable. Any storage allocated in a
psect will be in bits, not bytes. For exampbe, 4 in aBIT psect will reserve 4 bits of storage.

PURE ThePURE flag instructs the linker that this psect will not be modified at run time and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

ABS 2Bs defines the current psect as being absolute, i.e. it is to start at location 0. This does
not mean that this module’s contribution to the psect will start at O, since other modules may
contribute to the same psect.

OVRLD A psect defined asvrRLD will have the contribution from each module overlaid, rather
than concatenated at run time/rLD in combination withaBs defines a truly absolute psect,
i.e. a psect within which any symbols defined are absolute.

GLOBAL A psect defined as global will be combined with other global psects of the same name
from other modules at link timesLOBAL is the default.

LOCAL A psect defined asocaL will not be combined with other local psects at link time, even if
there are others with the same name. A local psect may not have the same name as any global
psect, even one in another module.

SIZE Thesizk flag allows a maximum size to be specified for the psect,38.ge=100h. This will
be checked by the linker after psects have been combined from all modules.

228

Macro Assembler 8051 Assembly language

RELOC ThereLoc flag allows specification of a requirement for alignment of the psect on a par-
ticular boundary, e.grRELOC=100h would specify that this psect must start on an address that
is a multiple of 100h.

SPACE ThespACE flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in ROM and RAM have a diffezeot
value to indicate that ROM address zero, for example, is a different location to RAM address
zero.

Some examples of the use of the PSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh, abs,ovrld

12.3.11.6 ORG

ORG changes the value of the location counter within the current psect. This means that the ad-
dresses set with ORG are relative to the base of the psect, which is not determined until link time.

Theora directive doesot necessarily move the location counter to the absolute address
you specify as the operand.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In
either case the current location counter is set to the value determined by the argument. For example:

ORG 100h
will move the location counter to the beginning of the current psect plus 100h. The actual location
will not be known until link time. It is not possible to move the location counter backward.
In order to use the ORG directive to set the location counter to an absolute value, the directive

must be used from within an absolute, overlaid psect. For example:

PSECT absdata, abs,ovrld
ORG 50h

229

8051 Assembly language Macro Assembler

12.3.11.7 EQU and SET

This pseudo-op defines a symbol and equates its value to an expression. For example:
assembly EQU 123h

The identifierassemblywill be given the value 123h. EQU is legal only when the symbol has not
previously been defined.
SET is identical to EQU except that it may be used to re-define a symbol.

12.3.11.8 DB and DW

These directives initialize storage, as bytes or words respectively. The argument to each is a list of
expressions, each of which will be assembled into one byte or word. DB may also take a multi-
character string as an argument. Each character of the string will be assembled into one memory
location.

An error will occur if the value of an expression is too big to fit into the memory location, e.g. if
the value 1020 is given as an argument to DB. Examples:

lab: DB'X’,1,2,3,4,"A string", 0
DW 23*10,alabel,0,’a’

12.3.11.9 DF

DF initializes memory double words as real numbers. Each number will occupy 32 bits (4 bytes)
and will be stored in IEEE 32 bit format, high byte first.

pi: DF 3.14159
DF 3.3,3el0,-23

12.3.11.10 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number
of bytes to be reserved. Examples:

alabel: DS23
xlabel: DS2+3

230

Macro Assembler 8051 Assembly language

12.3.11.11 FNADDR

This directive tells the linker that a function has its address taken, and thus could be called indirectly
through a function pointer. For example:

FNADDR _funcl
tells the linker thatuncl()has its address taken.
12.3.11.12 FNARG
The directive:
FNARG funl, fun2
tells the linker that evaluation of the arguments to funcfionl involves a call tofun2 thus the
memory argument memory allocated for the two functions should not overlap.
For example, the C function cdhed(varl, bill(), 2);will generate the assembler directive:
FNARG_fred,_bill
thereby telling the linker thaiill() is called while evaluating the arguments for a calireml ().

12.3.11.13 FNBREAK

This directive is used to break links in the call graph information. The form of this directive is as
follows:

FNBREAK funl, fun2
and is automatically generated when the interrupt_level pragma is used. It states that the link to
funl () in the call graph rooted atun2 () should not be followed when checking for functions that

appear in multiple call graphsun2 () is typically intlevel0 or intlevell in compiler-generated
code when the interrupt level pragma is used.

12.3.11.14 FNCALL

This directive takes the form:

FNCALL funl, fun2

231

8051 Assembly language Macro Assembler

FNCALL is usually used in compiler generated code. It tells the linker that funéitiohcalls func-
tion fun2 This information is used by the linker when performing call graph analysis. If you write
assembler code which calls a C function, use the FNCALL directive to ensure that your assembler
function is taken into account.

For example, if you have an assembler routine callieeld which calls a C routine callefibo(),
in your assembler code you should write:

FNCALL _fred,_foo

12.3.11.15 FNCONF

The FNCONF directive is used to supply the linker with configuration information &allagraph
FNCONF is written as follows:

FNCONF psect,auto,args

wherepsects the psect containing the call graph, auto is the prefix cawativariable symbol names
andargsis the prefix on all function argument symbol names. This directive normally appears in
only one place, the runtime startoff code used by C compiler generated code.

For most memory models, the run-time startoff routimésl—nm.asrt51-ns.asandrt51a-ns.a}
routines should include the directive:

FNCONF rbss,?a,?

telling the linker that the call graph is in thiesspsect, auto variable blocks start wkhand function
argument blocks start with
For large model, there is a stack, so call graphing is not necessanniras

12.3.11.16 FNINDIR

This directive tells the linker that a function performs an indirect call to another function with a
particular signature (see the SIGNAT directive). The linker must assume worst case that the function

could call any other function which has the same signature and has had its address taken (see the

FNADDR directive). For example, if a function calléed() performs an indirect call to a function
with signature 8249, the compiler will produce the directive:

FNINDIR _fred, 8249

232

Macro Assembler 8051 Assembly language

12.3.11.17 FNSIZE

The FNSIZE directive informs the linker of the size of the local variable and argument area associ-
ated with a function. These values are used by the linker when building the call graph and assigning
addresses to the variable and argument areas. This directive takes the form:

FNSIZE func,local,args
The named function has a local variable area and argument area as specified, for example:
FNSIZE _fred, 10, 5

means the functiofred() has 10 bytes of local variables and 5 bytes of arguments.

The function name arguments to any of the call graph associated directives may be local or
global. Local functions are, of course, defined in the current module, but must be used in the call
graph construction in the same manner as global names.

12.3.11.18 FNROOT

This directive tells the assembler that a function meeat functionand thus forms the root of a call
graph. It could either be the @ain() function or an interrupt function. For example, the C main
module produce the directive:

FNROOT _main

12.3.11.19 IF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF should be an absolute expres-
sion. If it is non-zero, then the code following it up to the next matching ELSE or ENDIF will be
assembled. If the expression is zero then the code up to the next matching ELSE or ENDIF will be
skipped. At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will
terminate the conditional assembly block. Example:

IF some_symbol

MOV A, @RO
ELSE

MOVX A, @DPTR
ENDIF

In this example, ifome_symbas non-zero, the first MOV instruction will be assembled but not the
second. Conversely fome_symbas zero, the MOVX will be assembled but not the first MOV will
not. Conditional assembly blocks may be nested.

233

8051 Assembly language Macro Assembler

12.3.11.20 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by
the macro name and followed by a comma separated list of formal parameters. When the macro is
used, the macro name should be used in the same manner as a machine opcode, followed by a list of
arguments to be substituted for the formal parameters. For example:

xch macro regl, reg2;exchange registers

mov a,r®lé ;save regl

mov r®l,reg2 ;reg2 ---> regl
mov r®2,a ;restore reg2
ENDM

defines a macrgch The macro invocationch 3, 4 would expand to:

mov a,r3
mov r3,4
mov r4d,a

Theé& character may be used to delimit an argument used in the coding of the macro, thus permitting
the concatenation of macro parameters with other text, but is removed in the actual macro expansion.
The & character need not be used if commas or spaces are delimiting the argument, but should be
used at both ends if no other delimiters are available.

The NUL operator may be used within a macro to test a macro argument. A comment may be
suppressed within the expansion of a macro (thus saving space in the macro storage) by opening the
comment with a double semicolon (;;).

12.3.11.21 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted
for them when the macro is expanded. For example:

copy MACRO src,dst,cnt
LOCAL loop

mov r0,src

mov rl,dst

mov r2, #cnt
loop: mov a,Q@r0

mov @rl,a

inc r0

234

Macro Assembler 8051 Assembly language

inc rl
djnz r2,loop
ENDM

defines a macroopywhich when invoked as:
copy #inbuf, #procbuf, 32
expands to:

mov r0, #inbuf

mov rl,#procbuf

mov r2,#32
??20001: mov a,Qr0

mov (@rl,a

inc r0

inc rl

djnz r2,?20001

12.3.11.22 REPT

The REPT directive temporarily defines an unnamed macro then expands it a number of times as
determined by its argument. For example:

mov r0, #zbuf
clr a

REPT3

mov @r0,a
inc r0

ENDM

expands to:

mov r0, #zbuf
clr a

mov @r0,a
inc r0

mov @r0,a
inc r0

mov @r0,a
inc r0

235

8051 Assembly language Macro Assembler

12.3.11.23 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT. However, instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP the
list is a conventional macro argument list, in the case or IRPC it is each character in one argument.
For each repetition the argument is substituted for one formal parameter.

For example:

IRP
mov
inc

ENDM

arg,labl, lab2, #23
@r0,arg
r0

expands to:

mov
inc
mov
inc
mov
inc

@r0, labl
r0
@r0, lab2
r0
@r0, #23
r0

The IRPC directive is similar, except it substitutes one character at a time from a string of non-space
characters. For example:

IRPC arg,ABC
LOCAL lab

cjne a,#’arg’,lab
1jmp case_t&arg

lab:
ENDM

expands to:

cjne a,#'A’,?220000
1ljmp case_A
220000:

cjne a,#'B’,??0001
ljmp case_B
2720001

cjne a,#'C’",220002
1jmp case_C
220002:

236

Macro Assembler 8051 Assembly language

12.3.11.24 SIGNAT

This directive is used to associate a 16 bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not.
The SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from
C. For example:

SIGNAT _fred, 8194

will associate the signature value 8192 with symbfoéd If a different signature value forfredis
present in any object file, the linker will report an error.

12.3.12 Macro invocations

When invoking a macro, the argument list must be comma separated. If it is desired to include a
comma (or other delimiter such as a space) in an argument then angle brackets (< and >) may be
used to quote the argument. In addition the exclamation mark (!) may be used to quote a single
character. The character immediately following the exclamation mark will be passed into the macro
argument even if it is normally a comment indicator.

If an argument is preceded by a percent sign (%), that argument will be evaluated as an expression
and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument
inside the macro body would yield a different result.

12.3.13 Assembler controls

Control lines may be included in the assembler source to control such things as listing format. Each
control line starts with a dollar ($) character which is followed by a white-space separated list of
control keywords. These keywords have no significance anywhere else in the program. Some key-
words may have a parameter after them, which is always enclosed in parentheses. Most control
keywords have a positive and a negative form. All have two letter abbreviations, the negative form
is constructed by prefixing the keyword or the abbreviation with NO.

A list of keywords is given in Tablé2.7, and each is described further below.

12.3.13.1 PAGELENGTH()

This control keyword specifies the length of the listing form. The default is 66 (11 inches at 6 lines
per inch).

237

8051 Assembly language Macro Assembler

Table 12.7:Aa551 assembler controls

Control name Abbreviation | Default
PAGELENGTH (n) PL PL(66)
PAGEWIDTH (n) PW PW(120)
XREF /NOXREF XR/NOXR NOXR
COND/NOCOND CO/NOCO co
EJECT EJ
GEN/NOGEN GE/NOGE NOGE
INCLUDE (pathname) | IC
LIST/NOLIST LI/NOLI LI
SAVE/RESORE SA/RS
TITLE (string) TT

12.3.13.2 PAGEWIDTH(n)

PAGEWIDTH allows the listing line width to be set.

12.3.13.3 XREF

XREF is equivalent to the command line optien, it causes the assembler to produce a raw cross
reference file. The utilitREF should be used to actually generate the formatted cross-reference
listing.

12.3.13.4 COND

Whenconb is in effect, lines of code not assembled because of conditional assembly will be listed.
If NocoND is in effect only those lines actually assembled will appear in the listing.

12.3.13.5 EJECT

EJECT causes a new page to be started in the listing. A control-L (form feed) character will also
cause a new page when encountered in the source.

12.3.13.6 GEN

WhenGeN is in effect the code generated by macro expansions will be listethGHN is in effect

only the macro call will appear in the listing.

238

Macro Assembler 8051 Assembly language

12.3.13.7 INCLUDE(pathname)

This control causes the file specified figthnameo be textually included at that point in the listing.
The INCLUDE control must be the last control keyword on the line.

12.3.13.8 LIST

LIST andNOLIST turn listing on and off respectively

12.3.13.9 SAVE and RESTORE

SAVE pushes the current state of thesT, COND andGEN flags onto a stackkESTORE pops the top of
the stack off into the flags. It may be used to selectively control listing inside macros.

12.3.13.10 TITLE(string)

This control keyword defines a title to appear at the top of every listing pagestiihg should be
enclosed in single or double quotes.

239

8051 Assembly language Macro Assembler

240

Chapter 13

Linker and Utilities

13.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each source file may be
compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most
instances it will not be necessary to use the linker directly, as the compiler drivers (HPD or command
line) will automatically invoke the linker with all necessary arguments. Using the linker directly is
not simple, and should be attempted only by those with a sound knowledge of the compiler and
linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker
arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that
the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for
several different processors. Not all features described in this chapter are applicable to all compilers.

13.2 Relocation and Psects
The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to belocatablesince the files have sufficient information in them so that any

references to program or data addresses (e.g. the address of a function) within the file may be
adjusted according to where the file is ultimately located in memory after the linkage process. Thus

241

Program Sections Linker and Utilities

the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.
relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the
base address of a particular section of code, for example the section of code containing the actual
executable instructions.

13.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which
will be referred to apsects These psects represent logical groupings of certain types of code bytes in
the program. In general the compiler will produce code in three basic types of psects, although there
will be several different types of each. The three basic kinds are text psects, containing executable
code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved
data.

The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into
the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of
the program, thus the second variable will be initialised at run time to zero. The first will however
occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite
possible to modify the value of a variable in the data psect during execution, however it is better
practice not to do so, since this leads to more consistent use of variables, and allows for restartable
and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

13.4 Local Psects

Most psects arglobal, i.e. they are referred to by the same name in all modules, and any reference
in any module to ajlobal psect will refer to the same psect as any other reference. Some psects
arelocal, which means that they are local to only one module, and will be considered as separate
from any other psect even of the same name in another motudel psects can only be referred

to at link time by a class name, which is a name associated with one or more psectspdache
directiveclass=in assembler code. See Sectith3.11.5or more information orPSECT options.

13.5 Global Symbols

The linker handles only symbols which have been declared.@saL to the assembler. The code
generator generates these assembler directives whenever it encounters global C objects. At the C

242

Linker and Utilities Link and load addresses

source level, this means all names which have storage class external and which are not declared
asstatic. These symbols may be referred to by modules other than the one in which they are
defined. It is the linker's job to match up the definition of a global symbol with the references to it.
Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise
processed by the linker.

13.6 Link and load addresses

The linker deals with two kinds of addresséek andload addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which
may or may not be the same as the link address, is the address at which the psect will start within the
output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-
responds to the offset within a segment, while the load address corresponds to the physical address
of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is
copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that
is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

13.7 Operation
A command to the linker takes the following form:
hlink' options files

Options is zero or more linker options, each of which modifies the behaviour of the linker in some
way. Files is one or more object files, and zero or more library names. The options recognised by
the linker are listed in Tabl&3.1and discussed in the following paragraphs.

Table 13.1: Linker command-line options

Option Effect

-8 Use 8086 style segment:offset address form
-Aclass=low-high S Specify address ranges for a class
continued. ..

1in earlier versions of HI-TECH C the linker was callethik . EXE

243

Operation Linker and Utilities

Table 13.1: Linker command-line options

Option Effect

-CX Call graph options

-Ccpsect=class Specify a class name for a global psect

-Cbaseaddr Produce binary output file basedstseaddr
-Dclass=delta Specify a class delta value

-Dsymfile Produce old-style symbol file

-Eerrfile Write error messages trfile

-F Produce. ob file with only symbol records

-Gspec Specify calculation for segment selectors

-Hsymfile Generate symbol file

-H+symfile Generate enhanced symbol file

-1 Ignore undefined symbols

-Jnum Set maximum number of errors before aborting

-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items inb7 file

-LM Preserve segment relocation items i j file

-N Sort symbol table in map file by address order

-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file

-ooutfile Specify name of output file

-Pspec Specify psect addresses and ordering

-Qprocessor Specify the processor type (for cosmetic reasons only)
-3 Inhibit listing of symbols in symbol file
-sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined

-vavmap Use fileavmap to generate aAvocetformat symbol file
-Wwarnlev Set warning level (-9 to 9)

-Wwidth Set map file width (>=10)

-X Remove any local symbols from the symbol file

-7 Remove trivial local symbols from the symbol file

13.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a

244

Linker and Utilities Operation

hex number, a trailing should be added, e.gs5rH will be treated as a hex number.

13.7.2 -Aclassslow-high,...

Normally psects are linked according to the information given e aption (see below) but some-
times it is desired to have a class of psects linked into more than one non-contiguous address range.
This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh, 8000h-BFFEh

specifies that the clag®DE is to be linked into the given address ranges. Note that a contribution
to a psect from one module cannot be split, but the linker will attempt to pack each block from each
module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a
repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though
the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
charactek or * after a range, followed by a count.

13.7.3 -&

These options allow control over the call graph information which may be included in the map file
produced by the linker. Thec option removes the call graph information from the map file. The
-cc option only include the critical paths of the call graph. A function call that is marked witima

a full call graph is on a critical path and only these calls are included wherctheption is used.

A call graph is only produced for processors and memory models that use a compiled stack.

13.7.4 -(psect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on
the command line since classes are specified in object files.

13.7.5 -[Ixlass=delta

This option allows thaleltavalue for psects that are members of the specified class to be defined.
The delta value should be a number and represents the number of bytes per addressable unit of
objects within the psects. Most psects do not need this option as they are definedielitivalue.

245

Operation Linker and Utilities

13.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCI| file, where
each line has the link address of the symbol followed by the symbol name.

13.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

13.7.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used
again in a subsequent linker run to supply symbol values.-Thaption will suppress data and code
bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program
is contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the
files for the other device. The process can then be repeated for the other files and device.

13.7.9 -Gpec

When linking programs using segmented, or bank-switched psects, there are two ways the linker
can assign segment addressessadectorsto each segment. Aegments defined as a contiguous
group of psects where each psect in sequence has both its link and load address concatenated with
the previous psect in the group. The segment address or selector for the segment is the value derived
when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-
ment by the relocation quantum of the segment, which is based afrethe= flag value given to
psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode
or some bank-switched arrangements. In this instancedloption is used to specify a method for
calculating the segment selector. The argumenttis a string similar to:

A/10h-4h

whereA represents the load address of the segment aegresents division. This means "Take the
load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-
tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.

246

Linker and Utilities Operation

The tokenN is replaced by the ordinal number of the segment, which is allocated by the linker. For
example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number
of segments defined. This would be appropriate when compiling for 80286 protected mode, where

these selectors would represent LDT entries.

13.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argurexmfile
specifies a file to receive the symbol file. The default file name igm.

13.7.11 -Hisymfile

This option will instruct the linker to generate anhancedsymbol file, which provides, in addition

to the standard symbol file, class nhames associated with each symbol and a segments section which
lists each class name and the range of memory it occupies. This format is recommended if the code
is to be run in conjunction with a debugger. The optional argursgntfile specifies a file to

receive the symbol file. The default file name isym.

13.7.12 -&rrcount
The linker will stop processing object files after a certain number of errors (other than warnings).

The default number is 10, but the option allows this to be altered.

13.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter
areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature
can be disabled with this option.

13.7.14 -l

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will
cause undefined symbols to be treated as warnings instead.

247

Operation Linker and Utilities

13.7.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation” of the program will be done at
load time, e.g. when running a .exe file under DOS os#&; file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

13.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generatirge files to run under DOS.

13.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if
the file name is omitted. The format of the map file is illustrated in Sedt®a

13.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. Ttheption will cause it to
be sorted numerically, based on the value of the symbol. -fheand -Nc options work similarly
except that the symbols are grouped by either thg@icevalue, or class.

13.7.19 -utfile

This option allows specification of an output file name for the linker. The default output file name is
1.0bj. Use of this option will override the default.

13.7.20 -Bpec

Psects are linked together and assigned addresses based on information supplied to the linker via
options. The argument to the option consists basically @ommaseparated sequences thus:

-ppsect =Inkaddr +min /ldaddr +min, psect =Inkaddr /ldaddr,
There are several variations, but essentially each psect is listed with its desired link and load ad-

dresses, and a minimum value. All values may be omitted, in which case a default will apply,
depending on previous values.

248

Linker and Utilities Operation

The minimum valuemin, is preceded by a sign, if present. It sets a minimum value for the
link or load address. The address will be calculated as described below, but if it is less than the
minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects
or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse
order with the top of the psect appearing at the specified address minus one. Psects following a
negative address will be placed before the first psect in memory. If a link address is omitted, the
psect’s link address will be derived from the top of the previous psect, e.qg.

-Ptext=100h, data, bss

In this example the text psect is linked at 100 hex (its load address defaults to the sam&tdhe
psect will be linked (and loaded) at an address which is 100 hex plus the lengthtefxth@sect,
rounded up as necessary if the data psect has ac= value associated with it. Similarly, thess
psect will concatenate with thinta psect. Again:

-Ptext=-100h, data, bss

will link in ascending ordebss, data thertext with the top of text appearing at address Offh.

If the load address is omitted entirely, it defaults to the same as the link addresssléishé¢
character is supplied, but no address is supplied after it, the load address will concatenate with the
previous psect, e.g.

-Ptext=0,data=0/,bss

will cause bothcext anddata to have a link address of zero, text will have a load address of 0, and
data will have a load address starting after the enbef. The bss psect will concatenate withta
for both link and load addresses.

The load address may be replaced withat . character. This tells the linker to set the load
address of this psect to the same as its link address. The link or load address may also be the name of
another (already linked) psect. This will explicitly concatenate the current psect with the previously
specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss, heap

This example showsext at zero,data linked at 8000h but loaded afteext, bss is linked and
loaded at 8000h plus the size @dta, andnvram andheap are concatenated withss. Note here
the use of two-P options. Multiple-p options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be
used in place of a link or load address, and space will be found in one of the address ranges. For
example:

249

Operation Linker and Utilities

—ACODE=8000h-BFFEh, EO00h-FFFEh
-Pdata=C000h/CODE

This will link data at CO00h, but find space to load it in the address ranges associatetbnith

If no sufficiently large space is available, an error will result. Note that in this casgathepsect

will still be assembled into one contiguous block, whereas other psects in thecotassvill be
distributed into the address ranges wherever they will fit. This means that if there are two or more
psects in classoDE, they may be intermixed in the address ranges.

Any psects allocated by ap option will have their load address range subtracted from any
address ranges specified with tiieoption. This allows a range to be specified with tieoption
without knowing in advance how much of the lower part of the range, for example, will be required
for other psects.

13.7.21 -(processor

This option allows a processor type to be specified. This is purely for information placed in the map
file. The argument to this option is a string describing the processor.

13.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced
by the linker. Segment information is still included.

13.7.23 -Slass=limit[, bound]

A class of psects may have an upper addliesis associated with it. The following example places
a limit on the maximum address of theDk class of psects to one less than 400h.

-SCODE=400h
Note that to set an upper limit to a psect, this must be set in assembler code (withta flag on
aPSECT directive).
If the bound(boundary) argument is used, the class of psects will start on a multiple of the bound

address. This example places #2&CODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

—-SFARCODE=6000h,1000h

250

Linker and Utilities Invoking the Linker

13.7.24 -lsymbol

This option will enter the specified symbol into the linker's symbol table as an undefined symbol.
This is useful for linking entirely from libraries, or for linking a module from a library where the
ordering has been arranged so that by default a later module will be linked.

13.7.25 -\avmap

To produce amAvocetformat symbol file, the linker needs to be given a map file to allow it to
map psect names #wvocetmemory identifiers. The avmap file will normally be supplied with the
compiler, or created automatically by the compiler driver as required.

13.7.26 -Whum

The-w option can be used to set the warning level, in the range -9 to 9, or the width of the map file,
for values ofnum>= 10.

-w9 will suppress all warning message® is the default. Setting the warning level to -9 (-W-9)
will give the most comprehensive warning messages.

13.7.27 -X

Local symbols can be suppressed from a symbol file with this optibskhal symbols will always
appear in the symbol file.

13.7.28 -Z

Somelocal symbols are compiler generated and not of interest in debugging. This option will
suppress from the symbol file all local symbols that have the form of a single alphabetic character,
followed by a digit string. The set of letters that can start a trivial symbol is currertly5u".

The -z option will strip any local symbols starting with one of these letters, and followed by a digit
string.

13.8 Invoking the Linker

The linker is callediLINK, and normally resides in treEN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is
generally useful if the number of argumentsitarNK is large. Even if the list of files is too long
to fit on one line, continuation lines may be included by leavingaakslash\ at the end of the

251

Map Files Linker and Utilities

preceding line. In this fashiomLINK commands of almost unlimited length may be issued. For
example a link command file called 1nk and containing the following text:

-7 -0X.0BJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.0BJ Y.OBJ Z.0BJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

13.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned
to symbols within those psects. The sections in the map file are as follows; first is a copy of the
command line used to invoke the linker. This is followed by the version number of the object code
in the first file linked, and the machine type. This is optionally followed by call graph information,
depended on the processor and memory model selected. Then are listed all object files that were
linked, along with their psect information. Libraries are listed, with each module within the library.
The TOTALS section summarises the psects from the object files. The SEGMENTS section sum-
marises major memory groupings. This will typically show RAM and ROM usage. The segment
names are derived from the name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its
associated psect and link address.

Linker command line:

-z -Mmap -pvectors=00h, text,strings,const, im2vecs \

-pbaseram=00h -pramstart=08000h,data/im2vecs,bss/.,stack=09000h \
-pnvram=bss, heap \

-0oC:\TEMP\1.0bj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \
C:\HT-Z80\LIB\z80-sc.lib

Object code version is 2.4

Machine type is Z80

Name Link Load Length Selector
C:\HT-Z80\LIB\rtz80-s.0bj

vectors 0 0 71

bss 8000 8000 24

const FB FB 1 0

252

Linker and Utilities Map Files

text 72 72 82
hello.obj text F4 F4 7
C:\HT-Z80\LIB\z80-sc.lib
powerup.ob] vectors 71 71 1
TOTAL Name Link Load Length
CLASS CODE
vectors 0 0 72
const FB FB 1
text 72 72 89
CLASS DATA
bss 8000 8000 24
SEGMENTS Name Load Length Top Selector
vectors 000000 O0000FC 0000FC 0
bss 008000 000024 008024 8000

13.9.1 Call Graph Information

A call graph is produced for chip types and memory models that use a compiled stack, rather than a
hardware stack, to facilitate parameter passing between functions and auto variables defined within
a function. When a compiled stack is used, functions are not re-entrant since the function will use a
fixed area of memory for its local objects (parameters/auto variables). A function calieyl for
example, will use symbols like_foo for parameters anthk_foo for auto variables. Compilers such

as the PIC, 6805 and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and
medium memory models. The call graph shows information relating to the placement of function
parameters and auto variables by the linker. A typical call graph may look something like:

Call graph:
* main size 0,0 offset 0
_init size 2,3 offset 0
_ports size 2,2 offset 5
* _sprintf size 5,10 offset 0
* _putch
INDIRECT 4194
INDIRECT 4194
_function_2 size 2,2 offset 0
_function size 2,2 offset 5
* _isr->_incr size 2,0 offset 15

The graph shows the functions called and the memory usage (RAM) of the functions for their own
local objects. In the example above, the symbelin is associated with the functiomin (). Itis

253

Map Files Linker and Utilities

shown at the far left of the call graph. This indicates that it is the root of a call tree. The run-time
code has theNrROOT assembler directive that specifies this. The size field after the name indicates
the number of parameters aadto variables, respectively. Hergain () takes no parameters and
defines nauto variables. The offset field is the offset at which the function’s parameters and auto
variables have been placed from the beginning of the area of memory used for this purpose. The
run-time code contains BNCONF directive which tells the compiler in which psect parameters and
auto variables should reside. This memory will be shown in the map file under the name COMMON.

Main () calls a function callednit (). This function uses a total of two bytes of parameters
(it may be two objects of typehar or oneint; that is not important) and has three bytesiofo
variables. These figures are the total of bytememoryconsumed by the function. If the function
was passed a two-bytet, but that was done via a register, then the two bytes would not be included
in this total. Sincenain () did not use any of the local object memory, the offsetrft () 's memory
is still at 0.

The functioninit () itself calls another function callegbrts (). This function uses two bytes
of parameters and another two bytes of auto variables. Sioces () is called byinit (), its
local variables cannot be overlapped with thosewft ()’s, so the offset is 5, which means that
ports ()’s local objects were placed immediately after thoseraft () ’s.

The function main also callsprintf (). Since the functiorprintf () is not active at the same
time asinit () or ports (), their local objects can be overlapped and the offset is hence set to 0.
Sprintf () calls a functionputch (), but this function uses no memory for parameters (her
passed as argument is apparently done so via a register) or locals, so the size and offset are zero and
are not printed.

Main () also calls another function indirectly using a function pointer. This is indicated by the
two INDIRECT entries in the graph. The number following is the signature value of functions that
could potentially be called by the indirect call. This number is calculated from the parameters and
return type of the functions the pointer can indirectly call. The names of any functions that have this
signature value are listed underneathtRBIRECT entries. Their inclusion does not mean that they
were called (there is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies
that this is the root of another call graph tree. This is an interrupt function which is not called by any
code, but which is automatically invoked when an enabled interrupt occurs. This interrupt routine
calls the functionincr (), which is shown shorthand in the graph by thesymbol followed by the
called function’s name instead of having that function shown indented on the following line. This is
done whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred witlare those functions which are on a critical
path in terms of RAM usage. For example, in the abowe;f () is a trivial example) consider
the functionsprintf (). This uses a large amount of local memory and if you could somehow
rewrite it so that it used less local memory, it would reduce the entire program’s RAM usage. The
functionsinit () andports () have had their local memory overlapped with thatefintf (), so

254

Linker and Utilities Librarian

reducing the size of these functions’ local memory will have no affect on the program’s RAM usage.
Their memory usage could be increased, as long as the total size of the memory used by these two
functions did not exceed that eprintf (), with no additional memory used by the program. So if
you have to reduce the amount of RAM used by the program, look at those functions that are starred.
If, when searching a call graph, you notice that a function’s parameter and auto areas have been
overlapped (i.e.?a_foo was placed at the same address:asoo, for example), then check to
make sure that you have actually called the function in your program. If the linker has not seen a
function actually called, then it overlaps these areas of memory since that are not needed. This is
a consequence of the linker’s ability to overlap the local memory areas of functions which are not
active at the same time. Once the function is called, unique addresses will be assigned to both the
parameters and auto objects.
If you are writing a routine that calls C code from assembler, you will need to include the appro-
priate assembler directives to ensure that the linker sees the C function being called.

13.10 Librarian

The librarian programLIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

o fewer files to link
o faster access
e uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more
symbols previously known, but not defined, to the linker. Thus modules in a library will be linked
only if required. Since the choice of modules to link is made on the first pass of the linker, and
the library is searched in a linear fashion, it is possible to order the modules in a library to produce
special effects when linking. More will be said about this later.

13.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is main-
tained a directory of the modules and symbols in the library. Since this directory is smaller than
the sum of the modules, the linker is speeded up when searching a library since it need read only
the directory and not all the modules on the first pass. On the second pass it need read only those
modules which are required, seeking over the others. This all minimises disk 1/O when linking.

255

Librarian Linker and Utilities

Table 13.2: Librarian command-line options

Option Effect
-pwidth specify page width
-W Suppress non-fatal errors

Table 13.3: Librarian key letter commands

Key Meaning

Replace modules

Delete modules

Extract modules

List modules

Listmodiules with symbolg

0|3 |IX|Q|

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

13.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:
LIBR options k file.lib file.obj

Interpreting thisL.IBR is the name of the prograraptions is zero or more librarian options which
affect the output of the progrank is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbfilks)ib is the name of
the library file to be operated on, afitk.obj is zero or more object file names.

The librarian options are listed in Tahlg&.2

The key letters are listed in Tabl&.3

When replacing or extracting modules, file.obj arguments are the names of the modules
to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian
to replace it in the library. Since it is not present, the module will be appended to the library. If the
r key is used and the library does not exist, it will be created.

256

Linker and Utilities Librarian

Under thed key letter, the named obiject files will be deleted from the library. In this instance, it
is an error not to give any object file names.

Them ands key letters will list the named modules and, in the case of tkeyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As withethex
key letters, an empty list of modules means all the modules in the library.

13.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the
modulesa.obj, b.objandc.obi:

LIBR s file.lib a.obj b.obj c.obj
This command deletes the object modulesbi, b.obj andc.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

13.10.4 Supplying Arguments

Since it is often necessary to supply many object file argumentsgr, and command lines are
restricted to 127 characters by CP/M and MS-DOSR will accept commands from standard input
if no command line arguments are given. If the standard input is attached to the cansal&ill
prompt for input. Multiple line input may be given by usindpackslashas a continuation character
on the end of a line. If standard input is redirected from a filesr will take input from the file,
without prompting. For example:

libr
libr> r file.lib 1.0bj 2.0bj 3.0bJ \
1ibr> 4.0bj 5.0bj 6.0bJ

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed byIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input fromlib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given1oBR.

257

Objtohex Linker and Utilities

13.10.5 Listing Format

A request ta.IBR to list module names will simply produce a list of names, one per line, on standard
output. Thes keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letteror U, representing a definition or reference to the symbol
respectively. Thep option may be used to determine the width of the paper for this operation. For
example:

LIBR -P80 s file.lib

will list all modules infile.lib with their global symbols, with the output formatted for an 80
column printer or display.

13.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the com-
mand line. When updating a library the order of the modules is preserved. Any new modules added
to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module
which references a symbol defined in another module in the same library, the module defining the
symbol should come after the module referencing the symbol.

13.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unlesg thygtion was used. In this case
all warning messages will be suppressed.

13.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility progeaaroHEX. This allows conversion

of object files as produced by the linker into a variety of different formats, including various hex
formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. diutputfile is omitted it defaults ta .hex or 1.bin depend-
ing on whether theb option is used. Thaputfile defaults tol . ob7.

The options foroBJTOHEX are listed in Tablel3.4 Where an address is required, the format is
the same as fHLINK.

258

Linker and Utilities

Objtohex

Table 13.4:0BJTOHEX command-line options

2d

Option Meaning

-8 Produce a CP/M-86 output file

-A Produce an ATDOSatx output file

-Bbase Produce a binary file with offset dfase . Default file name is
1.0bj

-cckfile Read a list of checksum specifications frokfile or standard
input

-D Produce a COD file

-E Produce an MS-DOSexe file

il Fill unused memory with words of vald#l - default value is
OFFh

-I Produce anintel HEX file with linear addressed extende
records.

-L Pass relocation information into the output file (used withe
files)

-M Produce aviotorolaHEX file (S19, S28 or S37 format)

-N Produce an output file for Minix

-pstk Produce an output file for aistari ST, with optional stack size

-R Include relocation information in the output file

-sfile Write a symbol file intdfile

-T Produce aektronixHEX file.

-TE Produce an extended TekHEX file.

-U Produce a COFF output file

-UB Produce a UBROF format file

-V Reverse the order of words and long words in the output file

-n, m Format either Motorola or Intel HEX file, whereis the maxi-
mum number of bytes per record amdpecifies the record size
rounding. Non-rounded records are zero padded to a multip
m mitself must be a multiple of 2.

e of

259

Cref Linker and Utilities

13.11.1 Checksum Specifications

If you are generating a HEX file output, please refer to the hexmate selididr for calculating
checksums. FapBJTOHEX, the checksum specification allows automated checksum calculation and
takes the form of several lines, each line describing one checksum. The syntax of a checksum line
is:

addrl-addr2 wherel-where2 +offset

All of addrl ,addr2 ,wherel ,where2 andoffset are hex numbers, without the usuauffix.

Such a specification says that the byteaddrl through toaddr2 inclusive should be summed

and the sum placed in the locatiowbierel throughwhere2 inclusive. For an 8 bit checksum

these two addresses should be the same. For a checksum stored low byte first, wherel should be less
than where2, and vice versa. Theffset is optional, but if supplied, the value offset will be used

to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH
to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of
this checksum would add the last address of the ROM being checksummed into the checksum. For
the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any
desired fashion.

13.12 Cref

The cross reference list utilityREF is used to format raw cross-reference information produced by
the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the
--CR option to the compiler. The assembler will generate a raw cross-reference file withpaion

(most assemblers) or by using @t CRE directive (6800 series assemblers) oirar control line

(PIC assembler). The general form of ttreF command is:

cref options files
whereoptions is zero or more options as described below filed is one or more raw cross-

reference filesCReF takes the options listed in Tabls.5
Each option is described in more detail in the following paragraphs.

260

Linker and Utilities Cref

Table 13.5:.CREF command-line options

Option Meaning
-Fprefix Exclude symbols from files with a pathname [or
filename starting witlprefix
-Hheading Specify a heading for the listing file

-Llen Specify the page length for the listing file

-ooutfile Specify the name of the listing file

-pwidth Set the listing width

-sstoplist Read file stoplist and ignore any symbols
listed.

-xprefix Exclude and symbols starting wigefix

13.12.1 -Fprefix

Itis often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The-F option allows specification of a path name prefix that will be used to
exclude any symbols defined in a file whose path name begins with that prefix. For example,

will exclude any symbols from all files with a path name starting with

13.12.2 -Hheading

The-H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

13.12.3 -lUen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be
printed on 55 line paper you would use 855 option. The default is 66 lines.

13.12.4 -Outfile

Allows specification of the output file name. By default the listing will be written to the standard
output and may be redirected in the usual manner. Alternatatfiie may be specified as the
output file name.

261

Cromwell Linker and Utilities

13.12.5 -Rvidth

This option allows the specification of the width to which the listing is to be formatted;-eig.2
will format the listing for a 132 column printer. The default is 80 columns.

13.12.6 -Stoplist

The -s option should have as its argument the name of a file containing a list of symbols not to be
listed in the cross-reference. Multiple stoplists may be supplied with multiptaptions.

13.12.7 -Xprefix

The-x option allows the exclusion of symbols from the listing, based on a prefix given as argument
to -x. For example if it was desired to exclude all symbols starting with the character segiyence
then the optiorxxyz would be used. If a digit appears in the character sequence then this will match
any digit in the symbol, e.g-xx0 would exclude any symbols starting with the lettefollowed by
a digit.

CREF will accept wildcard filenames and 1/O redirection. Long command lines may be supplied
by invoking CREF with no arguments and typing the command line in response terthe> prompt.
A backslashat the end of the line will be interpreted to mean that more command lines follow.

13.13 Cromwell

The crOMWELL utility converts code and symbol files into different formats. The formats available
are shown in Tablé3.6
The general form of theROMWELL command is:

CROMWELL options input_files -okey output_file
whereoptions can be any of the options shown in Talld.7. Output_file (optional) is
the name of the output file. Thaeput_files are typically the HEX and SYM fileCROMWELL

automatically searches for the SDB files and reads those if they are found. The options are further
described in the following paragraphs.

13.13.1 -Pname

The-P options takes a string which is the name of the processor usedweLL may use this in the
generation of the output format selected.

262

Linker and Utilities

Cromwell

Table 13.6.CROMWELL format types

Key

Format

cod

BytecraftCOD file

coff

COFF file format

elf

ELF/DWARF file

eomfb1

Extended OMF-51 format

hitech

HI-TECH Software format

icoff

ICOFF file format

ihex

Intel HEX file format

omf51

OMF-51 file format

pe

P&E file format

s19

Motorola HEX file format

Table 13.7:.CROMWELL command-line options

Option

Description

-Pname

Processor name

Dump input file

Identify input files only

Fake local symbols as global

Set the output format

Set the input format

List the available formats

Strip file extensions

Specify big-endian byte orderin

Strip underscore character

Verbose mode

263

Cromwell Linker and Utilities

13.13.2 -D

The-D option is used to display to the screen details about the named input file in a readable format.
The input file can be one of the file types as shown in TaBlé

13.13.3 -C

This option will attempt to identify if the specified input files are one of the formats as shown in
Table13.6 If the file is recognised, a confirmation of its type will be displayed.

13.134 -F

When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from
the COD file.

13.13.5 -Okey

This option specifies the format of the output file. Tkey can be any of the types listed in Table
13.6

13.13.6 -lkey

This option can be used to specify the default input file format. Kéne can be any of the types
listed in Tablel3.6

13.13.7 -L

Use this option to show what file format types are supported. A list similar to that given in Table
13.6will be shown.

13.13.8 -E

Use this option to telcROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

13.139 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

264

Linker and Utilities Hexmate

13.13.10 -M

When generating COD files this option will remove the precedinderscorecharacter from sym-
bols.

13.13.11 -V

Turns on verbose mode which will display information about operatiGoEWELL is performing.

13.14 Hexmate

The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link
stage utility that provides the facility to:

e Calculate and store variable-length checksum values

e Fill unused memory locations with known data sequences

e Merge multiple Intel hex files into one output file

e Convert INHX32 files to other INHX formats (eg. INHX8M)
e Detect specific or partial opcode sequences within a hex file
e Find/replace specific or partial opcode sequences

e Provide a map of addresses used in a hex file

e Change or fix the length of data records in a hex file.

¢ Validate checksums within Intel hex files.
Typical applications for hexmate might include:

e Merging a bootloader or debug module into a main application at build time

e Calculating a checksum over a range of program memory and storing its value in program
memory or EEPROM

¢ Filling unused memory locations with an instruction to send the PC to a known location if it
gets lost.

e Storage of a serial number at a fixed address.

265

Hexmate Linker and Utilities

Table 13.8: Hexmate command-line options

Option Effect
-CK Calculate and store a checksum value
-FILL Program unused locations with a known value
-FIND Search and notify if a particular code sequence is detected
-FIND...,REPLACE | Replace the code sequence with a new code sequence
-FORMAT Specify maximum data record length or select INHX variant
-HELP Show all options or display help message for specific option
-LOGFILE Save hexmate analysis of output and various results to a file
-ofile Specify the name of the output file
—-SERIAL Store a serial number or code sequence at a fixed address
-STRING Store an ASCII string at a fixed address
-W Adjust warning sensitivity
+ Prefix to any option to overwrite other data in its address range if necessary

Storage of a string (eg. time stamp) at a fixed address.

Store initial values at a particular memory address (eg. initialise EEPROM)

Detecting usage of a buggy/restricted instruction

Adjusting hex records to a fixed length as required by some bootloaders

13.14.1 Hexmate Command Line Options

Some of these hexmate operations may be possible from the compiler's command line driver. How-
ever, if hexmate is to be run directly, its usage is:
hexmate <filel.hex ... fileN.hex> <options>
Where filel.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Addi-
tional options can be provided to further customize this process. T&8uldists the command line
options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail.

filename.hex A list of INHX32 or INHX8M input files to feed to hexmate. A range restriction can
be applied by appendingstartAddress-endAddress. The data can be stored at an offset
address by appending ffset. For examplepyfile.hex,-0-1FF+1E00 will read in code

266

Linker and Utilities Hexmate

frommyfile.hex which falls within address ranga - 1FFh (inclusive), but write this code

to addressesE00h - 1FFFh. Be careful when shifting sections of executable code. Program
code shouldn’t be shifted unless it can be guarenteed that no part of the program relies upon
the absolute location of this code segment.

13.14.1.1 + Prefix

When the+ operator precedes a parameter or input file, the data obtained from that parameter will
be forced into the output file and will overwrite other data existing within its address range. For
example,+input .hex +-STRING@1000="My string". Ordinarily, hexmate will issue an error if

two sources try to store differing data at the same location. Using tperator informs hexmate

that if more than one data source tries to store data to the same address, the one specified with a '+’
will take priority.

13.14.1.2 -CK

-CK is for calculating a checksum. The usage of this option is:
-CK=start-end@destinatioffr+offseijw WidtH[t Codd where:

StartandEnd specify the address range that the checksum will be calculated over.

Destinationis the address where to store the checksum result. This value cannot be within the range
of calculation.

Offsetis an optional initial value to add to the checksum result.

Widthis optional and specifies the byte-width of the checksum result. Results can be calculated for
byte-widths of 1 to 4 bytes. If a positive width is requested, the result will be stored in big-endian
byte order. A negative width will cause the result to be stored in little-endian byte order. If the width
is left unspecified, the result will be 2 bytes wide and stored in little-endian byte order.

Codeis a hexadecimal code that will trail each byte in the checksum result. This can allow each byte
of the checksum result to be embedded within an instruction.

For example,-Ck=0-1FFFR2FFE+2100w2 will calculate a checksum over the rangelFrrh and
program the checksum result at addrasszh, checksum value will apply an initial offset of 00h.

The result will be two bytes wide.

13.14.1.3 -FILL

-FILL is used for filling unused memory locations with a known value. The usage of this option is:
-FILL=Code@StartEndwhere:

Codeis the opcode that will be programmed to unused locations in memory. Multi-byte codes should
be entered in little endian order.

StartandEnd specify the address range that this fill will apply to.

267

Hexmate Linker and Utilities

For example-FILL=3412@0-1FFF will program opcodel234h in all unused addresses from pro-
gram memory addregsto 1FFFh (Note the endianism):FILL accepts whole bytes of hexadecimal
data from 1 to 8 bytes in length.

13.14.1.4 -FIND

This option is used to detect and log occurances of an opcode or partial code sequence. The usage
of this option is:

-FIND=FindcodémMasK@Start End/Align][w][t "Title”] where:

Findcodeis the hexadecimal code sequence to search for and is entered in little endian byte order.
Maskis optional. It allows a bitmask over the Findcode value and is entered in little endian byte
order.

StartandEndlimit the address range to search through.

Align is optional. It specifies that a code sequence can only match if it begins on an address which
is a multiple of this value.

w, if present will cause hexmate to issue a warning whenever the code sequence is detected.

Title is optional. It allows a title to be given to this code sequence. Defining a title will make log-
reports and messages more descriptive and more readable. A title will not affect the actual search
results.

TUTORIAL

Let's look at some examples. The optienIND=3412@0-7FFF /2w will detect the code
sequence&234h when aligned on & (two) byte address boundary, betwegnand
7FFFh. w indicates that a warning will be issued each time this sequence is found.
Another example-FIND=3412M0F00@0-7FFF/2wt "ADDXY" is same as last example
but the code sequence being matched is maskedowithh, so hexmate will search for
123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied
to. Any messaging or reports generated by hexmate will refer to this opcode by the
name ADDXY as this was the title defined for this search.

If hexmate is generating a lodfile, it will contain the results of all searchesNDp accepts whole
bytes of hex data from 1 to 8 bytes in length. OptionalyIND can be used in conjunction with
, REPLACE (described below).

13.14.1.5 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the
-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option

268

Linker and Utilities Hexmate

is:

-FIND...,REPLACE=oddmMasHi where:

Codeis a little endian hexadecimal code to replace the sequences that match the -FIND criteria.
Maskis an optional bitmask to specify which bits with@odewill replace the code sequence that
has been matched. This may be useful if, for example, it is only necessary to modify 4 bits within a
16-bit instruction. The remaining 12 bits can masked and be left unchanged.

13.14.1.6 -FORMAT

-FORMAT can be used to specify a particular variant of INHX format or adjust maximum record
length. The usage of this option is:

-FORMAT=Typd,Lengtl where:

Typespecifies a particular INHX format to generate.

Lengthis optional and sets the maximum number of bytes per data record. A valid length is between
1 and 16, with 16 being the default.

TUTeRIAL

Consider this case. A bootloader trying to download an INHX32 file fails succeed
because it cannot process the extended address records which are part of the INHX32
standard. You know that this bootloader can only program data addressed within the
range 0 to 64k, and that any data in the hex file outside of this range can be safely
disregarded. In this case, by generating the hex file in INHX8M format the operation
might succeed. The hexmate option to do this would #RMAT=INHX8M.

Now consider this. What if the same bootloader also required every data record to
contain eight bytes of data, no more, no less? This is possible by combinirgaT

with -FILL. Appropriate use ofFILL can ensure that there are no gaps in the data
for the address range being programmed. This will satisfy the minimum data length
requirement. To set the maximum length of data records to eight bytes, just modify the
previous option to become ORMAT=INHX8M, 8.

The possible types that are supported by this option are listed in T8eNote that INHX032 is
not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize
the upper address information to zero. This is a requirement of some device programmers.

13.14.1.7 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of
-HELP will show a detailed help message for the given option. For exampigp=string will
show additional help for theSTRING hexmate option.

269

Hexmate Linker and Utilities

Table 13.9: INHX types used in -FORMAT option

Type Description
INHX8M | Cannot program addresses beyond 64K.
INHX32 Can program addresses beyond 64K with extended linear address records.
INHX032 | INHX32 with initialization of upper address to zero.

13.14.1.8 -LOGFILE

-LOGFILE saves hexfile statistics to the named file. For examglegFILE=output.log will
analyse the hex file that hexmate is generating and save a report to a file oatpedog

13.14.1.9 -Gile

The generated Intel hex output will be created in this file. For example;ogram.hex will save
the resultant output tprogram.hex The output file can take the same name as one of its input files,
but by doing so, it will replace the input file entirely.

13.14.1.10 -SERIAL

Store a particular hex value at a fixed address. The usage of this option is:
-SERIAL=Codd+/-Incrementf@Addres§t/-Intervall[r Repetitionswhere:

Codeis a hexadecimal value to store and is entered in little endian byte order.

Incrementis optional and allows the value @odeto change by this value with each repetition (if
requested).

Addressds the location to store this code, or the first repetition thereof.

Intervalis optional and specifies the address shift per repetition of this code.

Repetitiongs optional and specifies the number of times to repeat this code.

For example;SERIAL=000001QREFFE will store hex code®0001h to addresEFFEh.

Another example;SERIAL=0000+2@1000+10r5 will store 5 codes, beginning with valu®00 at
addressi000h. Subsequent codes will appear at address intervats @f and the code value will
change in increments ebh.

13.14.1.11 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:
-STRING@AddresftCodg=""Text where:
Addressds the location to store this string.

270

Linker and Utilities Hexmate

Codeis optional and allows a byte sequence to trail each byte in the string. This can allow the bytes
of the string to be encoded within an instruction.

Textis the string to convert to ASCIl and embed.

For example-STRING@1000="My favourite string" will store the ASCII data for the stringty
favourite string (including null terminator) at address00h.

Another example;-STRINGE@1000t34="My favourite string" will store the same string with
every byte in the string being trailed with the hexcade.

271

Hexmate Linker and Utilities

272

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with
the name of the function. This is followed by information analysed into the following headings.

Synopsis This is the C definition of the function, and the header file in which it is declared.
Description This is a narrative description of the function and its purpose.

Example This is an example of the use of the function. It is usually a complete small program that
illustrates the function.

Data types If any special data types (structures etc.) are defined for use with the function, they are
listed here with their C definition. These data types will be defined in the header file given
under heading — Synopsis.

See alsoThis refers you to any allied functions.

Return value The type and nature of the return value of the function, if any, is given. Information
on error returns is also included Only those headings which are relevant to each function are
used.

273

Library Functions

ABS
Synopsis
#include <stdlib.h>

int abs (int j)

Description

Theabs()function returns the absolute valuejof

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf ("The absolute value of %d is %d\n", a, abs(a));

Return Value

The absolute value ¢f

274

Library Functions

ACOS
Synopsis

#include <math.h>

double acos (double f)

Description

Theacos()function implements the converse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)

{

float i, a;
for(i = -1.0; 1 < 1.0 ; 1 +=0.1) {

a = acos(1)*180.0/3.141592;
printf ("acos (%f) = %f degrees\n", i, a);

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 01D

275

Library Functions

ASCTIME
Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime()function takes the time broken down into thuct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:
Sun Sep 16 01:03:52 1973\n\0
Note thenewlineat the end of the string. The width of each field in the string is fixed. The
example gets the current time, converts it tetauct tm pointer with localtime(), it then converts
this to ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example

#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t clock;
struct tm * tp;

time (&clock);

tp = localtime (&clock);
printf ("$s", asctime (tp));

See Also

ctime(), gmtime(), localtime(), time()

276

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the
compiler. See time() for more details.

277

Library Functions

ASIN
Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
float i, aj;

for(i = -1.0; 1 < 1.0 ; 1 +4=0.1) {

a = asin(1i)*180.0/3.141592;
printf ("asin(%f) = %f degrees\n", i, a);

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the ranget-

278

Library Functions

ASSERT
Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally

throughout your code at points where correct operation of the code depends upon certain conditions

being true initially. Anassert()routine may be used to ensure at run time that an assumption holds

true. For example, the following statement asserts that the pointer tp is not equal to NULL:
assert(tp);

If at run time the expression evaluates to false, the program will abort with a message identifying
the source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses aksert()is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example

void
ptrfunc (struct xyz * tp)

{
assert (tp !'= 0);

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-
mented by the user.

279

Library Functions

ATAN
Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range -

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
printf ("$f\n", atan(l.5));

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

280

Library Functions

ATOF
Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating
point or scientific notation.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
double i;

gets (buf);

i = atof (buf);
printf ("Read %s: converted to $f\n", buf, 1i);

See Also

atoi(), atol()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

281

Library Functions

ATOI
Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
int i;
gets (buf);

i = atoi (buf);
printf ("Read %s: converted to %d\n", buf, 1i);

See Also
xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, O will be returned.

282

Library Functions

ATOL
Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

Theatol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
long 1i;

gets (buf) ;

i = atol (buf);
printf ("Read %s: converted to %$1d\n", buf, 1i);

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

283

Library Functions

BSEARCH
Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar) (const void *, const void *))

Description

The bsearch()function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed tacbynpar to compare elements in the array.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * pl, const void * p2)
{
return strcmp(((const struct value *)pl)->name,
((const struct value *)p2)->name);

void

main (void)

{
char inbuf[80];
int i;
struct value * vp;

284

Library Functions

i=20;
while (gets (inbuf)) {
sscanf (inbuf, "$s %d", values[i].name, &values[i].value);
i++;
}
gsort (values, i, sizeof values[0], val_cmp);
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if (lvp)
printf ("Item ’fred’ was not found\n");
else
printf ("Item ’'fred’ has value %d\n", vp->value);

See Also

gsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these
may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

285

Library Functions

CEIL
Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not lessfthan

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
double 7j;

scanf ("%1f", &73);

printf ("The ceiling of %1f is %$1f\n", Jj, ceil(3j));

286

Library Functions

CGETS
Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets()function will read one line of input from the console into the buffer passed as an ar-
gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspacaleleting the previously typed character, aitd-U deleting the entire line typed so far.
Other characters are placed in the buffer, wittaariage returnor line feed (newlinejerminating

the function. The collected string is null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {
cgets (buffer);
if (strcmp (buffer, "exit") == 0)
break;

cputs ("Type ’"exit’ to finish\n");

See Also

getch(), getche(), putch(), cputs()

287

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

288

Library Functions

COS
Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated
by expansion of a polynomial series approximation.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)

{

double i;

for(i =0 ; 1 <= 180.0 ; 1 += 10)
printf ("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

289

Library Functions

COSH, SINH, TANH
Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description
These functions are the hyperbolic implementations of the trigonometric functions; cos(), sin() and
tan().

Example

#include <stdio.h>
#include <math.h>

void

main (void)

{
printf ("$f\n", cosh(1.5));
printf ("$f\n", sinh(1.5));
printf ("$f\n", tanh(1.5));

Return Value

The functioncosh()returns the hyperbolic cosine value.
The functionsinh() returns the hyperbolic sine value.
The functiontanh() returns the hyperbolic tangent value.

290

Library Functions

CPUTS
Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputtingiage returnsbhefore
eachnewlinein the string. It calls putch() repeatedly. On a hosted sysieats() differs from puts()
in that it reads the console directly, rather than using file /0. In an embedded systes() and
puts() are equivalent.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {
cgets (buffer);
if (strcmp (buffer, "exit") == 0)
break;

cputs ("Type ’exit’ to finish\n");

See Also

cputs(), puts(), putch()

201

Library Functions

CTIME
Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

Thectime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.
Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
time (&clock);

printf ("$s", ctime(&clock));

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

292

Library Functions

DI, EI
Synopsis

#include <intrpt.h>

void ei (void)
void di (void)

Description

The ei() anddi() routines enable and disable interrupts respectively. These are implemented as
macros defined imtrpt.h . On most processors they will expand to an in-line assembler instruction
that sets or clears the interrupt enable or mask bit.

The example shows the use @) anddi() around access to a long variable that is modified
during an interrupt. If this was not done, it would be possible to return an incorrect value, if the
interrupt occurred between accesses to successive words of the count value.

Example

#include <intrpt.h>
long count;

void
interrupt tick (void)
{

count++;

long

getticks (void)

{

long val; /* Disable interrupts around access

to count, to ensure consistency.*/

di();

val = count;

ei();

293

Library Functions

return val;

294

Library Functions

DIV
Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

Thediv() function computes the quotient and remainder of the numerator divided by the denomina-
tor.

Example
#include <stdlib.h>

#include <stdio.h>

void
main (void)

{

div_t x;

x = div (12345, 66);
printf ("quotient = %d, remainder = %d\n", x.quot, x.rem);

Return Value

Returns the quotient and remainder into ¢l t structure.

295

Library Functions

EVAL_POLY
Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

Theeval_poly()function evaluates a polynomial, whose coefficients are contained in thechraty
X, for example:

y = x*x*d2 + x*dl + dO.

The order of the polynomial is passedrin

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
double x, y;

double d[3] = {1.1, 3.5, 2.7};
X = 2.2;

y = eval_poly(x, d, 2);
printf ("The polynomial evaluated at %f is $f\n", x, y);

Return Value

A double value, being the polynomial evaluatec at

296

Library Functions

EXP
Synopsis

#include <math.h>

double exp (double f)

Description

Theexp() routine returns the exponential function of its argument, i.e. e to the power of

Example

#include <math.h>
#include <stdio.h>

void
main (void)

{

double f;
for(f = 0.0 ; £<=5,; f +=1.0)
printf("e to %1.0f = %f\n", f, exp(f));

See Also

log(), log10(), pow()

297

Library Functions

FABS
Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
printf ("$f %$f\n", fabs(1.5), fabs(-1.5));

See Also

abs()

298

Library Functions

FLOOR
Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greaterfthan

Example

#include <stdio.h>
#include <math.h>

void

main (void)

{
printf ("$f\n", floor(1.5));
printf ("$f\n", floor(-1.5));

299

Library Functions

FREXP
Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

Thefrexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into thet object pointed to by. Its return value x is in the interval (0.5,
1.0) or zero, and equals x times 2 raised to the power storedpn If f is zero, both parts of the
result are zero.

Example
#include <math.h>

#include <stdio.h>

void
main (void)

{
double f;
int 1i;

f = frexp(23456.34, &i);
printf("23456.34 = $f * 2°%d\n", £, 1i);

See Also
Idexp()

300

Library Functions

GETCH, GETCHE
Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description

Thegetch()function reads a single character from the console keyboard and returns it without echo-
ing. Thegetche()function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.
By default, the library contains a version@étch()that will interface to the Lucifer Debugger. The
user should supply an appropriate routine if another source is desired, e.g. a serial port.

The modulegetch.cin the SOURCES directory contains model versions of all the console 1/0
routines. Other modules may also be supplied, sgr180.chas routines for the serial port in a
Z2180.

Example
#include <conio.h>
void
main (void)

{

char c;

while((c = getche()) != "\n’)
continue;

See Also

cgets(), cputs(), ungetch()

301

Library Functions

GETCHAR
Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro definedtdio.h. Note that under
normal circumstancegetchar() will NOT return unless aarriage returnhas been typed on the
console. To get a single character immediately from the console, use the function getch().

Example
#include <stdio.h>
void

main (void)

{

int c;
while((c = getchar()) != EOF)
putchar (c);

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

302

Library Functions

GETS
Synopsis

#include <stdio.h>

char * gets (char * s)

Description
The gets() function reads a line from standard input into the buffes,adeleting thenewline(cf.
fgets()). The buffer is null terminated. In an embedded syst@ts()is equivalent to cgets(), and
results in getche() being called repeatedly to get characters. Editingl@dkspackis available.
Example

#include <stdio.h>

void

main (void)

{
char buf[80];

printf ("Type a line: ");

if (gets (buf))
puts (buf) ;

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

303

Library Functions

GMTIME
Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to bwhich is in seconds since 00:00:00 on Jan 1, 1970,
into a broken down time stored in a structure as defindime.h. The structure is defined in the
'Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t clock;
struct tm * tp;

time (&clock);

tp = gmtime (&clock);
printf ("It’s %d in London\n", tp->tm_year+1900);

See Also

ctime(), asctime(), time(), localtime()

304

Library Functions

Return Value

Returns a structure of typgen.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

305

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit (char c)

Description

These macros, defined @tiype.h, test the supplied character for membership in one of several over-
lapping groups of characters. Note that all exdsgscii() are defined foc, if isascii(c)is true or if
c=EOF.

isalnum(c) cisin0-9ora-zorA-Z
isalpha(c) cisinA-Zora-z

isascii(c) c is a 7 bit ascii character
iscntrl(c) c is a control character
isdigit(c) c is a decimal digit
islower(c) cisina-z

isprint(c) c is a printing char
isgraph(c) C is a non-space printable character
ispunct(c) ¢ is not alphanumeric
isspace(c) c is a space, tab or newline
isupper(c) cisinA-Z

isxdigit(c) cisin 0-9 or a-for A-F

306

Library Functions

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)
{
char buf[80];
int i;
gets (buf);
i=20;
while (isalnum(buf[i]))
i++;
buf[i] = 0;
printf ("’ %s’ is the word\n", buf);

See Also

toupper(), tolower(), toascii()

307

Library Functions

LDEXP
Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

Theldexp() function performs the inverse of frexp() operation; the intégeadded to the exponent
of the floating poinf and the resultant returned.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
double f;

f = ldexp(1.0, 10);
printf("1.0 * 2710 = %f\n", f);

See Also

frexp()

Return Value

The return value is the integeadded to the exponent of the floating point vaflue

308

Library Functions

LDIV
Synopsis

#include <stdlib.h>

ldiv_t 1ldiv (long number, long denom)

Description

Theldiv() routine divides the numerator by the denominator, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer which is less than the absolute value of the mathematical quotient.

Theldiv() function is similar to the div() function, the difference being that the arguments and
the members of the returned structure are all of tppe int.

Example
#include <stdlib.h>

#include <stdio.h>

void
main (void)
{
1div_t 1t;

1t = 1div (1234567, 12345);

printf ("Quotient = %$1d, remainder = %1d\n", lt.quot, lt.rem);

See Also
div()

Return Value

Returns a structure of typdiv_t

309

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

Thelocaltime() function converts the time pointed to byhich is in seconds since 00:00:00 on Jan

1, 1970, into a broken down time stored in a structure as definshéh. The routindocaltime()

takes into account the contents of the global integer time_zone. This should contain the number of
minutes that the local time zonevigstwardof Greenwich. Since there is no way under MS-DOS of
actually predetermining this value, by defaaktaltime() will return the same result agntime().

Example

#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

i

void

main (void)

{
time_t clock;
struct tm * tp;

time (&clock);

tp = localtime (&clock);
printf ("Today is %$s\n", wday[tp->tm_wday]);

310

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of tygen.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

311

Library Functions

LOG, LOG10
Synopsis

#include <math.h>

double log (double f)
double logl0 (double f)

Description

Thelog() function returns the natural logarithm ©f The functionlog10() returns the logarithm to
base 10 of.
Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
double f;

for(f = 1.0 ; £ <=10.0; £ +=1.0)
printf ("log(%1.0f) = %$f\n", f, log(f));

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

312

Library Functions

LONGJIMP
Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

Thelongjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.
To use this facility, setjimp() should be called witingp_buf argument in some outer level function.
The call from setjmp() will return 0.

To return to this level of executiompnjmp() may be called with the sanmmp_buf argument
from an inner level of executiomNote however that the function which called setjmp() must still be
active whenlongjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. Theal argument tdongjmp() will be the value apparently returned from
the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf Jb;

void
inner (void)
{
longjmp (jb, 5);
}

void
main (void)
{

int i;

313

Library Functions

1f(i = setjmp(jb)) {
printf ("setjmp returned %d\n", 1i);
exit (0);

}

printf ("setjmp returned 0 - good\n");

printf("calling inner...\n");

inner();

printf ("inner returned - bad!\n");

See Also

setimp()

Return Value

Thelongjmp() routine never returns.

Note

The function which called setjmp() must still be active whamgjmp() is called. Breach of this rule
will cause disaster, due to the use of a stack containing invalid data.

314

Library Functions

MEMCMP
Synopsis

#include <string.h>

int memcmp (const void * sl, const void * s2, size_t n)

Description

The memcmp() function compares two blocks of memory, of lengthand returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character. The ASCII
collating sequence is used for the comparison, but the effect of including non-ASCII characters in
the memory blocks on the sense of the return value is indeterminate. Testing for equality is always
reliable.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
int buf[10], cow[10], 1i;

1;
4;
1;
= 5;
3;
3;
i = memcmp (buf, cow, 3*sizeof(int));
if(i < 0)
printf ("less than\n");
else if (i > 0)
printf ("Greater than\n");
else

315

Library Functions

printf ("Equal\n");

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whefhmints to string which is less than, equal
to or greater than the string pointed to &#in the collating sequence.

316

Library Functions

MODF
Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argumenalue into integral and fractional parts, each having the
same sign asalue. For example, -3.17 would be split into the intergral part (-3) and the fractional
part (-0.17).
The integral part is stored as a double in the object pointed tptby
Example
#include <math.h>

#include <stdio.h>

void
main (void)

{

double i_val, f_val;

f_val = modf(-3.17, &i_val);

Return Value

The signed fractional part afalue.

317

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE
Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description

Thepersist_check()function is used with non-volatile RAM variables, declared with the persistent
qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call
topersist_validate()and a checksum also calculateddmysist_validate() If the magic number and
checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it
will optionally zero out and re-validate the non-volatile RAM area (by callyegsist_validate().
This is done if the flag argument is true.

Thepersist_validate()routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example

#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{
if (!persist_check (1))
printf ("Reset count invalid - zeroed\n");

else

printf ("Reset number $1d\n", reset_count);
reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;i)

continue; /* sleep until next reset */

318

Library Functions

Return Value

FALSE (zero) if the NV-RAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

319

Library Functions

POW
Synopsis

#include <math.h>

double pow (double f, double p)

Description

The pow() function raises its first argumerit,to the powerp.

Example

#include <math.h>
#include <stdio.h>

void
main (void)

{
double f;

for(f = 1.0 ; £ <=10.0 ; £ +=1.0)

printf ("pow (2, %1.0f) $f\n", f, pow(2, f));

See Also

log(), log10(), exp()

Return Value

f to the power ofp.

320

Library Functions

PRINTF, VPRINTF
Synopsis

#include <stdio.h>
int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_argq)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating on a given stream (fprintf()) or into a string buffer (sprintf()).pFimf() routine
is passed a format string, followed by a list of zero or more arguments. In the format string are
conversion specifications, each of which is used to print out one of the argument list values.

Each conversion specification is of the fofim.nc where the percent symbéb introduces
a conversion, followed by an optional width specificatibn The n specification is an optional
precision specification (introduced by the dot) &rid a letter specifying the type of the conversion.

A minus sign (-") precedingn indicates left rather than right adjustment of the converted value
in the field. Where the field width is larger than required for the conversion, blank padding is per-
formed at the left or right as specified. Where right adjustment of a numeric conversion is specified,
and the first digit ofm is 0, then padding will be performed with zeroes rather than blanks. For
integer formats, the precision indicates a minimum number of digits to be output, with leading zeros
inserted to make up this number if required.

A hash character) preceding the width indicates that an alternate format is to be used. The
nature of the alternate format is discussed below. Not all formats have alternates. In those cases, the
presence of the hash character has no effect.

The floating point formats require that the appropriate floating point library is linked. From
within HPD this can be forced by selecting the "Float formats in printf* selection in the options
menu. From the command line driver, use the optidn.

If the character is used in place of a decimal constant, e.g. in the fodtrat , then one integer
argument will be taken from the list to provide that value. The types of conversion are:

f
Floating point -m is the total width and is the number of digits after the decimal point.nlfis

321

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

e
Print the corresponding argument in scientific notation. Otherwise simifar to

g
Usee or f format, whichever gives maximum precision in minimum width. Any trailing zeros after
the decimal point will be removed, and if no digits remain after the decimal point, it will also be
removed.

oxXud
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the
case ofd, unsigned otherwise. The precision value is the total number of digits to print, and may be
used to force leading zeroes. E%8.4x will print at least 4 hex digits in an 8 wide field. Preceding
the key letter with an indicates that the value argument is a long integer. The Itterints out
hexadecimal numbers using the upper case leftdfsather thara-f as would be printed when using
X. When the alternate format is specified, a leading zero will be supplied for the octal format, and a
leading Ox or OX for the hex format.

S
Print a string - the value argument is assumed to be a character pointer. At icleetacters from
the string will be printed, in a fielth characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. %huil produce a
single percent sign.

Thevprintf() function is similar toprintf() but takes a variable argument list pointer rather than
a list of arguments. See the description of va_start() for more information on variable argument lists.
An example of usingprintf() is given below.

Example

printf ("Total = %4d%", 23)

yields 'Total = 23%'
printf ("Size is %1x" , size)

where size is a long, prints size
as hexadecimal.

printf ("Name = %.8s", "al234567890")
yields ’"Name = al234567'

322

Library Functions

printf ("xx%*d", 3, 4)
yields "xx 4’

/* vprintf example */
#include <stdio.h>

int
error (char * s, ...)

{

va_list ap;

va_start (ap, s);
printf ("Error: ");
vprintf (s, ap);
putchar (“\n’");
va_end(ap) ;

void
main (void)
{

int i;
i=3

error ("testing 1 2 %d", 1i);

See Also

fprintf(), sprintf()

Return Value

Theprintf() andvprintf() functions return the number of characters written to stdout.

323

Library Functions

PUTCH
Synopsis

#include <conio.h>

void putch (char c)

Description

The putch() function outputs the charactetto the console screen, prependingaariage returnif

the character is aewline In a CP/M or MS-DOS system this will use one of the system 1/O calls.

In an embedded system this routine, and associated others, will be defined in a hardware dependent
way. The standargutch() routines in the embedded library interface either to a serial port or to the
Lucifer Debugger.

Example

#include <conio.h>
char * x = "This is a string";

void
main (void)
{

char * cp;

cp = Xx;
while (*x)

putch (*x++) ;
putch (’\n’);

See Also

cgets(), cputs(), getch(), getche()

324

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

Theputchar() function is a putc() operation on stdout, definedidio.h.

Example

#include <stdio.h>
char * x = "This is a string";

void
main (void)
{

char * cp;
Cp = %4
while (*x)

putchar (*x++4) ;
putchar ("\n");

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

325

Library Functions

Note

This routine is not usable in a ROM based system.

326

Library Functions

PUTS
Synopsis

#include <stdio.h>

int puts (const char * s)

Description
The puts() function writes the string to thestdout streamappending aewline The null character
terminating the string is not copied.
Example
#include <stdio.h>
void
main (void)

{
puts ("Hello, world!");

}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

327

Library Functions

QSORT
Synopsis

#include <stdlib.h>

void gsort (void * base, size_t nel, size_t width,
int (*func) (const void *, const void *))

Description

Thegsort() function is an implementation of the quicksort algorithm. It sorts an arranebtems,
each of lengtlwidth bytes, located contiguously in memonyase The argumenfunc is a pointer
to a function used bygsort() to compare items. It callsinc with pointers to two items to be com-
pared. If the first item is considered to be greater than, equal to or less than the secdiuh¢hen
should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int arayl[] = {
567, 23, 456, 1024, 17, 567, 66
i

int
sortem (const void * pl, const void * p2)

{

return *(int *)pl - *(int *)p2;

void
main (void)
{

register int i;

328

Library Functions

gsort (aray, sizeof aray/sizeof aray([0], sizeof aray[0], sortem);
for(i = 0 ; i != sizeof aray/sizeof arayl[0] ; i++)

printf ("$d\t", arayl[i]);
putchar (“\n’");

Note

The function parameter must be a pointer to a function of type similar to:
int func (const void *, const void *)
i.e. it must accept two const void * parameters, and must be prototyped.

329

Library Functions

RAM_VECTOR, CHANGE_VECTOR, READ_RAM_VECTOR
Synopsis

#include <intrpt.h>

void RAM_VECTOR (unsigned vector, isr func)
void CHANGE_VECTOR (unsigned vector, isr func)
void (* READ_RAM_VECTOR (unsigned vector) (void))

Description

TheRAM_VECTOR(), CHANGE_VECTOR() andREAD_RAM_VECTOR() macros are used
to initialize, modify and read interrupt vectors which are directed through internal RAM based in-
terrupt vectors. These macros should only be used for vectors which need to be modifiable, so as to
point at different interrupt functions at different points in the program. CRANGE_VECTOR()
andREAD_RAM_VECTOR() macros should only be used with interrupt vectors which have been
initialized usingRAM_VECTOR() , otherwise garbage will be returned.

Please refer to the sectiomterrupt Handling in C in this manual for further details.

Example

volatile unsigned char wait_flag;

interrupt void wait_handler (void)

{
++wait_flag;
}

void wait_for_serial_intr(void)
{

interrupt void (*old_handler) (void);

di();

old_handler = READ_RAM_VECTOR (RXI);
wait_flag = 0;

CHANGE_VECTOR (RXI, wait_handler);

330

Library Functions

See Also
di(), ei(), ROM_VECTOR()

Note

These macros, for the Z80/2180, may only be used with mode 2 interrupts.

331

Library Functions

RAND
Synopsis

#include <stdlib.h>

int rand (void)

Description

Therand() function is a pseudo-random number generator. It returns an integer in the range 0
to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set ussngrti@ call.

The example shows use of thime() function to generate a different starting point for the sequence
each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t toc;
int 1i;

time (&toc);

srand((int)toc);

for(i =0 ; 1i !'= 10 ; i++)
printf ("$d\t", rand());

putchar (‘\n’);

See Also

srand()

332

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

333

Library Functions

REALLOC
Synopsis

#include <stdlib.h>

void * realloc (void * ptr, size_t cnt)

Description

Therealloc() function frees the block of memory ptr, which should have been obtained by a pre-
vious call to malloc(), calloc() orealloc(), then attempts to allocatant bytes of dynamic memory,
and if successful copies the contents of the block of memory locafed atto the new block.

At most, realloc() will copy the number of bytes which were in the old block, but if the new
block is smaller, will only copynt bytes.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)

{

char * cp;
cp = malloc(255);
if (gets(cp))

cp = realloc(cp, strlen(cp)+l);
printf ("buffer now %d bytes long\n", strlen(cp)+1);

See Also

malloc(), calloc()

334

Library Functions

Return Value

A pointer to the new (or resized) block. NULL if the block could not be expanded. A request to
shrink a block will never fail.

335

Library Functions

ROM_VECTOR
Synopsis

#include <intrpt.h>

void ROM_VECTOR (unsigned vector, isr func, unsigned psw)

Description

The ROM_VECTOR() macro is used to set up &drd coded ROM vector, which points to an
interrupt handler. This macro does not generate any code which is executed at run-time, so it can be
placed anywhere in your cod®OM_VECTOR() generates in-line assembler code, so the vector
address passed to it may be in any format acceptable to the assembler.

Please refer to the sectiomterrupt Handling in C, in this manual for further details.

See Also
di(), ei(), RAM_VECTOR()

336

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>
int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from th&lin stream Similar func-

tions are available for streams in general, and for strings. The funesicanf()is similar, but takes

a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according tofthestring; in general a character in the
format string must match a character in the input; however a space character in the format string will
match zero or more "white space" characters in the inputspaces, tabs or newlines

A conversion specification takes the form of the charafieoptionally followed by an assign-
ment suppression character’}; optionally followed by a numerical maximum field width, followed
by a conversion specification character. Each conversion specification, unless it incorporates the as-
signment suppression character, will assign a value to the variable pointed at by the next argument.
Thus if there are two conversion specifications in thit string, there should be two additional
pointer arguments.

The conversion characters are as follows:

oxd
Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was
supplied, take at most that many characters from the input. A leading minus sign will be recognized.

f
Skip white space, then convert a floating number in either conventional or scientific notation. The
field width applies as above.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

337

Library Functions

argument must be a pointer to char. The field width will limit the number of characters copied. The
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a
field width is specified, then copy that many characters. This differs frora fiwenat in that white
space does not terminate the character sequence.

The conversion charactecs x, u, d andf may be preceded by drto indicate that the corre-
sponding pointer argument is a pointer to long or double as appropriate. A prebediligndicate
that the pointer argument is a pointer to short rather than int.

Example

scanf ("%d %s", &a, &c)
with input " 12s"
will assign 12 to a, and "s" to s.

scanf ("%3cd %1f", &c, &f)
with input " abcd -3.5"
will assign " abc" to ¢, and -3.5 to f.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file
was seen before any conversions were performed.

338

Library Functions

SETIMP
Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-
mation.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{
longjmp (jb, 5);

void
main (void)
{

int i;

if(i = setjmp (b)) {
printf ("setjmp returned %d\n", 1i);
exit (0);
}
printf ("setjmp returned 0 - good\n");
printf("calling inner...\n");

339

Library Functions

inner();
printf ("inner returned - bad!\n");

See Also

longjmp()

Return Value

Thesetjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().

340

Library Functions

SET_VECTOR
Synopsis

#include <intrpt.h>

isr set_vector (isr * vector, isr func)

Description

This routine allows an interrupt vector to be initialized. The first argument should be the address of
the interrupt vector (not the vector number but the actual address) cast to a poistewtoich is a
typedef’d pointer to an interrupt function. The second argument should be the function which you
want the interrupt vector to point to. This must be declared usingnteerupt type qualifier.

Not all compilers support this routine; the macros ROM_VECTOR(), RAM_VECTOR() and
CHANGE_VECTOR() are used with some processors. These routines are to be preferred even
whereset_vector()is supported. Seiatrpt.h or the processor specific manual section to determine
what is supported for a particular compiler.

The example shown sets up a vector for the DOS ctrl-BREAK interrupt.

Example

#include <signal.h>
#include <stdlib.h>
#include <intrpt.h>

static far interrupt void
brkintr (void)
{
exit (-1);
}

#define BRKINT 0x23
#define BRKINTV ((far isr *) (BRKINT * 4))

void

set_trap (void)

{

341

Library Functions

set_vector (BRKINTV, brkintr);

See Also

di(), ei(), ROM_VECTOR(), RAM_VECTOR(), CHANGE_VECTOR()

Return Value

The return value afet_vector()is the previous contents of the vectosét_vector()is implemented
as a function. If it is implemented as a macro, it has no return value.

Note

The set_vector()routine is equivalent to ROM_VECTOR() and is present only for compatibility
with version 5 and 6 HI-TECH compilers. It is suggested that ROM_VECTOR() be used in place of
set_vector()for maximum compatibility with future versions of HI-TECH C.

342

Library Functions

SIN
Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0
void

main (void)

{

double i;

for(i =0 ; 1 <= 180.0 ; 1 += 10)
printf ("sin(%3.0f) = %f, cos = %$f\n", i, sin(i*C), cos(i*C));

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale off.

343

Library Functions

SPRINTF, VSPRINTF
Synopsis

#include <stdio.h>
int sprintf (char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char * buf, const char * fmt, va_list ap)

Description

The sprintf() function operates in a similar fashion to printf(), except that instead of placing the
converted output on thetdout streamthe characters are placed in the buffebat. The resultant
string will be null terminated, and the number of characters in the buffer will be returned.

The vsprintf() function is similar tosprintf() but takes a variable argument list pointer rather
than a list of arguments. See the description of va_start() for more information on variable argument
lists.

See Also

printf(), fprintf(), sscanf()

Return Value

Both these routines return the number of characters placed into the buffer.

344

Library Functions

SQRT
Synopsis

#include <math.h>

double sqgrt (double f)

Description

The functionsqgrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>
#include <stdio.h>

void
main (void)

{
double 1i;

for(i =0; 1 <=20.0; i +=1.0)

printf ("square root of %.1f = %$f\n", i, sqrt(i));

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

345

Library Functions

SRAND
Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given
seed This provides a mechanism for varying the starting point of the pseudo-random sequence
yielded by rand(). On the z80, a good place to get a truly random seed is from the refresh register.
Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t toc;
int i;

time (&toc);

srand((int)toc);

for(i =0 ; i !'= 10 ; i++)
printf ("$d\t", rand());

putchar (‘\n’);

See Also
rand()

346

Library Functions

STRCAT
Synopsis

#include <string.h>

char * strcat (char * sl, const char * s2)

Description

This function appends (catenates) stri¥2go the end of stringl The result will be null terminated.
The argumens1must point to a character array big enough to hold the resultant string.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);

printf ("Length = %d\n", strlen(buffer));
printf ("string = \"$s\"\n", buffer);

See Also

strcepy(), stremp(), strncat(), strlen()

Return Value

The value ofslis returned.

347

Library Functions

STRCHR, STRICHR
Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description

The strchr() function searches the strirgfor an occurrence of the characterIf one is found, a
pointer to that character is returned, otherwise NULL is returned.
Thestrichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)

{

static char temp[] = "Here it is...";

char ¢ = 's’;

if (strchr (temp, c))

printf ("Character %c was found in string\n", c);
else

printf ("No character was found in string");

See Also

strrchr(), strlen(), stremp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

348

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value
are used.

349

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * sl, const char * s2)
int stricmp (const char * sl, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whethexlis less than, equal to or greater theth The comparison is done with
the standard collating sequence, which is that of the ASCII character set.

Thestricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

int 1i;

if((1i = strcmp("ABC", "ABc")) < 0)
printf ("ABC is less than ABc\n");
else if (i > 0)
printf ("ABC is greater than ABc\n");

else
printf ("ABC is equal to ABc\n");

See Also

strlen(), strncmp(), strcpy(), strcat()

350

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

351

Library Functions

STRCPY
Synopsis

#include <string.h>

char * strcpy (char * sl, const char * s2)

Description

This function copies a null terminated strisgto a character array pointed to b% The destination
array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);

printf ("Length = %d\n", strlen(buffer));
printf ("string = \"%$s\"\n", buffer);

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointexlis returned.

352

Library Functions

STRCSPN
Synopsis

#include <string.h>

size_t strcspn (const char * sl, const char * s2)

Description

The strcspn() function returns the length of the initial segment of the string pointed tellwhich
consists of characters NOT from the string pointed tsBy

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";
printf ("$d\n", strcspn("abcdevwxyz", set));

printf ("$d\n", strcspn("xxxbcadefs", set));
printf ("$d\n", strcspn("1234567890", set));

See Also

strspn()

Return Value

Returns the length of the segment.

353

Library Functions

STRDUP
Synopsis

#include <string.h>

char * strdup (const char * sl)

Description

The strdup() function returns a pointer to a new string which is a duplicate of the string pointed to
by s1 The space for the new string is obtained using malloc(). If the new string cannot be created, a
null pointer is returned.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;

ptr = strdup("This is a copy");
printf ("$s\n", ptr);

Return Value

Pointer to the new string, or NULL if the new string cannot be created.

354

Library Functions

STRLEN
Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

Thestrlen() function returns the number of characters in the stsingpt including the null termina-
tor.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);

printf ("Length %d\n", strlen(buffer));
printf ("string = \"$s\"\n", buffer);

Return Value

The number of characters preceding the null terminator.

355

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * sl, const char * s2, size_t n)

Description

This function appends (catenates) strg®jto the end of stringgl At mostn characters will be
copied, and the result will be null terminatesil must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strncat (sl, s2, 5);

printf ("Length = %d\n", strlen(buffer));
printf ("string = \"%$s\"\n", buffer);

See Also

strepy(), stremp(), strcat(), strlen()

356

Library Functions

Return Value

The value ofslis returned.

357

Library Functions

STRNCMP, STRNICMP

Synopsis

#include <string.h>

int strncmp (const char * sl, const char * s2, size_t n)
int strnicmp (const char * sl, const char * s2, size_t n)

Description

The strcmp() function compares its two, null terminated, string arguments, up to a maximum of
characters, and returns a signed integer to indicate whellieless than, equal to or greater treh
The comparison is done with the standard collating sequence, which is that of the ASCII character

set.

Thestricmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main

{

See Also

(void)
int i;

i = strcmp("abcexyz", "abcxyz");
if (1 == 0)
printf ("Both strings are equall\n");
else if(i > 0)
printf ("String 2 less than string 1\n");
else
printf("String 2 is greater than string 1\n");

strlen(), strcmp(), strcpy(), strcat()

358

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

359

Library Functions

STRNCPY
Synopsis

#include <string.h>

char * strncpy (char * sl, const char * s2, size_t n)

Description

This function copies a null terminated striisg to a character array pointed to Ist. At most

n characters are copied. If strirg® is longer thamn then the destination string will not be null
terminated. The destination array must be large enough to hold the entire string, including the null
terminator.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strncpy (buffer, "Start of line", 6);

sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);

printf ("Length = %$d\n", strlen(buffer));
printf ("string = \"%s\"\n", buffer);

See Also

strepy(), strcat(), strlen(), stremp()

360

Library Functions

Return Value

The destination buffer pointetlis returned.

361

Library Functions

STRPBRK
Synopsis

#include <string.h>

char * strpbrk (const char * sl, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in stsigf any character from
strings?2, or a null pointer if no character frosR exists ins1

Example
#include <stdio.h>

#include <string.h>

void
main (void)

{

char * str = "This is a string.";
while(str != NULL) {

printf("%s\n", str);
str = strpbrk(str+l, "aeiou");

Return Value

Pointer to the first matching character, or NULL if no character found.

362

Library Functions

STRRCHR, STRRICHR
Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to thestrchr() function, but searches from the end of the string

rather than the beginning, i.e. it locates thst occurrence of the charactein the null terminated

strings. If successful it returns a pointer to that occurrence, otherwise it returns NULL.
Thestrrichr() function is the case-insensitive version of this function.

Example
#include <stdio.h>

#include <string.h>

void
main (void)

{

char * str = "This is a string.";
while(str != NULL) {

printf("%s\n", str);
str = strrchr(str+l, ’'s’);

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

363

Library Functions

STRSPN
Synopsis

#include <string.h>

size_t strspn (const char * sl, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed teltwhich
consists entirely of characters from the string pointed tedy

Example

#include <stdio.h>
#include <string.h>

void

main (void)

{
printf ("$d\n", strspn("This is a string", "This"));
printf ("$d\n", strspn("This is a string", "this"));

See Also

strespn()

Return Value

The length of the segment.

364

Library Functions

STRSTR, STRISTR
Synopsis

#include <string.h>

char * strstr (const char * sl, const char * s2)
char * stristr (const char * sl, const char * s2)

Description

Thestrstr() function locates the first occurrence of the sequence of characters in the string pointed
to by s2in the string pointed to bgl

Thestristr() routine is the case-insensitive version of this function.
Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf ("$d\n", strstr("This is a string", "str"));

Return Value

Pointer to the located string or a null pointer if the string was not found.

365

Library Functions

STRTOK
Synopsis

#include <string.h>

char * strtok (char * sl, const char * s2)

Description

A number of calls testrtok() breaks the string1 (which consists of a sequence of zero or more text
tokens separated by one or more characters from the separatosgrintp its separate tokens.

The first call must have the strirgl. This call returns a pointer to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null
character, which terminates the current token.

For subsequent calls &trtok(), s1should be set to a null pointer. These calls start searching
from the end of the last token found, and again return a pointer to the first character of the next token,
or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void

main (void)

{
char * ptr;
char buf[] = "This is a string of words.";
char * sep_tok = ".,?2!' ";

ptr = strtok(buf, sep_tok);
while (ptr != NULL) {

printf ("$s\n", ptr);

ptr = strtok (NULL, sep_tok);

366

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator string? may be different from call to call.

367

Library Functions

TAN
Synopsis

#include <math.h>

double tan (double f)

Description

Thetan() function calculates the tangentfof

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double 1i;

for(i =0 ; 1 <=180.0 ; 1 += 10)

printf ("tan(%3.0f) = %$f\n", i, tan(i*C));

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of.

368

Library Functions

TIME
Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time
in seconds since 00:00:00 on Jan 1, 1970. If the argutriemtot equal to NULL, the same value is
stored into the object pointed to by

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time (&clock);
printf ("%$s", ctime(&clock));

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,
1970.

369

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.

370

Library Functions

TOLOWER, TOUPPER, TOASCII
Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c¢)

Description

The toupper() function converts its lower case alphabetic argument to upper castglomeer()
routine performs the reverse conversion andtt@escii() macro returns a result that is guaranteed
in the range 0-0177. The functiotsupper() andtolower() return their arguments if it is not an
alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)

{

char * arrayl = "aBcDE";
int i;

for(i=0;1 < strlen(arrayl); ++i) {
printf ("%$c", tolower(arrayl[i]));

}
printf ("\n");

See Also

islower(), isupper(), isascii(), et. al.

371

Library Functions

UNGETCH
Synopsis

#include <conio.h>

void ungetch (char c)

Description

The ungetch() function will push back the characteronto the console stream, such that a subse-
quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

372

Library Functions

VA_START, VA_ARG, VA_END
Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in
a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function
are not known at compile time.

The rightmost parameter to the function (shownpasmN) plays an important role in these
macros, as it is the starting point for access to further parameters. In a function taking variable num-
bers of arguments, a variable of type _list should be declared, then the mage start() invoked
with that variable and the name parmN. This will initialize the variable to allow subsequent calls
of the macrova_arg() to access successive parameters.

Each call tova_arg() requires two arguments; the variable previously defined and a type name
which is the type that the next parameter is expected to be. Note that any arguments thus accessed
will have been widened by the default conventiongntp unsigned inor double For example if a
character argument has been passed, it should be accessaddry(ap, int) since thechar will
have been widened {at.

An example is given below of a function taking one integer parameter, followed by a number
of other parameters. In this example the function expects the subsequent parameters to be pointers
to char, but note that the compiler is not aware of this, and it is the programmers responsibility to
ensure that correct arguments are supplied.

Example

#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

373

Library Functions

va_list ap;

va_start (ap, a);
while (a--)

puts(va_arg(ap, char *));
va_end(ap);

void
main (void)
{
pf (3, "Line 1", "line 2", "line 3");

374

Library Functions

XTOI
Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

Thextoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
int i;
gets (buf) ;

i = xtoi (buf);
printf ("Read %s: converted to %$x\n", buf, i);

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

375

Library Functions

376

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with

an explanation of each message. Most messages have been assigned a unique number which appears
in brackets before each message in this chapter, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-numbered messages
appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets
opposite the error message. In some cases examples of code or options that could trigger the error
are given. The use of * in the error message is used to represent a string that the compiler will
substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error
message.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matchifgndif, e.g.:

#if INPUT /* error flagged here */
void main (void)
{
run();
} /* no #endif was found in this module */

377

Error and Warning Messages

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block &slae. These can only follow a
#if, e.g.:

#ifdef FOO
result = foo;

telse
result = bar;

#elif defined (NEXT) /* the #else above terminated the #if */
result = next (0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matchifig line. If there is an
apparently correspondingi £ line, check for things like extrédendif’s, or improperly terminated
comments, e.g.:

#ifdef FOO
result = foo;

#endif
result = bar;

#elif defined (NEXT) /* the #endif above terminated the #if */
result = next (0);

fendif

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc. Remove the directive to remove the error, but first check as
to why the directive is there.

(104) preprocessor assertion failure (Preprocessor)

The argument to a preprocessarssert directive has evaluated to zero. This is a programmer
induced error.

f#assert SIZE == /* size should never be 4 */

378

Error and Warning Messages

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matehing.g.:

void cleardog(void)

{
clrwdt

#endasm /* this ends the in-line assembler, only where did it begin? */

}

(106) nested #asm directive (Preprocessor)

Itis not legal to nestasm directives. Check for a missing or misspgithdasm directive, e.g.:

#asm
move r0, #0aah

#asm ; the previous #asm must be closed before opening another
sleep

#endasm

(207) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand thdirective. It is probably a misspelling of a pre-procesior
directive, e.g.:

#indef DEBUG /* woops -- that should be #undef DEBUG */

(108) #if, #ifdef, or #ifndef without an argument (Preprocessor)

The preprocessor directivést, #ifdef and#ifndef must have an argument. The argumenitito
should be an expression, while the argumernititbde £ or #1fndef should be a single name, e.g.:

#if /* woops —-- no argument to check */
output = 10;

telse
output = 20;

#endif

379

Error and Warning Messages

(109) #include syntax error (Preprocessor)

The syntax of the flename argument#onclude is invalid. The argument téinclude must be

a valid file name, either enclosed in double quote®r angle brackets >. Spaces should not be
included, and the closing quote or bracket must be present. There should be nothing else on the line
other than comments, e.g.:

#include stdio.h /* woops —-- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

cpp should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-
sor is being executed by a compiler driver.

(111) redefining macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want
to deliberately redefine a macro, usen#ef£ first to remove the original definition, e.g.:

#define ONE 1

/* elsewhere: */
#define ONE one /* Is this correct? It will overwrite the first definition. */

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that
does not start with a letter or a missial@sing parenthesis), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument t¢undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

380

Error and Warning Messages

(115) recursive macro definition of "** defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion
of itself!

(116) end of file within macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument
started, e.g.:

#define FUNC(a, b) func(a+tb)
FUNC (5, 6; /* woops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in afif expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator, e.g.:

#if FOO BAR /* woops -- did you mean: #if FOO == BAR ? */

(118) #if value stack overflow (Preprocessor)

The preprocessor filled up its expression evaluation stacktirt @xpression. Simplify the expres-
sion — it probably contains too many parenthesized subexpressions.

(119) illegal #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(120) operator * in incorrect context (Preprocessor)

An operator has been encountered ihid expression that is incorrectly placed, e.g. two binary
operators are not separated by a value, e.g.:

$if FOO * % BAR == 4 /* what is “* §" ? */

#define BIG
#endif

381

Error and Warning Messages

(121) expression stack overflow at op "*" (Preprocessor)

Expressionsirtif lines are evaluated using a stack with a size of 128. Itis possible for very complex
expressions to overflow this. Simplify the expression.

(122) unbalanced paren’s, op is "*" (Preprocessor)

The evaluation of &1 f expression found mismatched parentheses. Check the expression for correct
parenthesisation, e.g.:

#if ((A) + (B) /* woops -- a missing), I think */
#define ADDED
fendif

(123) misplaced "?" or ":", previous operator is * (Preprocessor)

A colon operator has been encountered ifiia expression that does not match up with a corre-
sponding? operator, e.g.:

#1f XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in#it expression that has no business being there. Valid characters are the
letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY' /* what are these characters doing here? */
int m;
#endif

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character it & expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ASYYY /* what is this control characters doing here? */
int m;
#endif

382

Error and Warning Messages

(126) can't use a string in an #if (Preprocessor)

The preprocessor does not allow the use of strings frexpressions, e.g.:

#if MESSAGE > “hello” /* no string operations allowed by the preprocessor */
#define DEBUG
#endif

(127) bad #if ... defined() syntax (Preprocessor)

Thedefined() pseudo-function in a preprocessor expression requires its argument to be a single
name. The name must start with a letter and should be enclosed in parentheses, e.g.:

#if defined(a&b) /* woops -- defined expects a name, not an expression */
input = read();
#endif
(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* woops —-- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

Thebackslastis incorrect in thetif statement, e.g.:

#1f FOO == \34
#define BIG
#endif

(130) #if sizeof, unknown type "*" (Preprocessor)

An unknown type was used in a preprocessoteof (). The preprocessor can only evaluate
sizeof () with basic types, or pointers to basic types, e.g.:

#if sizeof (unt) == 2 /* woops -- should be: #if sizeof (int) == 2 */

1 = OxFFFF;
#endif

383

Error and Warning Messages

(131) #if ... sizeof: illegal type combination (Preprocessor)

The preprocessor found an illegal type combination in the argumenitzent () in a#if expres-
sion, e.g.

#if sizeof (short long int) == 2 /* short or long? make up your mind */
i = OxXFFFF;
#endif
(132) #if sizeof() error, no type specified (Preprocessor)

Sizeof() was used in a preprocesgart expression, but no type was specified. The argument to
sizeof () in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* woops -- size of what? */
i=20;
#endif
(133) #if ... sizeof: bug, unknown type code 0x* (Preprocessor)

The preprocessor has made an internal error in evaluatisigz@of () expression. Check for a
malformed type specifier. This is an internal error. Contact HI-TECH Software technical support
with details.

(134) #if ... sizeof() syntax error (Preprocessor)

The preprocessor found a syntax error in the argumest teof, in a #if expression. Probable
causes are mismatched parentheses and similar things, e.qg.:

#if sizeof (int == 2) /* woops -- should be: #if sizeof (int) == 2 */
i = OXFFFF;
#endif
(135) #if bug, operand = * (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is
an internal error. Contact HI-TECH Software technical support with details.

384

Error and Warning Messages

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation opétatioat is neither a letter nor a digit.
Since the result of this operator must be a legal token, the operands must be tokens containing only
letters and digits, e.g.:

#define cc(a, b) a ## 'b /* the ' character will not lead to a valid token */

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation opértitat is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must be tokens
containing only letters and digits, e.g.:

#define cc(a, b) a ## 'b /* the ' character will not lead to a valid token */

(139) EOF in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here is the start of a comment. I'm not sure where I end, though

}

(140) can't open command file * (Driver, Preprocessor, Assembler, Linker)

The command file specified could not be opened for reading. Confirm the spelling and path of the
file specified on the command line, e.g.:

picc €communds
should that be:
picc @commands

(141) can't open output file * (Preprocessor, Assembler)

An output file could not be created. Confirm the spelling and path of the file specified on the com-
mand line.

385

Error and Warning Messages

(142) can't open input file * (Preprocessor, Assembler)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(144) too many nested #if statements (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(145) cannot open include file "*" (Preprocessor)

The named preprocessor include file could not be opened for reading by the preprocessor. Check
the spelling of the filename. If it is a standard header file, not in the current directory, then the name
should be enclosed in angle bracketsnot quotes. For files not in the current working directory or

the standard compiler include directory, you may need to specify an additional include file path to
the command-line driver, see Sectibd.4.6

(146) filename work buffer overflow (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many include directories (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The
number of directories specified with the driver is too great.

(148) too many arguments for macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is
normally 8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K
bytes.

(150) bug: illegal __ macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

386

Error and Warning Messages

(151) too many arguments in macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is
31

(152) bad dp/nargs in openpar: ¢ =* (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(153) out of space in macro "*" arg expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes
long.

(155) work buffer overflow doing * ## (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer overflow: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) out of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too much pushback (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(160) too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)

There were so many errors that the compiler has given up. Correct the first few errors and many of
the later ones will probably go away.

387

Error and Warning Messages

(161) control line "*" within macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.
This should not happen.

(163) unexpected text in #control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text
will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to
enclose the text as a comment, e.g.:

#1f defined (END)
#define NEXT
#endif END /* END would be better in a comment here */
(164) included file * was converted to lower case (Preprocessor)

The file specified to be included was not found, but a file with a lowercase version of the name of
the file specified was found and used instead, e.g.:

#include “STDIO.H” /* is this meant to be stdio.h ? */

(164) included file * was converted to lower case (Preprocessor)

The #include file name had to be converted to lowercase before it could be opened.

#include <STDIO.H> /* woops -- should be: #include <stdio.h> */

(166) -S, too few values specified in * (Preprocessor)

The list of values to the preprocessor (CPB)ption is incomplete. This should not happen if the
preprocessor is being invoked by the compiler driver. The values passes to this option represent the
sizes ofchar, short, int, long, float anddouble types.

(167) -S, too many values, "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message

few values specified in * on page388

(168) unknown option "*" (Hexmate, Preprocessor)

This option to the preprocessor/hexmate is not recognized.

388

Error and Warning Messages

(169) strange character after # (*) (Preprocessor)

There is an unexpected character after

(170) symbol "*" not defined in #undef (Preprocessor)

The symbol supplied as argumentitmmde £ was not already defined. This warning may be disabled
with some compilers. This warning can be avoided with code like:

#ifdef SYM
#undef SYM /* only undefine if defined */
#endif
(171) wrong number of macro arguments for "*" - * instead of * (Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)
ADD(1, 2, 3) /* woops -— only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operatof (not to be confused with the leadirgused for preprocessor control
lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* woops —-- did you mean x instead of y? */
If you need to stringize a token, you will need to define a special macro to do it, e.g.
#define _ mkstr_ (x) #x

then use mkstr__ (token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a#if expression was not a defined preprocessor macro. For the purposes of this
expression, its value has been taken as zero. This warning may be disabled with some compilers.
Example:

#if FOO+BAR /* e.g. FOO was never #defined */
#define GOOD
#endif

389

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,
e.g.

#1if CHAR == ’"ab’
#define MULTI
#endif

(175) division by zero in #if, zero result assumed (Preprocessor)

Inside a#if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
int a;
#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line
at the end. This problem is normally introduced by editors.

(177) macro "*" wasn't defined (Preprocessor)

A macro name specified in-aJ option to the preprocessor was not initially defined, and thus cannot
be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated
flag = TRUE; /* another comment: hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

390

Error and Warning Messages

(181) non-scalar types can’t be converted (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* woops -— did you mean: sp = &test; ? */
(182) illegal conversion (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure
type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* an int cannot be converted into a struct */

Note that even if a structure only contains att, for example, it cannot be assigned to art
variable, and vice versa.
(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, ¢, d;
a = b(ctd); /* b is not a function -- did you mean a = b*(c+d) ? */
(184) can't call an interrupt function (Parser)

A function qualifiedinterrupt can’t be called from other functions. It can only be called by a
hardware (or software) interrupt. This is because@rerrupt function has special function entry
and exit code that is appropriate only for calling from an interrupt.iArerrupt function can call
other noninterrupt functions.

(185) function does not take arguments (Parser, Code Generator)
This function has no parameters, but it is called here with one or more arguments, e.g.:
int get_value(void);

void main (void)

{

391

Error and Warning Messages

int input;
input = get_value(6); /* woops -- the parameter should not be here */

(186) too many arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);
add (5, 7, input); /* this call has too many arguments */

(187) too few arguments (Parser)
This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add (5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;
switch (input) {
case a: /* woops -—- you cannot use a variable as part of a case label */
input++;
}
(189) Iillegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* woops -- twelve and a half elements, eh? */
(190) illegal type for index expression (Parser)
An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* woops -- exactly which element do you mean? */

392

Error and Warning Messages

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either
scalar (i.e. not an array or a structure) or the typed, e.g.:

lip = (long [])input; /* woops -- maybe: lip = (long *)input */

(192) undefined identifier: * (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors if you think it has been defined.

(193) not a variable identifier: * (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194)) expected (Parser)

A closing parenthesjs , was expected here. This may indicate you have left out this character in an
expression, or you have some other syntax error. The error is flagged on the line at which the code
first starts to make no sense. This may be a statement following the incomplete expression, e.qg.:

if(a == b /* the closing parenthesis is missing here */
b =0; /* the error is flagged here */

(195) expression syntax (Parser)
This expression is badly formed and cannot be parsed by the compiler, e.g.:
a /=% b; /* woops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)

A structure or union identifier is required before a dpé.qg.:

int a;
a.b =9; /* woops -- a is not a structure */
(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

393

Error and Warning Messages

(198) undefined struct/union: * (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operandfiowhile statements or to boolean operators likeand &
must be a scalar integral type, e.g.:

struct FORMAT format;
if (format) /* this operand must be a scaler type */
format.a = 0;

(200) can't take address of register variable (Parser)

A variable declaredegister may not have storage allocated for it in memory, and thus it is illegal
to attempt to take the address of it by applying theperator, e.g.:

int * proc(register int in)
{

int * ip = ∈ /* woops -- in may not have an address to take */
return ip;
}
(201) can't take this address (Parser)

The expression which was the operand ofdloperator is not one that denotes memory storage ("an
Ivalue™) and therefore its address can not be defined, e.g.:

ip = &8; /* woops -- you can’t take the address of a literal */

(202) only Ivalues may be assigned to or modified (Parser)

Only an Ivalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned
to or otherwise modified, e.g.:

int array[10];

int * ip;

char ¢;

array = ip; /* array 1is not a variable, it cannot be written to */

394

Error and Warning Messages

A typecast does not yield an Ivalue, e.g.:

(int)c = 1; /* the contents of c cast to int is only a intermediate value */
However you can write this using pointers:

*(int *)&c =1
(203) illegal operation on a bit variable (Parser)
Not all operations ovit variables are supported. This operation is one of those, e.qg.:

bit b;

int * ip;
ip = &b; /* woops -- cannot take the address of a bit object */

(204) void function cannot return value (Parser)

A void function cannot return a value. Amgturn statement should not be followed by an expres-
sion, e.g.:

void run(void)

{

step();
return 1; /* either run should not be void, or remove the 1 */
}
(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can't use it anywhere an expression with a value
is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for * (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

395

Error and Warning Messages

(208) operands of * not same type (Parser)
The operands of this operator are of different pointer, e.g.:

int * ip;

char * cp, * cp2;

cp = flag ? ip : cp2; /* result of ? : will either be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(212) missing number after pragma "pack" (Parser)

The pragmaoack requires a decimal number as argument. This specifies the alignment of each
member within the structure. Use this with caution as some processors enforce alignment and will
not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */
Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)

The pragmadnterrupt_level requires an argument from0to 7.

(215) missing argument to "pragma switch" (Parser)
The pragma switch requires an argumend@fo, direct or simple, €.9.:

#pragma switch /* woops -- this requires a switch mode */
maybe you meant something like:

#pragma switch simple

396

Error and Warning Messages

(216) missing argument to "pragma psect” (Parser)

The pragmasect requires an argument of the foroldname =newname whereoldname is an
existing psect name known to the compiler, amedvnameis the desired new name, e.qg.:

#pragma psect /* woops -- this requires an psect to redirect */
maybe you meant something like:
#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

Theinline pragma expects the name of a function to follow. The function name must be recognized
by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */
maybe you meant something like:
#pragma inline memcpy

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style
format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */
Maybe you meant something like:
#pragma printf_check sprintf
Pragmas for all the standard printf-like function are already containestifiio . h>.
(220) exponent expected (Parser)
A floating point constant must have at least one digit afteethek., e.g.:

float f;
f = 1.234e; /* woops -- what is the exponent? */

397

Error and Warning Messages

(221) hex digit expected (Parser)

After 0x should follow at least one of the hex digits9 anda-F or a-f£, e.g.:

a = 0xgb; /* woops —-- was that meant to be a = 0xf6 ? */
(222) binary digit expected (Parser)
A binary digit was expected following thi format specifier, e.qg.

i = 0bf000; /* wooops -— f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal
number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string
commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058; /* a leading 0 implies octal which has digits 0 thru 7 */

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char ¢ = "”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c ="'"12"; /* woops -- only one character may be specified */

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part eflifpgs symbol, which
must have 3 dots. (Aallipsisis used in function prototypes to indicate a variable number of param-
eters.)

Either .. was meant to be agllipsis symbol which would require you to add an extra dot, or it
was meant to be structure member operatavhich would require you remove one dot.

398

Error and Warning Messages

(228) illegal character (*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising
the acceptable operators, e.g.:

AP

c = ‘a'; /* woops -- did you mean c = 'a’'; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing arg to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(231) unknown qualifier "*" given to - (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing arg to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (disk space?) (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(236) simple integer expression required (Parser)

A simple integral expression is required after the operatarsed to associate an absolute address
with a variable, e.g.:

int address;
char LOCK @ address;

399

Error and Warning Messages

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading
is illegal, e.g.:

int twice(int a)
{

return a*2;

}

long twice(long a) /* only one prototype & definition of rv can exist */

{

return a*2;

(238) illegal initialisation (Parser)

You can't initialise atypedef declaration, because it does not reserve any storage that can be ini-
tialised, e.g.:

typedef unsigned int uint = 99; /* woops -- uint is a type, not a variable */
(239) identifier redefined: * (from line *) (Parser)
This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */
int a; /* this attempts to define another with the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-
mended.

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure), e.g.:

int ivals([3] = { 2, 4, 6, 8}; /* three elements, but four initializers */

400

Error and Warning Messages

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-
ber of braces and commas, e.g.:

int iarray[10] = {{’a’, 'b’, 'c’'}; /* woops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,
e.g:

double d;
switch(d) { /* woops —-- this must be integral */
case '1.0":
d = 0;
}
(243) inappropriate break/continue (Parser)

A break Or continue Statement has been found that is not enclosed in an appropriate control struc-
ture. Acontinue can only be used insidew&ile, for ordo while loop, whilebreak can only be
used inside those loops oraitch statement, e.g.:

switch (input) {

case 0:
if (output == 0)
input = Oxff;
} /* woops -- this shouldn’t be here and closed the switch */
break; /* this should be inside the switch */
(244) default case redefined (Parser)

There is only allowed to be ongfault label in a switch statement. You have more than one, e.g.:

switch(a) {
default: /* if this is the default case... */
b =29;
break;
default: /* then what is this? */
b = 10;
break;

401

Error and Warning Messages

(245) "default” not in switch (Parser)

A label has been encountered calleégfault but it is not enclosed by awitch statement. A
default label is only legal inside the body ofswitch statement.

If there is aswitch statement before thisefault label, there may be one too many closing
braces in thewitch code which would prematurely terminate theitch statement. See example
for Error Messageé case’ not in switch on paget02

(246) "case" notin switch (Parser)

A case label has been encountered, but there is no enclasihigch statement. Acase label may
only appear inside the body ofsaitch statement.

If there is aswitch statement before thisase label, there may be one too many closing braces
in the switch code which would prematurely terminate theitch statement, e.g.:

switch (input) {
case '0':
count++;
break;
case '1'":
if (count>MAX)
count= 0;
} /* woops -- this shouldn’t be here */
break;
case '2': /* error flagged here */

(247) duplicate label * (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is
the entire function, not just the block that encloses a label, e.g.:

start:
if(a > 256)
goto end;
start: /* error flagged here */
if(a == 0)
goto start; /* which start label do I jump to? */

402

Error and Warning Messages

(248) inappropriate "else” (Parser)

An else keyword has been encountered that cannot be associated withsaatement. This may
mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...

if(a > b) {
c = 0; /* ... that will be closed here, thus removing the “if” */
else /* my “if” has been lost */
c = 0xff;
(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding
function has not been ended with a closing brace. This probably means that a closing brace has been
omitted from somewhere in the previous function, although it may well not be the last one, e.qg.:

void set (char a)
{

PORTA = a;

/* the closing brace was left out here */

void clear(void) /* error flagged here */
{

PORTA = 0;
}

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It
is acceptable to redeclare the size of an array that was previously declared with a zero dimension,
but not otherwise, e.g.:

extern int array([5];
int array[10]; /* woops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not
agree with a previous prototype for this function, e.g.:

403

Error and Warning Messages

extern int calc(int, int); /* this is supposedly calc’s prototype */
int calc(int a, long int b) /* hmmm -- which is right? */
{ /* error flagged here */

return sin(b/a);

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.
Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */

return a + b;

(254) undefined *: * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union * (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

struct {
int a, b, c;

} data;

if (data.d) /* woops -- there is no member d in this structure */
return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only register storage class allowed (Parser)

The only storage class allowed for a function parametegig ster, €.9.:

void process(static int input)

404

Error and Warning Messages

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either
directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;
volatile vint very_vol; /* woops -- this results in two volatile qualifiers */
(259) can't be both far and near (Parser)

Itis illegal to qualify a type as bothar andnear, e.g.:

far near int spooky; /* woops -- choose either far or near, not both */

(260) undefined enum tag: * (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) member * redefined (Parser)

This name of this member of the struct or union has already been usedsin this: orunion, e.g.:

struct {

int a;

int b;

int a; /* woops -- a different name is required here */
} input;

(262) struct/union redefined: * (Parser)

A structure or union has been defined more than once, e.g.:

struct {
int a;
} ms;
struct {
int a;
} ms; /* was this meant to be the same name as above? */

405

Error and Warning Messages

(263) members cannot be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:
struct {
int a;
int get(int); /* this should be a pointer: int (*get) (int); */
} object;

(264) bad bitfield type (Parser)
A bitfield may only have a type afnt (signed orunsigned), e.g.:

struct FREG {

char b0:1; /* woops —-— these must be part of an int, not char */
char 16;
char b7:1;
} freg;
(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a
bitfield. An integral constant must appear after tiodonto define the number of bits in the bitfield,

e.g.

struct {
unsigned first: /* woops -- should be: unsigned first; */
unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {
unsigned first : 4; /* 4 bits wide */
unsigned second: 4; /* another 4 bits */
} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure, e.g.:

406

Error and Warning Messages

struct {
static int first; /* no additional qualifiers may be present with members */

b
(267) bad storage class (Code Generator)

The code generator has encounterd a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power (static int a) /* paramters may not be static */
{

return foo * a;

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,
e.g.

extern static int where; /* so 1s it static or extern? */
(269) inconsistent type (Parser)
Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) can't be register (Parser)

Only function parameters arto variables may be declared using theyister qualifier, e.g.:

register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */
{

return input + gi;

407

Error and Warning Messages

(271) can'tbe long (Parser)

Only int andfloat can be qualified with ong.

long char lc; /* what? */
(272) can't be short (Parser)
Only int can be modified witlshort, e.g.:

short float sf; /* what? */

(273) can't have "signed" and "unsigned" together (Parser)

The type modifiersigned andunsigned cannot be used together in the same declaration, as they
have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? signed or unsigned? */

(274) can't be unsigned (Parser)

A floating point type cannot be madesigned, e.g.:

unsigned float uf; /* what? */

(275) ... illegal in non-prototype arg list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not
appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style
non-prototype function definitions. For example:

int kandr(a, b, ...) /* K&R-style non-prototyped function definition */
int a, b;
{
(276) type specifier required for proto arg (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

408

Error and Warning Messages

(277) can’t mix proto and non-proto args (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration
list before the start of the function body), e.g.:

int plus(int a, b) /* woops -- a is prototyped, b is not */
int b;
{

return a + b;

(278) argument redeclared: * (Parser)

The specified argument is declared more than once in the same argument list, e.g.

int calc(int a, int a) /* you cannot have two parameters called “a” */

(279) can'tinitialize arg (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument
happens when the function is called and a value is provided for the argument by the calling function,

e.g.

extern int proc(int a = 9); /* woops -— a 1s initialized when proc is called */

(280) can't have array of functions (Parser)

You can't define an array of functions. You can however define an array of pointers to functions,
e.g.:

int * farrayl[](); /* woops —-- should be: int (* farrayl[]) (); */

(281) functions can't return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer
to a function could be declared like this: int (* (name()))(). Note the many parentheses that are
necessary to make the parts of the declaration bind correctly.

409

Error and Warning Messages

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present as a constant expression, e.g.:

enum { one = 1, two };
int get_element (int array([two][]) /* should be, e.g.: int arrayl][7] */
{

return array[l][6];
}
(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces, e.g.:

void interrupt (void) /* what is the name of this function? */
{
}
(286) declarator too complex (Parser)
This declarator is too complex for the compiler to handle. Examine the declaration and find a way
to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.
(287) can't have an array of bits or a pointer to bit (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.qg.:

bit barray[10]; /* wrong -- no bit arrays */
bit * Dbp; /* wrong -- no pointers to bit variables */
(288) only functions may be void (Parser)

A variable may not beoid. Only a function can beoid, e.g.:

int a;
void b; /* this makes no sense */

410

Error and Warning Messages

(289) only functions may be qualified interrupt (Parser)

The qualifierinterrupt may not be applied to anything except a function, e.g.:

interrupt int input; /* variables cannot be qualified interrupt */

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier
only make sense when used with an Ivalue, e.g. const or volatile. This may indicate that you have
forgotten out a star indicating that the function should return a pointer to a qualified object, e.g.

const char ccrv(void) /* woops -- did you mean const * char ccrv(void) ? */
{ /* error flagged here */
return ccip;
}
(291) not an argument: * (Parser)

This identifier that has appeared in a K&R stype argument declarator is not listed inside the paren-
theses after the function name, e.g.:

int process(input)
int unput; /* woops -- that should be int input; */
{
}
(292) a parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has
been omitted from the declaration.

(293) bad size in index_type (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can't allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

411

Error and Warning Messages

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or
split into two expressions.

(297) bad arg (*) to tysize (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(298) EOF in #asm (Preprocessor)

An end of file has been encountered insidéaam block. This probably means thigndasn is
missing or misspelt, e.g.:

#asm
mov r0, #55
mov [rl], r0
} /* woops -- where is the #endasm */

(300) unexpected EOF (Parser)
An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)

{

init ();
run(); /* 1s that it? What about the close brace */
(301) EOF on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can'treopen* (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) no memory for string buffer (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort
and merge strings. Try reducing the number or length of strings in this module.

412

Error and Warning Messages

(305) can'topen* (Code Generator, Assembler, Optimiser, Cromwell)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(306) out of far memory (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(308) too many cases in switch (Code Generator)

There are too manyase labels in thisswitch statement. The maximum allowable numbeteofe

labels in any onewitch statement is 511.

(309) too many symbols (Assembiler)

There are too many symbols for the assembler's symbol table. Reduce the number of symbols in
your program.

(310)]expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,
e.g.

process (carray[idx); /* woops —-- should be: process(carrayl[idx]); */

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow, e.g.:

int get_value(a, b); /* the function block must follow, not a semicolon */

413

Error and Warning Messages

(314) ; expected (Parser)

A semicoloris missing from a statement. A close brace or keyword was found following a statement
with no terminatingsemicolone.g.:

while(a) {
b = a-- /* woops -- where is the semicolon? */
} /* error is flagged here */

Note: Omitting a semicolon from statements not preceeding a close brace or keyword typically
results in some other error being issed for the following code which the parser assums to be part of
the original statement.

(315) {expected (Parser)

An opening bracevas expected here. This error may be the result of a function definition missing
theopening bracee.qg.:

void process (char c) /* woops -- no opening brace after the prototype */
return max(c, 10) * 2; /* error flagged here */
}
(316) }expected (Parser)

A closing bracewas expected here. This error may be the result of a initialized array missing the
closing bracee.qg.:

char carray(4] = { 1, 2, 3, 4; /* woops -- no closing brace */

(317) (expected (Parser)

An opening parenthesjg, was expected here. This must be the first token afteriae, for, if,
do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */
b =0;

(318) string expected (Parser)
The operand to aasm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

414

Error and Warning Messages

(319) while expected (Parser)

The keywordwhile is expected at the end ofda statement, e.g.:

do {
func (i++);
} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
end();
(320) : expected (Parser)

A colonis missing after acase label, or after the keywordefault. This often occurs when a
semicoloris accidentally typed instead ofcalon e.g.:

switch (input) {

case 0; /* woops -- that should have been: case 0: */
state = NEW;

(321) label identifier expected (Parser)
An identifier denoting a label must appear affeto, e.g.:

if(a)
goto 20; /* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or { expected (Parser)

After the keywordenum must come either an identifier that is or will be defined as@am tag, or
an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follewract or union
keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

415

Error and Warning Messages

struct {
int a;
} my_struct;

(324) too many arguments for format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string, e.g.:

printf (“%$d - %d”, low, high, median); /* woops -- missed a placeholder? */
(325) error in format string (Parser)

There is an error in the format string here. The string has been interpretedasa () style format
string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at
run time, e.g.:

printf (“%1”, 111); /* woops -- maybe: printf(“%1d”, 111); */

(326) long argument required (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-
fiers and corresponding arguments, e.g.:

printf (“$1x”, 2); /* woops -- maybe you meant: printf (“%1x”, 2L);
(328) integral argument required (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf (“%d”, 1.23); /* woops -- either wrong number or wrong placeholder */

(329) double float argument required (Parser)

The printf format specifier corresponding to this argumentfi®r similar, and requires a floating
point expression. Check for missing or extra format specifiers or arguments to printf.

printf (“$£”, 44); /* should be: printf (“$£f”, 44.0); */

416

Error and Warning Messages

(330) pointer to * argument required (Parser)

A pointer argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

(331) too few arguments for format string (Parser)

There are too few arguments for this format string. This would resultin a garbage value being printed
or converted at run time, e.g.:

printf (“$d - %d”, low); /* woops —-- where is the other value to print? */

(332) interrupt_level should be 0 to 7 (Parser)

The pragmanterrupt_level must have an argument from 0to 7, e.g.:

#pragma interrupt_level /* woops -- what is the level */
void interrupt isr(void)
{

/* isr code goes here */

(333) unrecognized qualifier name after "strings" (Parser)

Thepragma strings was passed a qualifier that was not identified, e.g.:

#pragma strings cinst /* woops -- should that be #pragma strings const ? */
(335) unknown pragma * (Parser)
An unknownpragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)
Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
“there”; /* this is okay, but is it what you had intended? */

417

Error and Warning Messages

(337) line does not have a newline on the end (Parser)

The last line in the file is missing theewline(operating system dependent character) from the end.
Some editors will create such files, which can cause problems for include files. The ANSI C standard
requires all source files to consist of complete lines only.

(338) can't create * file "*" (Code Generator, Assembler, Linker, Optimiser)

The application tried to create the named file, but it could not be created. Check that all file path-
names are correct.

(338) can't create * file "*" (Linker, Code Generator Driver)

The compiler was unable to create a temporary file. Check the DOS Environment variable TEMP
(and TMP) and verify it points to a directory that exists, and that there is space available on that
drive. For exampleaUTOEXEC . BAT should have something like:

SET TEMP=C:\TEMP

where the directorg : \TEMP exists.

(339) initializer in "extern" declaration (Parser)

A declaration containing the keywordktern has an initialiser. This overrides thetern storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated storage,
how can it be initialized? */

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach
the end of the function body, thus returning without a value. Either insert @arn statement with a
value, or if the function is not to return a value, declareitd, e.g.:

int mydiv(double a, int b)
{
if(b = 0)
return a/b; /* what about when b is 0? */
} /* warning flagged here */

418

Error and Warning Messages

(344) non-void function returns no value (Parser)

A function that is declared as returning a value hastairn statement that does not specify a return
value, e.g.:

int get_value(void)
{
if (flag)
return val++;
return; /* what 1is the return value in this instance? */

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be
reached, e.g.:

while (1) /* how does this loop finish? */
process () ;
flag = FINISHED; /* how do we get here? */

(346) declaration of * hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended, e.qg.:

int input; /* input has filescope */
void process(int a)

{

int input; /* local blockscope input */
a = input; /* this will use the local variable. Is this right? */
(347) external declaration inside function (Parser)

A function contains arxtern declaration. This is legal but is invariably not desirable as it restricts
the scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have
the earlier declaration and thus will be unable to check that the declarations are consistent. This
can lead to strange behaviour of your program or signature errors at link time. It will also hide any
previous declarations of the same thing, again subverting the compiler’s type checking. As a general
rule, always declarextern variables and functions outside any other functions. For example:

419

Error and Warning Messages

int process(int a)

{

extern int away; /* this would be better outside the function */
return away + a;

}

(348) auto variable * should not be qualified (Parser)

An auto variable should not have qualifiers suchhasr or far associated with it. Its storage class
is implicitly defined by the stack organization. Anto variable may be qualified withtatic, but
it is then no longegruto.

(349) non-prototyped function declaration: * (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions, e.qg.:

int process (input)

int input; /* warning flagged here */
{

}

This would be better written:

int process(int input)
{
}

(350) unused *: * (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is
redundant, or the code that was meant to use it was excluded from compilation or misspelt the name
of the object. Note that the symbalssid andsccsid are never reported as being unused.

(352) float param coerced to double (Parser)

Where a non-prototyped function has a parameter declarethas, the compiler converts this into
adouble float. This is because the default C type conversion conventions provide that when a
floating point number is passed to a non-prototyped function, it will be convertesutole. It is
important that the function declaration be consistent with this convention, e.g.:

420

Error and Warning Messages

double inc_flt (f) /* the parameter f will be converted to double type */
float f; /* warning flagged here */
{

return £ * 2;

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an
explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default
pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a largergned type. Under the

ANSI "value preserving" rules, this will result in theigned value being first sign-extended to a
signed number the size of the target type, then converteghta gned (which involves no change

in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first
convert the signed value to an unsigned equivalent, e.g.:

signed char sc;
unsigned int ui;

uli = sc; /* if sc contains 0xff, ui will contain Oxffff for example */

will perform a sign extension of thehar variable to the longer type. If you do not want this to take
place, use a cast, e.g.:

uli = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result
in truncation of the floating point value. A typecast will make this warning go away.

421

Error and Warning Messages

double dd;
int 1i;
i = dd; /* 1s this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform

the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the address operator, e.g.:

int * ip;
int 1i;
ip = i; /* woops -- did you mean ip = &i ? */
If you do intend to use an expression like this, then indicate that this is so by a cast:
ip = (int *)i;
(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform

the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the dereference operator, e.g.:

int * ip;
int 1i;
i = ip; /* woops -- did you mean i = *ip ? */
If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

422

Error and Warning Messages

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer
of a different type. This will usually mean you have used the wrong variable, but if this is genuinely
what you want to do, use a typecast to inform the compiler that you want the conversion and the
warning will be suppressed, e.g.:

long input;
char * cp;

cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the
intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,
but which have different qualifiers, e.qg.:

char * cp;
cp = “I am a string of characters”; /* yes, but what sort of characters? */

If the default type for string literals isonst char *, then this warning is quite valid. This should
be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array. This warning will not be issued when accessing an array element
via a pointer variable, e.g.:

int i, * ip, input[10];

i = input[-2]; /* woops -- this element doesn’t exist */
ip = &input[5];
i =ip[-2]; /* this is okay */

423

Error and Warning Messages

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of type:, with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type
and arguments will be different from the earlier implicit declaration, causing a compiler error. The
solution is to ensure that all functions are defined or at least declared before use, preferably with
prototyped parameters. If it is necessary to make a forward declaration of a function, it should be
preceded with the keywordstern or static as appropriate. For example:

void set(long a, int b); /* I may prevent an error arising from calls below */
void main(void)
{

set (10L, 6); /* by here a prototype for set should have seen */

(362) redundant & applied to array (Parser)

The address operatarhas been applied to an array. Since using the name of an array gives its
address anyway, this is unnecessary and has been ignored, e.g.:

int arrayl[5];
int * ip;
ip = &array; /* array is a constant, not a variable; the & is redundant. */

(364) attempt to modify * object (Parser)

Objects declaredonst or code may not be assigned to or modified in any other way by your
program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* woops -— writing to a read-only object */
(365) pointer to non-static object returned (Parser)

This function returns a pointer to a nafatic (e.g. auto) variable. This is likely to be an error,
since the storage associated with automatic variables becomes invalid when the function returns,

e.g.

424

Error and Warning Messages

char * get_addr (void)
{

char c;
return &c; /* returning this is dangerous; the pointer could be dereferenced */

(366) operands of * not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used

the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error
message.

(367) function is already "extern"; can’t be "static" (Parser)

This function was already declaredtern, possibly through an implicit declaration. It has now
been redeclaregkatic, but this redeclaration is invalid.

void main(void)
{
set (10L, 6); /* at this point the compiler assumes set is extern... */
}
static void set(long a, int b) /* now it finds out otherwise */
{
PORTA = a + b;

(368) array dimension on *[] ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the
dimension from the parameter, or define the parameter using pointer syntax, e.g.:

int get_first (int array[10]) /* param should be: “int array[]” or “int *” */
{ /* warning flagged here */
return array[0];

}

425

Error and Warning Messages

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be type, the compiler still
treats it asinsigned, e.g.:

struct {
signed int sign: 1; /* this must be unsigned */
signed int value: 15;

b

(371) missing basic type: int assumed (Parser)

This declaration does not include a basic type;isb has been assumed. This declaration is not
illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int 1 */
func(); /* ditto, use: extern int func(int); */
(372) , expected (Parser)

A commawas expected here. This could mean you have left outdheamabetween two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and
has thus been interpreted as an identifier, e.g.:

unsigned char a;
unsigned chat b; /* thinks: chat & b are unsigned, but where is the comma? */

(375) unknown FNREC type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in
the call graph. This probably means the program has indirect recursion, which is not allowed when
using a compiled stack.

(378) can't create * file “*” (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

426

Error and Warning Messages

(379) bad record type * (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact
HI-TECH Software technical support with details.

(380) unknown record type: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) recordtoo long (*): * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length =* (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not
a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.
(383) text record has length too small: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expr * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(386) can't open error file * (Linker)

The error file specified using thelinker option could not be opened.

(387) illegal or too many -g flags (Linker)
There has been more than one linkgroption, or the-g option did not have any arguments follow-
ing. The arguments specify how the segment addresses are calculated.

(388) duplicate -m flag (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of this
option is present on the command line. See Sectidii.9for information on the correct syntax for

this option.

427

Error and Warning Messages

(389) illegal or too many -o flags (Linker)
This linker -o flag is illegal, or anothero option has been encountered.-A option to the linker
must be immediately followed by a filename with no intervening space.

(390) illegal or too many -p flags (Linker)
There have been too manry options passed to the linker, or-a option was not followed by any
arguments. The arguments of separat@ptions may be combined and separateddymas

(391) missing arg to -Q (Linker)

The -0 linker option requires the machine type for an argument.

(392) missing argto-u (Linker)

The-U (undefine) option needs an argument.

(393) missing arg to -w (Linker)

The-w option (listing width) needs a numeric argument.

(394) duplicate -d or -h flag (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of either
of these options is present on the command line.

(395) missing arg to -j (Linker)

The maximum number of errors before aborting must be specified followingjithieker option.

(396) Illegal flag -* (Linker)

This linker option is unrecognized.

(398) output file cannot be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be
done, because it needs to simultaneously read and write input and output files.

428

Error and Warning Messages

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure itis a
valid HI-TECH object file. Contact HI-TECH Software technical support with details.

(401) cannot get memory (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)
The first value to the OBJTOHEXn, m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX, m hex length/rounding option is invalid.

(410) bad combination of flags (Objtohex)

The combination of options supplied ®8JTOHEX is invalid.

(412) textdoes notstartat0 (Objtohex)

Code in some things must start at zero. Here it doesn't.

(413) write erroron * (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read erroron * (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character in extended Tekhex line (*) (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

429

Error and Warning Messages

(417) seekerror (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed e JTOHEX has relocation items in it. This may indicate it is the wrong object
file, or that the linker or OBJTOHEX have been given invalid options. The object output files from
the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) noend record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH
Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with
details.

430

Error and Warning Messages

(426) can't open checksum file * (Linker)

The checksum file specified BIJTOHEX could not be opened. Confirm the spelling and path of
the file specified on the command line.

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from
standard input in response to an option.

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied toBJTOHEX is syntatically incorrect.

(433) out of memory allocating * blocks of * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some
global symbols to local symbols to reduce the number of symbols.

(435) bad segspec * (Linker)
The segment specification optiof:] to the linker is invalid, e.g.:

-GA/£0+10
Did you forget the radix?

-GA/£0h+10

431

Error and Warning Messages

(436) psect"*" re-orged (Linker)

This psect has had its start address specified more than once.

(437) missing "="in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See SeC3ianofor more infomation.

(438) bad size in -S option (Linker)

The address given in & specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailimdor octal, orx for hex. A leadingdx may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.
-SCODE=£000
Did you forget the radix?

-SCODE=£000h

(441) bad -A spec: "*" (Linker)
The format of a-2 specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE
What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address in -A spec - * (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-ACODE=1fff-3fffh
Did you forget the radix?

-ACODE=1fffh-3fffh

432

Error and Warning Messages

(444) expected "-"in -A spec (Linker)

There should be a minus sign,between the high and low addresses #adinker option, e.g.
—-AROM=1000h

maybe you meant:
-AROM=1000h-1fffh

(445) bad high address in -A spec - * (Linker)
The high address given in-a& specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailindpr octal, ord for hex. A leadingdx may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:
-ACODE=0h-ffff
Did you forget the radix?
-ACODE=0h-ffffh
See Sectiori3.7.20for more infomation.
(446) bad overrun address in -A spec - * (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,
octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-AENTRY=0-0FFh-1FF
Did you forget the radix?
-AENTRY=0-0FFh-1FFh

433

Error and Warning Messages

(447) bad load address in -A spec - * (Linker)

The load address given in-a specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailin@or octal) ors for hex. A leadingdx may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,

e.g.:
~ACODE=0h-3£f£ffh/a000
Did you forget the radix?
~ACODE=0h-3£fffh/a000h
(448) bad repeat countin -A spec - * (Linker)
The repeat count given in-a specification is invalid, e.g.:
-AENTRY=0-0FFhxf
Did you forget the radix?
-AENTRY=0-0FFhxfh

(449) syntax errorin -A spec: * (Linker)

The-a spec is invalid. A valid -A spec should be something like:
-AROM=1000h-1FFFh

(450) unknown psect: * (Linker, Optimiser)

This psect has been listed ir-a option, but is not defined in any module within the program.

(451) bad origin format in spec (Linker)

The origin format in a-p option is not a validly formed decimal, octal or hex number, nor is it the
name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=£000
Did you forget the radix?

-pbss=£000h

434

Error and Warning Messages

(452) bad min (+) format in spec (Linker)

The minimum address specification in the linkettsoption is badly formatted, e.qg.:
-pbss=data+£000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after % in -p option (Linker)

The % operator in ap option (for rounding boundaries) must have a number after it.

(455) psect * not relocated on Ox* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct
the-p option. if necessary.

(458) cannot open (Objtohex)
OBJTOHEX cannot open the specified input file. Confirm the spelling and path of the file specified on
the command line.

(462) can't open avmap file * (Linker)

A file required for producing Avocet format symbol files is missing. Confirm the spelling and path

of the file specified on the command line.

(463) missing memory key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol in FNBREAK record: * (Linker)

The linker has found an undefined symbol in theREAK record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

435

Error and Warning Messages

(466) undefined symbol in FNINDIR record: * (Linker)

The linker has found an undefined symbol in theNDIR record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol in FNADDR record: * (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.
Contact HI-TECH Support if this is not handwritten assembler code.

(468) undefined symbol in FNCALL record: * (Linker)

The linker has found an undefined symbol inthieALL record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol in FNROOT record: * (Linker)

The linker has found an undefined symbol inth@00T record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol in FNSIZE record: * (Linker)

The linker has found an undefined symbol in tne1zE record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-
ically allocated local variables (compiled stack). Either userthent rant keyword (if supported
with this compiler) or recode to avoid recursion, e.g.:

int test (int a)
{
if(a == 5)
return test(a++); /* recursion may not be supported by some compilers */
return 0;

}

436

Error and Warning Messages

(472) function * appears in multiple call graphs: rooted at * and * (Linker)

This function can be called from both main-line code and interrupt code. Useth@rant key-
word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate
the function, e.g.:

void interrupt my_isr (void)
{
scan (6); /* scan is called from an interrupt function */
}
void process(int a)
{
scan(a); /* scan 1s also called from main-line code */

}

(474) no psect specified for function variable/argument allocation (Linker)

TheFrNCONF assembler directive which specifies to the linker information regarding the auto/parameter
block was never seen. This is supplied in the standard runtime files if necessary. This error may im-
ply that the correct run-time startoff module was not linked. Ensure you have usedidber
directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflictirrgicoNF directives. This directive should only be specified once
and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (loc Ox* (Ox*+*), size *, value Ox*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
See the following error message (477) for more information..

(477) fixup overflow in expression (loc Ox* (Ox*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program
sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

437

Error and Warning Messages

The causes for this can be many, but hand-written assembler code is always the first suspect.
Badly written C code can also generate assembler that ultimately generates fixup overflow errors.
Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+l), size 1, value 0x7FC)

This indicates that the file causing the problem wais . ob . This would be typically be the output
of compilingmain.c ormain.as. This tells you the file in which you should be looking. The next
number (8 in this example) is the record number in the object file that was causing the problem. If
you use theunmp utility to examine the object file, you can identify the record, however you do not
normally need to do this.

The location {oc) of the instruction (0x1FD), theize (in bytes) of the field in the instruction
for the value (1) , and thea1ue which is the actual value the symbol represents, is typically the only
information needed to track down the cause of this error. Note that a size which is not a multiple of
8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as
1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the
error message.

7 07FC 0E21 movlw 33
8 O7FD 6FFC movwf _foo
9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the
symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but
clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.

If the assembler instruction that caused this error was generated by the compiler, in the assem-
bler list file look back up the file from the instruction at fault to determine which C statement has
generated this instruction. You will then need to examine the C code for possible errors. incorrectly
qualified pointers are an common trigger.

438

Error and Warning Messages

(479) circular indirect definition of symbol * (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

(480) signatures do not match: * (*): Ox*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);
/* and in another module: */
int get_value(int in, char type) /* this is different to the declaration */

{

(481) common symbol psect conflict: * (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" multiply defined in file "*" (Assembiler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [rl], r0
_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have amnderscorgrepended to their name after compilation.

(483) symbol * cannot be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

439

Error and Warning Messages

(484) psect* cannot be in classes * and * (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting
class= options to the PSECT directive, or use of theoption to the linker, e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY
(485) unknown "with" psect referenced by psect * (Linker)

The specified psect has been placed with a psect using thewisectlag. The psect it has been
placed with does not exist, e.qg.:

psect starttext,class=CODE,with=rext ; was that meant to be with text?

(486) psect * selector value redefined (Linker)

The selector associated with this psect has been defined differently in two or more places.

(486) psect * selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect * type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are
trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode
code.

(488) psect * memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,
if they are the same psect, place them in the same memory space usipgdbesect flag, e.g.:

psect spdata,class=RAM, space=0
ds 6

; elsewhere:

psect spdata,class=RAM, space=1

440

Error and Warning Messages

(489) psect * memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:

; elsewhere:

psect final,class=CODE,delta=1

(490) class * memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they
are the same class, place them in the same memory space.

(491) can'tfind * words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that is
generated from the program into the memory available for the target device. This error indicates that
the linker was unable to find an area of free memory large enough to accomodate one of the psects.
The error message indicates the name of the psect that the linker was attempting to position and the
segment name which is typically the name of a class which is defined with a linlaation.

Section??lists each compiler-generated psect and what it contains. Typically psect names which
are, or includegext relate to program code. Names suctbas or data refer to variable blocks.

This error can be due to two reasons.

First, the size of the program or the progam’s data has exceeded the total amount of space on the
selected device. In other words, some part of your device’s memory has completely filled. If this is
the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being
positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous
block is too small to accomodate the psect. The linker is unable to split psects in this situation. That
is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the linker
must be able to find a contiguous block of memory large enough for every psect. If this is the cause
of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see S&6tib8

for information on how to generate a map file. Search for the SUIFED ADDRESS RANGES.
Under this heading, look for the name of the segment specified in the error message. If the name
is not present, then all the memory available for this psect has been allocated. If it is present, there
will be one address range specified under this segment for each free block of memory. Determine
the size of each block and compare this with the number of words specified in the error message.

441

Error and Warning Messages

Psects containing code can be reduced by using all the compiler’s optimizations, or restructring
the program. If a code psect must be split into two or more small psects, this requies splitting a
function into two or more smaller functions (which may call each other). These functions may need
to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect
is less dramatic. The program may need to be rewritten so that it needs less variables. Section
13.9.1has information on interpreting the map file’s call graph if the compiler you are using uses
a compiled stack. (If the stringall grpah: is not present in the map file, then the compiled
code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions
for variables will need to be moved to new modules or more evenly spread in the existing modules.
Memory allocation forauto variables is entirely handled by the compiler. Other than reducing the
number of these variables used, the programmer has little control over their operation. This applies
whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text in segment CODE (error)
look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES

CODE 00000244-0000025F
00001000-0000102£
RAM 00300014-00301FFB

In the CODE segment, there is Ox1c (0x25f-0x244+1) bytes of space available in one block and 0x30
available in another block. Neither of these are large enough to accomodate thesaseshich

is Ox34 bytes long. Notice, however, that the total amout of memory available is larger than 0x34
bytes.

(492) psectis absolute: * (Linker)

This psect is absolute and should not have an address specifiecb in@ion. Either remove the
abs psect flag, or remove the linker option.

(493) psect origin multiply defined: * (Linker)

The origin of this psect is defined more than once. There is most likely more tharpdiveer
option specifying this psect.

442

Error and Warning Messages

(494) bad -P format "*"/"*" (Linker)

The-P option given to the linker is malformed. This option specifies placement of a psect, e.g.:
-Ptext=10g0h

Maybe you meant:

-Ptext=10£0h

(497) psect exceeds max size: *: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified usisizthpsect flag.

(498) psect exceeds address limit: *: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it usingrihe psect flag. Either

the psect needs to be linked at a different location or there is too much code/data in the psect.
(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(501) entry point multiply defined (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is
specified after thenp directive. The runtime startup code defines the entry point, e.g.:

powerup:
goto start
END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length =* (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or
not an object file. Contact HI-TECH Support with details.

443

Error and Warning Messages

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for
different processor types.

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known
to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object
file if you have not patched the linker.

(505) no end record found (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an
object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset * out of range 0..*-*- (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using
a linker that is out of date, or that there is an internal error in the assembler or linker. Contact
HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -r or -l options (Linker)

The linker was given ar or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

444

Error and Warning Messages

(512) unknown complex operator Ox* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the
file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was
created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) textrecord has bad length: *-*-(*+1) <0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(517) write error (out of disk space?) * (Linker)

A write error occurred on the named file. This probably means you have run out of disk space.

(519) can'tseekin* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function * is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-
ing it. If you believe this function should be called, check your source code. Some assembler library
routines are never called, although they are actually execute. In this case, the routines are linked in
a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by * (Linker)

The call graph shows that functions are nested to a depth greater than specified.

445

Error and Warning Messages

(522) library * is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument -W* ignored (Linker)

The argument to the linker optiofw is out of range. This option controls two features. For warning
levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

(524) unable to open list file * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will
contain absolute addresses. Ensure that an assembler list file was generated during the compilation
stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address spaces - space * ignored (Linker)

The limit to the number of address spaces (specified witlh $heT assembler directive) is currently
16.

(526) psect * not specified in -p option (first appears in *) (Linker)

This psect was not specified in-a or -2 option to the linker. It has been linked at the end of the
program, which is probably not where you wanted it.

(528) no start record: entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in
your startup module by using tleD directive.

(593) can’tfind Ox* words (Ox* withtotal) for psect * in segment * (Linker)

See error (491) in Appendiz.

(596) segment *(*-*) overlaps segment *(*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the
linker option.

446

Error and Warning Messages

(597) can'topen (Linker)

An object file could not be opened. Confirm the spelling and path of the file specified on the com-
mand line.

(602) null format name (Cromwell)

The-1 or -0 option to Cromwell must specify a file format.

(603) ambiguous format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with
the-ikey and-okey options respectively.

(604) unknown format name "*" (Cromwell)
The output format specified tROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot
and output file type ofot, did you mearcof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
or HI-TECH.

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The -p option to cromwell must specify a processor name.

(611) too many input files (Cromwell)

To many input files have been specified to be convertetROyWELL.

447

Error and Warning Messages

(612) too many output files (Cromwell)

To many output file formats have been specifiedROMWELL.

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

(619) 1/O error reading symbol table

Cromwell could not read the symbol table. This could be because the file was truncated or there was
some other problem reading the file. Contact HI-TECH Support with details.

(620) file name index out of range in line number record (Cromwell)

The COD file has an invalid format in the specified record.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in coff.get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(634) error dumping * (Cromwell)
Either the input file tocROMWELL is of an unsupported type or that file cannot be dumped to the
screen.

(635) invalid hex file: *, line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was
generated by the compiler.

448

Error and Warning Messages

(636) checksum error in Intel hex file *, line * (Cromwell, Hexmate)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may
be corrupt.

(674) too many references to * (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(675) can't open * for input (Cref)
CREFcannot open the specified input file. Confirm the spelling and path of the file specified on the
command line.

(676) can't open * for output (Cref)
CREFcannot open the specified output file. Confirm the spelling and path of the file specified on the
command line.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(680) bad format for -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(685) bad putwsize (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(686) bad switch size * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(687) bad pushreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section13.7.2for more infomation.

449

Error and Warning Messages

(688) bad popreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(692) interrupt function "*" may only have one interrupt level (Code Generator)

Only one interrupt level may be associated withianerrupt function. Check to ensure that only
oneinterrupt_level pragma has been used with the function specified. This pragma may be used
more than once on main-line functions that are called ftafrerrupt functions. For example:

#pragma interrupt_level 0
#pragma interrupt_level 1 /* which is it to be: 0 or 1? */
void interrupt isr(void)

{

(693) interrupt level may only be 0 (default) or 1 (Code Generator)

The only possible interrupt levels are 0 or 1. Check to ensure that@dlrrupt_level pragmas
use these levels.

#pragma interrupt_level 2 /* woops —- only 0 or 1 */
void interrupt isr(void)
{

/* isr code goes here */

}

(695) duplicate case label * (Code Generator)
There are two case labels with the same value inghis ch statement, e.g.:

switch(in) {

case '0': /* if this is case '0'... */
b++;
break;

case '0’: /* then what is this case? */
b-——;
break;

}

450

Error and Warning Messages

(696) out-of-range case label * (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never
be selected.

(697) non-constant case label (Code Generator)

A case label in thisswitch statement has a value which is not a constant.
(699) no case labels (Code Generator)
There are nease labels in thisswitch statement, e.g.:

switch (input) {
} /* there is nothing to match the value of input */

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused-badargto G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section13.7.2for more infomation.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after | (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) expand - bad which (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

451

Error and Warning Messages

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.See
Section13.7.20for more infomation.

(708) bad mod "+" for how = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister * can't be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) expand - bad how (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For
successful code generation, the code generator must know how to compile an expression and there
must be enough resources (e.g. registers or temporary memory locations) available. Simplifying
the expression, e.g. using a temporary variable to hold an intermediate result, may get around this
message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example
code which writes to a const-qualified object is illegal and will result in warning messages, but the
code generator may unsuccessfully try to produce code to perform the write.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma * (Code Generator)

The code generator has been passghama directive that it does not understand. This implies that
the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using
has not implemented this pragma.

452

Error and Warning Messages

(716) bad -M option: -M* (Code Generator)
The code generator has been passed@ption that it does not understand. This should not happen
if it is being invoked by a standard compiler driver.

(717) illegal switch * (Code Generator, Assembler, Optimiser)

This command line option was not understood.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path nhame, change it to something
shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(721) bad element count expr (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) functions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-
TECH Support with details.

(724) bad op *to reviog (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad uconval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

453

Error and Warning Messages

(727) bad bconfloat - * (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad confloat - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad conval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op: "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(732) can'tinitialize bit type (Code Generator)

Variables of typenit cannot be initialised, e.g.:

bit bl = 1; /* woops ——- bl must be assigned a value after its definition */
(733) bad string "*" in psect pragma (Code Generator)
The code generator has been passethama psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */
Maybe you meant something like:

#pragma psect text=special_text

(734) too many psect pragmas (Code Generator)

Too many#pragma psect directives have been used.

454

Error and Warning Messages

(737) unknown argument to "pragma switch": * (Code Generator)

The #pragma switch directive has been used with an invalid switch code generation method. Pos-
sible arguments areiuto, simple anddirect.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) bad dimensions (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bitfield too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bitsiintae.g. assuming
anint is 16 bits wide:

struct {
unsigned flag : 1;
unsigned value : 12;

unsigned cont : 6; /* woops -- that makes a total of 19 bits */
} object;
(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a
call like:

void fnl(void)

{ fn3(7, fn2(3), fn2(9)); /* Offending call */
ihar fn2 (char fred)

{ return fred + fn3(5,1,0);

}

char fn3(char one, char two, char three)

{

return one+twot+three;

455

Error and Warning Messages

wherefnl is calling fn3, and two arguments are evaluated by calling, which in turn callstn3.
The program structure should be modified to prevent this type of call sequence.
(744) static object has zero size: * (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount =* (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(747) unrecognized optionto -Z: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable may be used before set: * (Code Generator)

This variable may be used before it has been assigned a value. Since itiiscavariable, this will
result in it having a random value, e.g.:

void main (void)

{

int a;
if (a) /* woops -— a has never been assigned a value */
process|();
}
(749) unknown register name * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to || or && (Code Generator)

One operand to the logical operatarsor & is a constant. Check the expression for missing or
badly placed parentheses. This message may also occur if the global optimizer is enabled and one of
the operands is auto or static local variable whose value has been tracked by the code generator,

e.g.:

int a;
a= 6;

456

Error and Warning Messages

if(a || b) /* a is 6, therefore this is always true */
bt++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is
too big for the type of the expression. The most common code to trigger this warning is assignments
to signed data types. For example:

signed char c;
c = 0xFF;

As asigned 8-bit quantity,c can only be assigned values -128 to 127. The constant is equal to 255
and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.
This warning can also be triggered by intermediate values overflowing. For example:

unsigned int i; /* assume ints are 16 bits wide */
i =240 * 137; /* this should be okay, right? */

A quick check with your calculator reveils that 240 * 137 is 32880 which can easily be stored in
anunsigned int, but a warning is produced. Why? Because 240 and 137 andshotfed int

values. Therefore the result of the multiplication must also bégmed int value, but asigned

int cannot hold the value 32880. (Both operands are constant values so the code generator can
evaluate this expression at compile time, but it must do so following all the ANSI rules.) The
following code forces the multiplication to be performed withwar i gned result:

i = 240u * 137; /* force at least one operand to be unsigned */
(752) conversion to shorter data type (Code Generator)
Truncation may occur in this expression as the Ivalue is of shorter type than the rvalue, e.g.:
char a;

int b, c¢;
a=Db+ c; /* conversion of int to char may result in truncation */

457

Error and Warning Messages

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of
bits in the data type. This will produce an undefined result on many processors. This is non-portable
code and is flagged as having undefined results by the C Standard, e.qg.:

int input;
input <<= 33; /* woops -- that shifts the entire value out of input */
(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.
For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range
fromOto 3, e.qg.:

struct {
unsigned mask : 2; /* mask can hold values 0 to 3 */
} value;
int compare (void)
{
return (value.mask == 6); /* test can

}

(755) division by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by af, for, while statement etc.) always follows the same path.
This will be some sort of comparison involving a variable and a constant expression. For the code
generator to issue this message, the variable must have local scopedgither static local) and
the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold
may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during
a function. For C code that compares these variables to constants, the result of the comparison can
be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

458

Error and Warning Messages

int a, b;

a =5;

if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

will produce code that setsto 5, then immediately setsto 6. No code will be produced for the
comparisonif (a == 4). If a was a global variable, it may be that other functions (particularly
interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an
expression with missing or badly placed parentheses, causing the evaluation to yield a value different
to what you expected.

This warning may also be issued because you have written somethinglike(1). To produce
an infinite loop, useor (; ;).

A similar situation arises with for loops, e.g.:

{
int a, b;
for (a=0; a!=10; a++) /* this loop must iterate at least once */
b = func(a);

In this case the code generator can again pick upahstassigned the value 0, then immediately
checked to see if it is equal to 10. Because modified during thefor loop, the comparison

code cannot be removed, but the code generator will adjust the code so that the comparison is not
performed on the first pass of the loop; only on the subsequent passes. This may not reduce code
size, but it will speed program execution.

(758) constant conditional branch: possible use of = instead of == (Code Generator)

There is an expression inside ahor other conditional construct, where a constant is being assigned
to a variable. This may mean you have inadvertently used an assiganmst¢éad of a compare=,

e.g..
int a, b;
if(a = 4) /* this can never be false; always perform the true statement */

b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can
be omitted and the assignmenttalways made. Did you mean:

459

Error and Warning Messages

if(a == 4) /* this can never be false; always perform the true statement */

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a
function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To
accommodate this, in some instances the code geneta¢sproduce code for a statement which

only consists of a variable ID. This may happen for variables which are qualifiedlasile.
Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;
a =Db,c; /* “b” has no effect, was that meant to be a comma? */
(761) sizeofyields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly
indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero
length array. In general, pointers to arrays are of little use. If you require a pointer to an array of
objects of unknown length, you only need a pointer to a single object that can then be indexed or
incremented.

(763) constant left operand to ? (Code Generator)

The left operand to a conditional operatoris constant, thus the result of the tertiary operator
will always be the same, e.g.:

a=87?Db:c; /* this is the same as saying a = b; */

460

Error and Warning Messages

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in
the range of possible values for that expression, e.g.:

unsigned char c;

if(c > 300) /* woops —-- how can this be true? */
close();
(765) degenerate unsigned comparison (Code Generator)

There is a comparison of amsigned value with zero, which will always be true or false, e.qg.:

unsigned char c;
if(c >= 0)

will always be true, because ansigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of @i gned value with the most negative value possible for this type, such
that the comparison will always be true or false, e.g.:

char c;
if (¢ >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are
comparing aruinsigned humber with a negative value, or comparing a variable with a value greater
than the largest number it can represent, e.g.:

unsigned int a;

if(a == -10) /* if a is unsigned, how can it be -10? */
b =9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

461

Error and Warning Messages

(770) insufficient memory for macro definition (Assembiler)

There is not sufficient memory to store a macro definition.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-
mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembiler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files
nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(778) write error on object file (Assembler)

An error was reported when the assembler was attempting to write an object file. This probably
means there is not enough disk space.

(779) bad relocation type Ox* (Assembiler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(780) too many psects (Assembler)

There are too many psects defined! Boy, what a program!

(781) can't enter abs psect (Assembiler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

462

Error and Warning Messages

(783) "with="flags are cyclic (Assembiler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no
hierarchy. Therith flag is an attribute of a psect and indicates that this psect must be placed in the
same memory page as the specified psect.

Remove avith flag from one of the psect declarations. Such an assembler declaration may look
like:

psect my_text,local,class=CODE,with=basecode

which will define a psect calledy_text and place this in the same page as the psegtcode.

(784) overfreed (Assembiler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembiler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of
2000 temporary labels.

(787) copyexpr: can't handle v_rtype =* (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character ("*") in number (Assembler)

A number contained a character that was not part of the range 0-9 or O-F.

(790) EOF inside conditional (Assembiler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

(791) EOF inside macro definition (Assembiler)

End-of-file was encountered while processing a macro definition. This means there is a missing
ENDM directive, e.g.:

unterm MACRO

mov r0, #55

mov [rl], r0 ; where is the ENDM?
; end of file

463

Error and Warning Messages

(793) unterminated macro arg (Assembiler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other
malformed numbers.

(796) local illegal outside macros (Assembler)
TheLocaL directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directiveoCAL may not include any of the formal parameters to the
macro, €.9.:

mmm macro al
move r0, #al

LOCAL al ; woops -- the macro parameter cannot be used with local
ENDM
(799) reptargument must be >=0 (Assembiler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */
move r0, [rl]++
endm
(800) undefined symbol * (Assembiler)

The named symbol is not defined in this module, and has not been specifigd..

(801) range check too complex (Assembiler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

464

Error and Warning Messages

(802) invalid address after "end" directive (Assembiler)

The start address of the program which is specified after the asseanbldirective must be a label

in the current file.

(803) undefined temporary label (Assembiler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

(808) add_reloc - bad size (Assembiler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode * (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(810) unknown op in emasm(): * (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(812) unknown op * in emobj (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(813) unknown op *in size_psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(815) syntax error in chipinfo file at line * (Assembiler)

The chipinfo file contains non-standard syntax at the specified line.

(817) unknown architecture in chipinfo file at line * (Assembiler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

(829) unrecognized line in chipinfo file at line * (Assembiler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support
if the INI has not been edited.

465

Error and Warning Messages

(832) empty chip info file * (Assembiler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-
TECH Support with details.

(834) page width must be >= 60 (Assembiler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted
listing to be produced, e.qg.:

LIST C=10 ; the page width will need to be wider than this

(835) form length must be >= 15 (Assembiler)

The form length specified using th€length option must be at least 15 lines. Setting this length
to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembiler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(838) refc == 0 in decref (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(839) relocation too complex (Assembiler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembiler)

The assembler has calculated a different value for a symbol on two different passes. This is probably
due to bizarre use of macros or conditional assembly.

(842) bad bit number (Assembler, Optimiser)

A bit number must be an absolute expression in the range 0-7.

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

466

Error and Warning Messages

(845) multiply defined symbol * (Assembiler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [rl], r0
_next: ; woops —-- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have amnderscorgrepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

Itis not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must
be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form
of operands for this instruction.

(854) DS argument must be a positive constant (Assembiler)

The argument to thes assembler directive must be a positive constant, e.g.:

DS -3 ; you cannot reserve a negative number of bytes

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global
move r0, rl

; elsewhere:

psect text,local,class=CODE
move r2, r4

Theglobal flag is the default for a psect if its scope is not explicitly stated.

467

Error and Warning Messages

(862) symbolis not external (Assembiler)

A symbol has been declared as EXTRN but is also defined in the current module.

(864) SIZE= must specify a positive constant (Assembiler)

The parameter to thesECT assembler directive’size option must be a positive constant number,
e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect size redefined (Assembiler)

Thesize flag to thepsECT assembler directive is different from a previassCT directive, e.g.:

psect spdata,class=RAM, size=400
; elsewhere:
psect spdata,class=RAM, size=500
(867) psect reloc redefined (Assembler)

Thereloc flag to thePSECT assembler directive is different from a previaggCT directive, e.g.:

psect spdata,class=RAM, reloc=4
; elsewhere:
psect spdata,class=RAM,reloc=8
(868) DELTA= must specify a positive constant (Assembiler)

The parameter to theseCT assembler directiveBELTA option must be a positive constant number,
e.g.:

PSECT text,class=CODE,delta=-2 ; a negative delta value does not make sense

(871) SPACE= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directigise option must be a positive constant number,
e.g.:

PSECT text,class=CODE, space=-1 ; space values start at zero

468

Error and Warning Messages

(872) psect space redefined (Assembiler)
Thespace flag to thepseCT assembler directive is different from a previaggCT directive, e.g.:
psect spdata,class=RAM, space=0

; elsewhere:
psect spdata,class=RAM, space=1

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater
than one character or none at all. An assembler specific example:

mov r0, #712' ; 12" specifies two characters

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.
(906) bad * memory option specification (Driver)
The arguments to the memory option (e-graM) were badly formed, e.g.:
--RAM=0-
The high address is missing. Maybe you meant:
--RAM=0-1fffh

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

(916) can't allocate memory for argumentqPreprocessor, Parser, Code generator, Assembler)

The compiler could not allocate any more memory when trying to read in command-line arguments.

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

469

Error and Warning Messages

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(921) can't open chipinfo file * (Driver, Assembler)

The chipinfo file could not be opened. This file normally resides in_.tBedirectory of the compiler
distribution. If driving the assembler directly (without the command line driver) ensure that the
option to location this file correctly specifies the path, otherwise contact HI-TECH Support with
details.

(941) bad * assignment; USAGE: * (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message
and ensure that that the option has been formed correctly and completely.

(942) unexpected character on line * of file * (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,
an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)
and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)

Sources to Hexmate request differing data to be stored to the same address. To force one data source
to override the other, use the '+’ specifier. If the two named sources of conflict are the same source,
then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)

The range for this checksum calculation contained a value that could not be resolved. This can
happen if the checksum result was to be stored within the address range of the checksum calculation.

(948) checksum result width must be between 1 and 4 bytes (Hexmate)

The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.
Check the parameters to the -CKSUM option.

470

Error and Warning Messages

(949) start of checksum range must be less than end of range (Hexmate)

The -CKSUM option has been given a range where the start is greater than the end. The parameters
may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)

The -FILL option has been given a range where the start is greater than the end. The parameters may
be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)

Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no
sub-option to list all options.

(954) incomplete -O option; no file specified (Hexmate)

The output filename option did not contain a filename. A filename must follow -O. Make sure the
filename and -O are not separated by a space.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)

The serial number being stored was out of range. Ensure that the serial number can be stored in the
number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)

Too many file arguments have been used. Try merging these files in several stages rather than in one
command.

(960) unexpected record type(*) on line * of “*” (Hexmate)

Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid
record types.

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source
using the '+’ specifier store data at the same address. The actual data stored there may not be what
you expect.

471

Error and Warning Messages

(963) checksum range includes voids or unspecified memory locations (Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from
the compile-time checksum due to gaps/unused byes within the address range that the checksum is
calculated over. Filling unused locations with a known value will correct this.

(966) no END record for HEX file “*” (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition: * (from line *) (Parser)

The indicatedstatic function was never called in the module being compiled. Being static, the
function cannot be called from other modules so this warning imples the function is never used.
Either the function is redundant, or the code that was meant to call it was excluded from compilation
or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

(972) only modifiers h and | valid with this format (Parser)

Only modifiersh (short) and1 (1ong) are legal with thisrint f format specifier.

(973) only modifier | valid with this format (Parser)

The only modifier that is legal with this format is(for long).

472

Error and Warning Messages

(974) type modifier already specified (Parser)
This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) thisis an enum (Parser)

This identifier following ast ruct orunion keyword is already the tag for an enumerated type, and
thus should only follow the keyworehum, e.g.:

enum IN {ONE=1, TWO};
struct IN { /* woops -- IN is already defined */
int a, b;

i

(979) thisis a struct (Parser)

This identifier following aunion or enum keyword is already the tag for a structure, and thus should
only follow the keywordst ruct, e.g.:

struct IN {
int a, b;
bi
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(980) thisis a union (Parser)

This identifier following ast ruct or enum keyword is already the tag forwion, and thus should
only follow the keywordunion, €.g.:

union IN {
int a, b;
}i
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

473

Error and Warning Messages

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data is a structure, not a pointer to a structure */

(982) nxtuse(): unknown op: * (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration, e.qg.:

int a;
char a; /* woops -- what is the correct type? */
(985) qualifiers redeclared (Parser)

This function has different qualifiers in different declarations.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of
the same function.

(989) module has code below file base of *h (Linker)

This module has code below the address given, but-theption has been used to specify that a
binary output file is to be created that is mapped to this address. This would mean code from this
module would have to be placed before the beginning of the file! Check for missing psect directives
in assembler files.

(990) modulus by zero in #if, zero result assumed (Preprocessor)

A modulus operation in &if expression has a zero divisor. The result has been assumed to be zero,
e.g.:

474

Error and Warning Messages

#define ZERO 0

#if FOO%ZERO /* this will have an assumed result of 0 */
#define INTERESTING

#endif

(991) integer expression required (Parser)

In anenum declaration, values may be assigned to the members, but the expression must evaluate to
a constant of typent, e.g.:

enum { one = 1, two, about_three = 3.12 }; /* no non-int values allowed */

(992) can'tfind op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1198) too many “*” specifications; * maximum (Hexmate)

This option has been specified too many times. If possible, try performing these operations over
several command lines.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)

All find, replace and mask attributes in this option must be of the same byte width. Check the
parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)
will result in an error, but masking with OOFFh (2 bytes) will be Ok.

(1202) unknown format requested in -FORMAT: * (Hexmate)

An unknown or unsupported INHX format has been requested. Refer to documentation for supported
INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading
zero was omitted. For example the value Fh contains only four bits of significant data and is not a
whole byte. The value OFh contains eight bits of significant data and is a whole byte.

475

Error and Warning Messages

(1204) *value must be between 1 and * bytes long (Hexmate)

An illegal legth of data was given to this option. The value provided to this option exceeds the
maximum or minimum bounds required by this option.

(1212) Found * (*h) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

can'’t create cross reference file * (Assembiler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the
file’s pathname is correct.

couldn’t create error file: * (Driver)

The error file specified after thesfile or -E+file options could not be opened. Check to ensure
that the file or directory is valid and that has read only access.

duplicate arch for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate lib for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multipf® values. Only one.1B value is allowed.
If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate romsize for * in chipinfo file at line * (Assembiler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate sparebit for * in chipinfo file at line * (Assembiler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

476

Error and Warning Messages

duplicate * for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple values for a field. Only one value is allowed
per chip. If you have not manually edited the chip info file, contact HI-TECH Support with details.
duplicate zeroreg for * in chipinfo file at line * (Assembiler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

no arg to -o (Assembler)

The assembler requires that an output file name argument be supplied afteoihi@on. No space
should be left between the and the filename.

psect * not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address givem apton.

For example if a psect must be on a 4K byte boundary, you could not start it at 2700H.

absolute expression required (Assembiler)

An absolute expression is required as an argument torttessembler directive.

bad -A option: * (Driver)

The format of a-2 option to shift the ROM image was not correct. THeshould be immediately
followed by a valid hex number, e.g.:

-A
What is the offset? Maybe you meant:
-A200See Section 13.7.2 for more details regarding this option.

bad bit address (Assembler, Optimiser)

The address supplied is not a bit-addressable portion of the XA. Bit addressable portions include the
registers RO to R15, direct RAM from 20h to 3Fh, and the on-chip SFRs from 400h to 43Fh.

477

Error and Warning Messages

bad bit expression (Optimiser)

There is a bad bit expression in the assembiler file.

bad fixup value (Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

bad operand (Optimiser)

This operand is invalid. Check the syntax.

bad operand to SEG (Assembler, Optimiser)

This can happen if you try to take the segment part of something that is already a segment address.

bit number not absolute (Optimiser)

A bit number must be an absolute number in the range 0-7.

bit range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. This error relates to checks carried on a bit addresses. If there is no hand-written assembler
code in this program, then this may be an internal compiler error and you should contact HI-TECH
support with details of the code that generated this error. Other causes are numerous.

can’t have arrays of bits (Code Generator)

You can't have an array of bits, because bits can’t be indexed.

can’t have pointer to bit (Code Generator)

Bit variables as implemented in the 8051 compiler are not addressable via pointers, so a pointer to a
bit is not allowed.

478

Error and Warning Messages

can’t open include file * (Assembiler)

The named assembler include file could not be opened. Confirm the spelling and path of the file
specified in theNCLUDE directive, e.g.:

INCLUDE “misspilt.h” ; is the filename correct?

chip name * not found in chipinfo file (Driver)

The chip type specified on the command line was not found in the chipinfo INI file. The compiler
doesn’t know how to compile for this chip. If this is a device not yet supported by the compiler, you
might be able to add the memory specifications to the chipinfo file and try again.

def[bmsf] in text psect (Optimiser)

The assembler file supplied to the optimizer is invalid.

delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using#ee.g.:
libr d c:\ht-pic\lib\pic704-c.1lib
does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.1lib wdiv.obj

direct range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. If there is no hand-written assembler code in this program, then this may be an internal
compiler error and you should contact HI-TECH support with details of the code that generated this
error. Other causes are numerous.

duplicate banks for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple BANKS values. Only one BANKS value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

479

Error and Warning Messages

end statement inside include file or macro (Assembiler)

An END statement was found inside an include file or a macro.

expression error (Assembler, Optimiser)

There is a syntax error in this expression.

flag * unknown (Assembiler)

This option used on BSECT directive is unknown to the assembler.

floating number expected (Assembiler)

The arguments to theerFF pseudo-op must be valid floating point numbers.

function’s local data too large (Code Generator)

The size of the stack frame for this function is greater than that allowable. The size is limited by the
size of the internal RAM on the 8051.

garbage after operands (Assembiler)

There is something on this line after the operands other than a comment. This could indicate an
operand error.

garbage on end of line (Assembler)

There were non-blank and non-comment characters after the end of the operands for this instruction.
Note that a comment must be started with a semicolon.

identifier expected (Parser)

Inside the braces of amnum declaration should be a comma-separated list of identifiers, e.qg.:

enum { 1, 2}; /* woops -- maybe you mean enum { one = 1, two }; */

incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

480

Error and Warning Messages

incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

invalid bit address: * ? (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

invalid qualifier combination on * (Code Generator)

This qualifier combination is illegal, perhaps because it is contradictory.

label not followed by : (Optimiser)

The optimizer has encountered a syntax error in its input.

library file names should have .lib extension: * (Libr)

Use the. 1ib extension when specifying a library filename.

line too long (Optimiser)

This line is too long. It will not fit into the compiler’s internal buffers. It would require a line over
1000 characters long to do this, so it would normally only occur as a result of macro expansion.
module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean
that part of the code was inadvertently removed or commented.

no RAM areas defined (Driver)

The-RraM options was invoked but no valid bank address ranges were present.

no ROM banks defined (Driver)

The-roM options was invoked but no valid bank address ranges were present.

oops! -ve number of nops required! (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

481

Error and Warning Messages

phase error in macro args (Assembiler)

The assembler has detected a difference in the definition of a symbol on the first and a subsequent
pass.

psect limit redefined (Assembler)

The psect limit has already been defined using the psedt: flag elsewhere, e.g.:

psect text,class=CODE, limit=1ffh
move r0, rl

; elsewhere:

psect text,class=CODE,limit=2ffh
move r2, r4

RAM area * low bound greater than high bound (Driver)

An additional memory bank has been defined which has a lower address bound greater than the high
address bound.

RAM area * out of range for chip * (Driver)

An additional memory bank has been defined which does not fall into the available valid ranges for
this chip.

replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when usingethee.g.:
libr r lcd.lib

This command needs the name of a modute(file) after the library name.

reserved * area and reserved ICD * range overlap in region * (Driver)

The -ICD option has been used which reserves memory locations for the debugger. Additional
memory areas have been reserved withtkesroM or -RESRAM option and these address ranges
overlap those required by the ICD.

482

Error and Warning Messages

restore without matching save (Assembiler)

The RESTORE assembler control directive has been used without a preceding SAVE assembler
control directive.

save/restore too deep (Assembiler)

Too manysave assembler control directives have been used.

symbol has been declared extern (Assembiler)

A symbol has been declared in the current module, but has previously been declared extern. A
symbol cannot be both local and extern, e.g.:

extern _foo ; this shouldn’t be specified if the symbol is defined here
foo:
goto start
too many object files (Driver)

A maximum of 128 object files may be passed to the linker. The driver exceeded this amount when
generating the command line for the linker.

too many operands (Optimiser)

There are too many operands to this instruction.

too many symbols in * (Optimiser)

There are too many symbols in the specified function. Reduce the size of the function.

undefined public symbol * (Assembiler)

A symbol has been declaredBLIC but has not been defined.anywhere in the module.

unknown directive (Assembler)

An unknown assembler control directive was used.

483

Error and Warning Messages

unknown psect (Optimiser)

The assembler file read by the optimizer has an unknown psect.

too many common lines in chipinfo file for * (Assembler, Driver)

The chipinfo file contains a processor section with too mamyoN fields. Only onecoMMON field
is allowed per processor.

484

Appendix C

Chip information

Couldn’t open input file: ../../lib/8051-c.ini

485

Chip information

486

Appendix D

Regular Expressions

Expression \ Matches
Characters
X The charactex
\\ The backslash character
\On The character with octal value@ <=n<=7)
\Onn The character with octal valuefi (0 <=n<=7)
\Omnn The character with octal valugrihn(0 <=m<=3,0<=n<=7)
\xhh The character with hexadecimal valuenbix
\uhhhh The character with hexadecimal valuenbiah
\t The tab character ('\x09’)
\n The newline (line feed) character ('\xOA)
\r The carriage-return character ("\xOD’)
\f The form-feed character ("\x0C")
\a The alert (bell) character ("\x07’)
\e The escape character (\x1B’)
\cx The control character correspondingxto
Character classes
[abc] a, b, or c (simple class)
[rabc] Any character except a, b, or ¢ (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
continued. ..

487

Regular Expressions

Expression

Matches

[a-z&&[def]]

d, e, or f (intersection)

[a-z&&["bc]]

a through z, except for b and c: [ad-z] (subtraction)

[a-z&&["m-p]]

a through z, and not m through p: [a-lg-z](subtraction)

Predefined character classes

Any character (may or may not match line terminators)

\d

A digit: [0-9]
\D A non-digit: [0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [Mw]

POSIX character classes (US-ASCII only)

\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]
\p{ASCII} All ASCII:[\x00-\X7F]

\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]

\p{AlInum} An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of I"#$%&'()*+,-./;;:<=>?@N\]"_{[}~
\p{Graph} A visible character: \p{AlInum}p{Punct}]
\p{Print} A printable character: [\p{Graph}]

\p{Blank} A space or a tab: [\f]

\p{Cntrl} A control character: [\x00-\x1F\x7F]

\p{XDigit} A hexadecimal digit: [0-9a-fA-F]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

Classes for Unicode

blocks and categories

\p{InGreek}

A character in the Greek block (simple block)

\p{Lu} An uppercase letter (simple category)

\p{Sc} A currency symbol

\P{InGreek} Any character except one in the Greek block (negation)
Np{L}&&[™Mp{Lu}]] Any letter except an uppercase letter (subtraction)

Boundary matchers

AN

The beginning of a line

$ The end of a line
\b A word boundary
continued. . .

488

Regular Expressions

Expression Matches
\B A non-word boundary
\A The beginning of the input
\G The end of the previous match
\Z The end of the input but for the final terminator, if any
\z The end of the input

Greedy quantifiers

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactlyn times

X(n,} X, at leasi times

X{n,m} X, at leasin but not more thamtimes

Reluctant quantifiers

X?? X, once or not at all

X*? X, zero or more times

X+? X, one or more times

X{n}? X, exactlyn times

X(n,}? X, at leash times

X{n,m}? X, at leasih but not more tham times

Possessive quantifiers

X?+ X, once or not at all

X*+ X, zero or more times

X++ X, one or more times

X{n}+ X, exactlyn times

X(n}+ X, at leasin times

X{n,m}+ X, at leash but not more tham times

Logical operators

XY

X followed byY

XY EitherX orY

X) X, as a capturing group

Back references

\n | Whatever thenth capturing group matched
Quotation

\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
continued. ..

489

Regular Expressions

Expression

Matches

\E

Nothing, but ends quoting started by \Q

Special constructs (n

on-capturing)

(?:X)

X, as a non-capturing group

(?idmsux-idmsux)

Nothing, but turns match flags on - off

(?idmsux-idmsux:X)

X, as a non-capturing group with the given flags on - off

(?=X) X, via zero-width positive lookahead

(?'X) X, via zero-width negative lookahead
(?<=X) X, via zero-width positive lookbehind
(?<X) X, via zero-width negative lookbehind
(?>X) X, as an independent, non-capturing group

490

Index

. psect address symba48
.cmd files,257

.crf files, 146

.ini files, 161

Jib files, 158 255 257
Ink files, 252

st files, 145

.obj files,248 257

.pro files, 151

.sym files,247, 250

/ psect address symbai48
<conio.h>,217
<stdio.h>217

?_XxXxX type symbols253
?a_Xxxx type symbol£53
#define,139

#pragma directive09
#undef,144

& symbol, 234
80C751,220

abs function274
absolute object file48
acos function275
adding files to projec29
adding workspace ta,/
addresses

link, 243 248

load,243 248
alignment

491

psects229
All code button,102
ANSI standard
conformancel55
as files
adding to project?9, 39
compiling,40
creating new39
opening48
properties40
asbl
assembler219
assembler control®37
asb51 control
COND, 238
EJECT,238
GEN, 238
INCLUDE, 239
LIST, 239
PAGELENGTH,237
PAGEWIDTH, 238
RESTORE239
SAVE, 239
TITLE, 239
XREF, 238
asb1 directives
ABS psect type228
BIT psect type228
DB, 230
DF, 230

INDEX INDEX
DS, 230 in-line, 206
Dw, 230 assembler files
ELSE,233 preprocessing 51
END, 226 assembler listings,45
ENDIF, 233 assembly language functior)5
ENDM, 234 assembly views4
EQU, 230 assert function279
FNADDR, 231 atan function280
FNARG, 231 atof function,281
FNCALL, 231 atoi function,282
FNCONF,232 atol function,283
FNINDIR, 232 Avocet symbol file251
FNROOT,233
FNSIZE, 233 bases
GLOBAL psect type228 C source 162
IF, 233 batch files, 148
IRP, 236 bcall routine, 190
IRPC,236 biased exponent,67
LOCAL, 234 big endian format267
LOCAL psect type228 binary constants
MACRO, 234 C,162
NUL, 234 binary files,214
OVRLD psect type228 bit fields, 167
PSECT_226 boolean typesl 62
psect flags bootloader;153 265 269
reloc,229 compiling code for146
space229 breakpoints

PURE psect type228
REPT,235

SET,230

SIGNAT, 216, 237
SIZE psect flag228

asctime function276
asin function278
ASPIC18 directives

fnbreak,231

assembler

accessing C object&06
generating from C144

492

disabling,30, 31
removing,30
temporary31
bsearch function284
bss psect] 54, 160, 242
clearing,242
build area42
build log, 44
build menu,29
clean,30
make,29
make all,29

INDEX

INDEX

build results 42
build toolbar,33

c files
adding to project?9, 38
create new47
creating new38
opening 48
properties;39
c source steB0, 35
C-Wiz, 95
accessing generated cod€5
advanced option®9
All code button,102
Cancel button107
closing,107
comments101
common codel02, 104
configuration paneb8
configuring peripherals,00
Core module100
Current module code buttofhp2
deactivated95
deactivated peripheral 00
deactivated setting401, 106
dependency handling07
disabling,99, 107
enabling 99, 107
toggling,99, 107
dialog,95
advanced option®9
configuration paneb8
control panel98
generated code displa§8
messaging panedg, 106 107
peripheral selection panél8
executing generated codH)5
fixing peripheral conflicts107
floating text,101

generated code display8
generated code samplH)3
init function, 103

init function prototype, 105
interrupt functions105
interrupt vectoring105
message$)8, 106, 107
messaging panedg, 106, 107
multiplexed pins,106

Ok button,107

overriding messag€d,06
peripheral conflicts106, 107
peripheral selection panél3
peripheral settings,00
running generated cod&05
sample codel03

saving files 98

selecting peripheral88, 99
starting,95

surrendering message)7
unavailable95

unavailable settingd,01, 106
understanding messagé$§6, 107
unsupported microcontroller8s
viewing generated codép1

command format] 35
file types,135

long command linesl 36
options,136

predefined macrog,09
version number]55

C51 console I/O, configuring@17
C51 options

—ASMLIST, 145

—BANK, 145
—CHAR=type,145, 165, 196
—CHIP=processof,46
—CHIPINFO,146

493

INDEX

INDEX

—CODEOFFSET146
—CR=file,146
—ERRFORMAT=format147
—GETOPTION=app,file148
—HELP, 148
—IDE=type,148

—INTRAM, 149
—-MEMMAP, 149
—NOEXEC,149
—NOPS,149

—NVRAM, 150
—OPT=type 150
—OUTDIR=directory,150
—OUTPUT=type 150 214
—-PRE,151

—-PROTO,151

—RAM=lo-hi, 152
—ROM=lo-hi, 153
—RUNTIME=type,154, 159
—SCANDEP,155
—SETOPTION=appfile] 55
—STRICT,155 198
—-SUMMARY=type, 155, 215
-VER, 155
—WARN-=level,156
—WARNFORMAT=format,147
-B, 138

-C, 139 214

-D, 139

-Efile, 140

-G, 141, 157

-H, 157

-1, 141

-L, 142,212

-M, 143

-Nsize, 143

-0, 143 214

-P, 143

-S,144,214, 216

494

-U, 144
-V, 144
-X, 144
-q, 144
call graph,199, 253
caret position35
ceil function,286
cgets function287
change_vector functio330
Chapter Title
C-Wiz - The Code Wizard)5
char types145
char variables] 45
character sef21
checksum endianisn267
checksum specification860
checksums265, 267
chipinfo files,161
classes245
address range845
boundary argumeng50
upper address limig50
Clear messages butto®g
close files49
close view,27
closing project?28, 88
closing the code wizard,07
code
qualifier,213
code wizard95
accessing generated cod€5
advanced option®9
All code button,102
Cancel button107
closing,107
comments101
common codel02, 104
configuration paneB8
configuring peripherals,00

INDEX

INDEX

control panel98

Core module100

Current module code buttohp2

deactivated95

deactivated peripheral 00

deactivated settingd01, 106

dependency handling07
disabling,99, 107
enabling 99, 107
toggling,99, 107

dialog,95
advanced option®9
configuration paneb8
control panel98
generated code displa§8
messaging panebg, 106, 107
peripheral selection panél8

executing generated codE)5

fixing peripheral conflicts] 07

floating text,101

generated code displa8g

generated code sampld)3

init function, 103

init function prototype 105

interrupt functions105

interrupt vectoring,105

message$)8, 106, 107

messaging panebg, 106, 107

multiplexed pins;106

Ok button,107

overriding messagé,06

peripheral conflicts106, 107

peripheral selection panél3

peripheral settings,00

running generated cod&05

sample codel03

saving files 98

selecting peripheral98, 99

starting,95

surrendering messagg)7
unavailable95
unavailable settingd,01, 106
understanding messagé$§g, 107
unsupported microcontrollerg85
viewing generated codép1
command line driver].35
command lines
HLINK, long command lines252
long, 136, 257
verbose option]44
comments in generated cod&)1
common code]l04
compilation
compile, 125
compiler options
change90
file specific,39, 40, 128
global,38, 128
errors and warnings
build log, 44, 130
error log,42
memory usaget3, 129
psect usagei4, 130
link, 126
make,126
make all,128
compiled stack?253
compiler
options,136
compiler errors
format, 147
compiler options
change?29, 90
displaying,38
compiler results44
compiling
as files, 40
current file,30

495

INDEX

INDEX

project,29
to assembler filel44
to object file,139
compiling source files] 25
concatenation
macro argument,34
COND, 238
configuring peripherals,00
constants
C specifiers]162
context saving
in-line assembly213
copy, 26, 33
copyright notice 144
Core, 100
Core module 100
cos function289
cosh function290
cputs function291
create new editor fileg7
creating
libraries,256
creating new projecf8, 80
CREF application260
CREF option
-Fprefix,261
-Hheading261
-Llen, 261
-Ooultfile, 261
-Pwidth,262
-Sstoplist,262
-Xprefix, 262
CREF options260
cromwell application262
cromwell option
-B, 264
-C, 264
-D, 264
-E, 264

496

-F, 264
-lkey, 264
-L, 264
-M, 265
-Okey, 264
-Pname262
-V, 265
cromwell options262
cross reference
generating260
list utility, 260
cross reference listing&46
excluding header symbolgf1
excluding symbols262
headers261
output name261
page length261
page width262
ctime function,292
Current module code buttohp2
cursor position
editor caret35
cut, 26, 33

data
types,161
data memory view,9
data psect] 54, 160, 242
copying,243
data types
floating point,166
deactivated peripheral 00
debug information141
assembler]41
debugger35
animate 30, 35, 133
assembler stef30, 35
assembly step,33
breakpoints45

INDEX

INDEX

disable,50
enable50
remove 49
set,49, 50
c step,30, 35
c-step,133
changegs, 93
changing29
load hex file, 31
program executior,33
reset,30, 34, 134
run, 30, 34, 133
simulator,134
stop,30
debugger menu
animate 30
assembler stef30
c step,30
load hex file,31
reset,30
run, 30
stop,30
debugger statu§6
debugger toolbaB4
debugger views;4
debugging

breakpoint managemerit32

hex file loading,131
default libraries 136
default output file,L 18
properties 38
delta psect flagg45
dependencied,55
dependency file91
device selectionl46
DI macro,293
div function,295

edit menu

close view,27
copy,26

cut, 26

find, 26, 27
find again,27
paste26
redo,26
undo,26

editor,45

add current file to projecg9

add files to project?9

breakpoints45
disable 50
enable50
remove 49
set,49, 50

close file,49

copy, 26, 33

create new file25, 47

cut, 26, 33

find, 26, 27

find again,27

line numbers47

open file, 48

paste26

print file, 49

redo,26, 33

save file 48

syntax highlighting49

undo, 26, 33

editor toolbar32

El macro,293

EJECT,238

embedding serial numbera70
ENDM, 234

enhanced symbol fileg47
environment variable

HTC_ERR_FORMAT147
HTC_WARN_FORMAT, 147

497

INDEX

INDEX

error files
creating,246
error log,42
error messaged40
formatting,147
LIBR, 258
eval_poly function296
execute program memoryp, 34
exit hitide, 26
exp function,297
exponent166
external data memory,79
extram,145

fabs function298

file
hex,214

file formats
assembler listingl45
Avocet symbol251
command257
creating with cromwell262
cross reference&60
cross reference listing$46
dependencyl 55
DOS executable248
enhanced symbop47
library, 255 257
link, 252
object,139 248 257
preprocessof,51
prototype, 151
specifying,150
symbol,247
TOS executable248

file menu
exit, 26
new file,25
open,25

498

open recently opened filés
preferences?6
print, 26
save all,26
save file,25
save file as26
file properties90
as files 40
c files,39
library files,41
object files 41
output file,38
file specific options
as files 40
Files
importing from code wizard98, 103
saved from code wizar®8
saved from peripheral wizardp3
files
adding to project?9, 38, 39, 88
close,49
create newg5, 47
new,32
open,25, 32
print, 26, 49
project files,80
remove as file from project,0
remove from90
remove library file from project{1
remove object file from project,0
save 25, 32,48
save all,26, 32
save as26
fill memory, 265
filling unused memory267
find, 26, 27
find again,27
fixing peripheral conflicts107
floating point

INDEX

INDEX

IEEE, 222

floating point data typed,66

biased exponent,67

exponent167

format, 166

mantissal66
floor function,299
fnbreak directive231
fnconf directive, 254
fnroot directive 254
frexp function,300
function pointers,177
functions

near, baseneat90

GEN, 238

getch function301

getch(),217

getchar function302

getche function301

getche()217

gets function3303

gets(),217

global options29
change90
displaying,38

global symbols242

gmtime function 304

hardware
initialization, 161
header files
problems in155
help menu
about,31
hex file

load into debuggeB1

HEX file format, 269
HEX file map,270

hex files
address ma®65
calculating check sumg65
converting to other Intel format865
detecting instruction sequenc@§s
embedding serial number265
filling unused memory265
find and replacing instructiong65
merging multiple 265
multiple, 246
record length265 269
hexmate applicatior65
hexmate option
+prefix, 267
-CK, 267
-FILL, 267, 269
-FIND, 268
-FIND...,REPLACE 268
-FORMAT, 269
-HELP, 269
-LOGFILE, 270
-0, 270
-SERIAL, 270
-STRING, 270
hexmate options266
hide build view,27
hide project view27
highlighting syntax49
HLINK options, 243
-Aclass=low-high245
-Cpsect=clas45
-Dsymfile,246
-Eerrfile,246
-F, 246
-Gspec246
-H+symfile,247
-Hsymfile, 247
-Jerrcount247
-K, 247

499

INDEX

-L, 248

-LM, 248

-Mmapfile,248

-N, 248

-Nc, 248

-Ns, 248

-Ooutfile,248

-Pspec248

-Qprocessor250

-Sclass=limit[,bound]250

-Usymbol,251

-Vavmap,251

-Wnum, 251

-X, 251

-Z,251
HTC_ERR_FORMAT 147
HTC_WARN_FORMAT,147

identifier length, 143

IEEE floating point222

IEEE floating point format]1 66

Import source file to project,03 107

in-line assembly206

INCLUDE, 239

INHX32, 265 269

INHX8M, 265 269

init function prototype 105

init_uart(),217

inline assembler cod@06

Intel hex,214

interrupt functions197
calling from main line code] 98
context saving213

interrupt level,198

interrupt_level directive198

interrupts,196, 200
<intrpt.h>,200
CHANGE_VECTOR,200-202
di(), 200

500

ei(), 200

generating functions in code wizart)s

handling in C,196
RAM_VECTOR,200-202

READ_RAM_VECTOR,200, 201, 203

ROM_VECTOR,200
set_vector200
vectoring in code wizard, 05
isalnum function 306
isalpha function306
isdigit function,306
islower function,306

Japanese character handlig§9
JIS character handling09
jis pragma directive209

kbhit(), 217

keyword
bank2,198
bank3,198
code, 168 173
const,168
extern,205
far, 168
idata,168 170
interrupt, 197
near,168 169
volatile, 168

keywords
disabling non-ANSI155

Idexp function,308

Idiv function, 309

LIBR, 255, 256
command line argument&56
error messagegph8
listing format,258
long command line57
module order258

INDEX INDEX
librarian,255 ceil, 286
command files257 cgets,287
command line argument&56, 257 change_vecto30
error messagegp8 €0s,289
listing format,258 cosh,290
long command lineL57 cputs,291
module order258 ctime,292
Libraries,160 div, 295
libraries eval_poly,296
adding files to256 exp,297
creating,256 fabs,298
default,136 floor, 299
deleting files from257 frexp, 300
excluding,154 getch,301
format of,255 getchar302
linking, 251 getche 301
listing modules in257 gets,303
module order258 gmtime,304
naming convention] 58 isalnum,306
scanning additionall.42 isalpha,306
used in executabl@48 isdigit, 306
library islower,306
difference between object filed55 Idexp,308
manager255 Idiv, 309
library files localtime,310
adding to project41 log, 312
properties41 log10,312
standard library file41 longjmp,313
library function memcmp315
abs,274 modf, 317
acos275 persist_check318
asctime276 persist_validate318
asin,278 pow, 320
assert279 printf, 321
atan,280 putch,324
atof, 281 putchar,325
atoi, 282 puts,327
atol, 283 gsort,328
bsearch284 ram_vector330

501

INDEX

INDEX

rand,332

read_ram_vectoB30

realloc,334

rom_vector336

scanf,337

set_vector34l

setjmp,339
sin, 343
sinh,290
sprintf, 344
sqrt, 345
srand,346
strcat,347
strchr,348
strcemp,350
strcpy,352
strcspn 353
strdup,354
strichr,348
stricmp,350
stristr,365
strlen,355
strncat,356
strncmp,358
strncpy,360
strnicmp,358
strpbrk,362
strrchr,363
strrichr,363
strspn, 364
strstr,365
strtok,366
tan,368
tanh,290
time, 369
toascii,371
tolower,371
toupper371
ungetch372

502

va_arg,373
va_end373
va_start373
vprintf, 321
vscanf,337
vsprintf, 344
xtoi, 375
library macro
DI, 293
El, 293
line number
editor caret35
link addressesl60, 243 248
linker, 241
command files251
command line argument&43 251
defined symbols216
invoking, 251
long command lines51
options from C51142
passes?55
symbols handled42
linker errors
aborting,247
undefined symbol47
linker option
-Aclass=low-high245, 249
-Cpsect=clas45
-Dsymfile,246
-Eerrfile,246
-F, 246
-Gspec246
-H+symfile,247
-Hsymfile,247
-1, 247
-Jerrcount247
-K, 247
-L, 248
-LM, 248

INDEX INDEX
-Mmapfile,248 make project29
-N, 248 making,126
-Nc, 248 mantissa 166
-Ns, 248 map files,248
-Ooultfile,248 call graphs253
-Pspec248 generating143
-Qprocessor250 processor selectio?50
-Sclass=limit[, bound]250 segments?252
-Usymbol,251 symbol tables in248
-Vavmap,251 width of, 251
-Wnum, 251 memcmp function315
-X, 251 memory
-Z,251 reserving,152, 153

linker options,243 specifying,152, 153
numbers in244 specifying range245

linking, 126 unused248

LIST, 239 memory model

list files huge,192
assembler145 large,192

little endian format267 medium,192

load addressed60, 243 248 small, 192

load hex file,31
LOCAL, 234
local psects242
local symbols;]144
suppressing251
local watch viewg9
localtime function310
location counter229
log function,312
LOG10 function,312
longjmp function,313

MACRO, 234
macro
invoke,237
macros
predefined209
undefining,144

specifying,138
memory summaryl55
memoy usaget3
merging hex files267
message$)8, 106, 107
modf function,317
modules

in library, 255

list format,258

order in library,258

used in executabl@48
multiple hex files246

names of pins106
nojis pragma directive?09
numbers

in C source 162

in linker options,244

503

INDEX

INDEX

object code, version numbe&x38
object files,139
absolute248
adding to project40
properties41
relocatable241
standard object file}0
symbol only,246
OBJTOHEX,258
command line argument&58
open
project file,87
open files48
open project28
open recent file25
open recent projec8
opening files25, 32
optimizing code217
output directory
specifying,150
output file formats248
specifying,150, 258
overlaid memory area847

package
changing29
PAGELENGTH,237
PAGEWIDTH, 238
paste26
pening files 32
peripheral initialisation wizard31
peripheral wizard95
advanced option$9
control panel98
peripherals
configuring,98, 100
conflicting resources,06
deactivated]100
default state100

504

displaying settings]1 00
fixing conflicts,107
multiplexed pins;106
selecting in C-Wiz99
settings 98, 100
shared pins106
uninitialized,100
persist_check functior318
persist_validate functior318
Philips/Signetics 80C75220
pin names106
pointers,174
code,179
const,180
function, 177
idata,177
near,177
pow function,320
powerup routinel36, 161
pragma directives209
strings,213
predefined symbols
preprocessof09
preferences?6
preprocessing 43
assembler files] 43
preprocessor
macros,139
path,141
preprocessor directiveg80D8
preprocessor symbols
predefined209
print files,49
printf
format checking209
printf function,321
printf(), 217
printf_check pragma directiv@09
processor selectiod46, 250

INDEX

INDEX

processor selection$gl
processors
adding new,161
program countei36
project
adding files to88
build, 29
change compileig4
change debugge®3
change option0
change toolsuite91
close,28, 88
creating newg0
device package3, 92
device selectior83
display options38
filename,81
open existing project8
open file, 48
open from file 87
project wizard 80
rebuild,29
remove files from90
save as28
save to file28
saving to file,88
toolsuite,82
project area37
project files,80
project menu
add file to project29
add files to project?9
change debugge?9
change packag@9
change targef9
change toolsuite?9
close project28
compile to object file30
new project28

open project28
open recent projecg8
project options29
save project28
save project a®8
project options29
project resources areay
project view,27
psect,224
bss,154, 160, 242
compiler generated,82, 193
data,154, 160, 242
usage mapi4
PSECT directive flag
limit, 250
psect pragma directive,14
psects242
alignment,229
basic kinds242
class,245 250
delta value of245

differentiating ROM and RAM229

linking, 241
listing, 155
local, 242
renaming214
specifying address ranges}9
specifying addresseg45, 248
user defined214
pseudo-ops226
putch function 324
putch(),217
putchar function325
puts function327
puts(),217

gsort function 328

qualifiers
code,213

505

INDEX

INDEX

strings,213
quiet mode 144
quit hitide, 26

radix specifiers

C source162
ram_vector function330
rand function332
read_ram_vector functioB30
realloc function334
redirecting errors140
redo last editor actior£6, 33
reentrant function].81
Reference244, 252
registers viewp?2
regsused pragma directival] 3
RELOC, 246, 248
reloc psect flag229
relocatable

object files,241
relocation,241
relocation information

preserving248
removing temporary files30
renaming psect14
replace26, 27
reserving memoryl52, 153
reset,34, 161

code executed aftet51
reset debuggeRo, 34
reset vectorl61
RESTORE239
RETI, 197
rom_vector function336
run to cursor3l
runtime environment] 54
runtime module136
runtime startup

stack pointer159

506

variable initialization,159
runtime startup codé,58
runtime startup modulé,54

S1 format214
SAVE, 239
save
editor files,48
project,28, 88
saving files25, 32, 48

saving files from code wizard,03

scanf function337
scanf(),217
search path
header files141
segment selecto?46
segments?46, 252
selecting peripheral§3, 99
serial numbers270
set_vector function341
setjmp function339
show build view,27
show project view27
signature checking,15
sin function,343
sinh function,290
source files157
space psect fla@29
sprintf function,344
sqgrt function,345
srand function346
stack pointer154, 159
standard toolba32
startup modulel 36, 154
clearing bss242
data copying243
debugging141
status bar35s
stop debuggef30

INDEX INDEX

strcat function347 symbols

strchr function 348 global,242, 257

strcmp function 350 undefined251

strcpy function 352 syntax highlighting49

strcspn function353

strdup function354 tab

strichr function,348 add,7, 14

stricmp function 350 adding workspace7

string,223 new, 32

string literals,270 remove,/

strings rename9
qualifiers,213 workspacef
storage locatior270 taget device

strings pragma directive, 13 changing29

stristr function,365 tan function,368

strlen function 355 tanh function290

strncat function356 target device36

strncmp function358 changing92

strncpy function360 temporary breakpoint§1

strnicmp function 358 temporary labels223

strpbrk function 362 time function,369

strrchr function 363
strrichr function,363
strspn function364
strstr function 365
strtok function,366
structures167
Symbol files
Avocet format,251
symbol files,141
enhanced247
generating247
local symbols in251
old style,246

removing local symbols from,44
removing symbols fron250

source levell41
symbol tables248 251
sorting,248

TITLE, 239
toascii function371
tolower function,371
toolbar
animate button35
assembler step buttof5
¢ step button35
copy button33
cut button,33
new file button 32
new tab button32
open file button32
redo button33
reset button34
run button,34
save all button32
save file button32
split left/right button,32

507

INDEX

INDEX

split top/bottom button32

undo button33
toolbars

hiding/showing 31

selecting toolbar27
tools menu

peripheral wizard31

setup user tool31
toolsuite,79, 82

change?9, 91
toupper function371
type modifiers

code,168

const,168

far, 168

idata,168

near,168

volatile, 168
typographic conventiong,

undo last editor actior6, 33
ungetch function372
unions,167
unused memory

filling, 265
user tools31
utilities, 241

va_arg function373
va_end function373
va_start function373
variable initialization, 159
variable watch viewg4
variables

absolute 182

accessing from assembl@f6

floating point types166
static,182
unique length of143

508

vectors

reset, 161

verbose 144
version number]55

view

adding workspace tati4, 27
assemblys4

build area42

build log, 44

build view, 27

close,14

close view,27

creating view9

data memory?28, 33
editor,45

error log,42

executable memorg8, 33
focus,10

memory usaged3
project area37

project resources areay/
project view,27

psect usage mapg4
registers28, 33

split, 11, 14, 27, 32
splitting, 11

watch variables?8, 34
workspace are&
workspace views)

view menu

add tab27

show/hide build viewR7
show/hide project view27
split view, 27

toolbar items selectior?7

viewing initialization code98
Views

generated codé®8
initialization code 98

INDEX

INDEX

views
data memory59
debuggers4
generated codd,01
initialization code 101
registersp2
watch,64, 69

views toolbar33

vprintf function,321

vscanf function337

vsprintf function,344

warning level, 156

setting,251
warnings

level displayed]156

suppressing251
watch view,64, 69
wizards

C-Wiz, 95

code,95

peripheral 95
word boundaries?29
workspace are&
workspace views)

XREF, 238
xtoi function, 375

509

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Typographic conventions

	HI-TIDE Overview
	Layout Overview
	HI-TIDE Areas
	The Project and Build Areas
	The Workspace Area
	Adding a Workspace Tab
	Removing a Workspace Tab
	Renaming Workspace Tabs

	Workspace Views
	Displaying a View
	Focusing Views
	Splitting Views
	Closing Views
	View Popup Menu
	Changing Font And colour

	General Preferences
	General Preferences Dialog
	Project Tab
	Editor Tab

	Third-Party Tools
	Adding and Deleting Tools
	Tool Options
	Hiding and Showing Buttons

	HI-TIDE Menus and Toolbars
	Menus
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Build Menu
	Debugger Menu
	Tools Menu
	Help Menu

	Toolbars
	Hiding / Showing Toolbars
	Standard Tools Toolbar
	Editor Toolbar
	Build Toolbar
	Views Toolbar
	Tools Toolbar
	User Tools Toolbar
	Debugger Toolbar

	The Status Bar

	HI-TIDE Views
	The Project Views
	Files View
	Output File Popup Menu
	C Files Folder Popup Menu
	C File Popup Menu
	Assembler Files Folder Popup Menu
	Assembler File Popup Menu
	Object Files Folder
	Object Files
	Libraries Folder
	Library Files

	File Properties Dialog
	Code Samples View

	The Build Views
	Error Log View
	Memory Usage View
	Psect Usage View
	Build Log View

	The Editor View
	Editor Gutters
	Breakpoint Gutter
	Line Number Gutter

	Creating Editor Files
	Opening Editor Files
	Saving Editor Files
	Closing Editor Files
	Printing Editor Files
	Syntax Highlighting
	Editor Popup Menu
	Setting Source-Level Breakpoints
	Removing source-level Breakpoints
	Activating/Deactivating source-level Breakpoints
	Searching For Text
	Search Options

	The Debugger Views
	Disassembly View
	Disassembly View Layout
	Breakpoint Gutter
	Disassembly View Popup Menu
	Setting Assembly Level Breakpoints
	Removing Assembly Level Breakpoints
	Activating/Deactivating Assembly Level Breakpoints
	Displaying Program Counter Location
	Displaying C Source Code

	Data Memory View
	Data Memory View Layout
	Data Memory View Popup Menu
	Tracing Memory Usage
	Modifying Memory

	Registers View
	Registers View Layout
	Registers View Popup Menu
	Tracing Register Usage
	Modifying Memory

	Variable Watch View
	Variable Watch View Layout
	Variable Icons and Tree Representation
	Variable Watch View Popup Menu
	Adding and Removing Variables
	Modifying Variables

	Local Watch View
	Virtual I/O View
	Overview
	Virtual I/O View Popup Menu
	Adding Components
	Removing Component
	Component Properties
	Wiring Components
	Peripheral Components

	HI-TIDE Projects
	Toolsuites
	Project Information
	Creating A New Project
	Project wizard
	Project Filename
	Project Toolsuite
	Device Selection
	Device Package
	Compiler Selection
	Debugger Selection
	Project Source Files

	Managing Projects
	Opening Existing Projects
	Saving Projects
	Closing Projects

	Managing Project Source Files
	Adding Files To The Project
	Removing Files From The Project
	Changing Compiler Options
	File Properties
	Dependency Files (Header Files)

	Changing Project Settings
	Changing Toolsuite
	Changing Device
	Changing Device Package
	Changing Debugger

	C-Wiz --- The Code Wizard
	Starting the Code Wizard
	The 8051 Code Wizard Dialog
	Peripheral Selection Panel
	Configuration Panel
	Messaging Panel
	Generated Code Display
	Control Panel
	Advanced Options Dialog
	 Enable dependency handling
	Initialisation function name

	Selecting Peripherals
	Configuring Peripherals
	Viewing Generated Code
	Saving to Files
	Accessing the Initialization Code
	Generating Interrupt Service Routines
	Handling Shared Resources
	Closing the Code Wizard

	HI-TIDE Compiler Options
	Compiler Options
	Build options
	Warning Level
	Strip Local Symbols

	Global Optimization
	Enable Global Optimization
	Optimize For Speed / Space
	Level

	Assembler Optimization
	Enable Assembler Optimization

	Memory Model Settings
	Banking Options
	Debugging NOPs

	Preprocessor options
	Specify Include Paths
	Assembler Files
	Preprocess assembler files

	Define Preprocessor Symbols
	Undefine Preprocessor Symbols

	Memory options
	Program Memory Ranges
	Enable on chip ranges
	Enable included ranges
	Included Ranges
	Enable excluded ranges
	Excluded Ranges

	Data Memory Ranges
	Enable on chip ranges
	Enable included ranges
	Included Ranges
	Enable excluded ranges
	Excluded Ranges

	Internal RAM
	Non-volatile RAM

	Files options
	Output File Type
	Debug Information
	Generate assembler listing
	Generate map file

	Linker options
	Run-time Code Configuration
	Run-time Settings

	Vector Offset
	Additional Linker Options
	Enable additional linker options

	Advanced Linker Options
	Enable advanced linker options

	Language options
	Default Char Type
	Identifier Length
	ANSI Conformance
	Enable strict ANSI conformance

	HI-TIDE Compilation
	Compiling Project Files
	Compiling Source Files
	Linking
	Make
	Make All
	Individual Files

	Compiler Options
	Global Compiler Options
	File-Specific Compiler Options

	Build Results
	Error and Warnings
	Memory Usage
	Psect Usage
	Build Log

	HI-TIDE Debugging
	 Debugger Functions
	Debugger Initialization
	Breakpoints
	Breakpoint Restoration

	Program execution
	Run
	Animate
	Assembly Step
	C Step
	Reset

	8051 Debuggers
	Simulator

	C51 Command-line Driver
	Long Command Lines
	Default Libraries
	Standard Runtime Code
	C51 Compiler Options
	-B: Specify Memory Model
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--BANK: Specify Banking Options
	--CHAR=type: Make Char Type Signed or Unsigned
	--CHIP=processor: Define Processor
	--CHIPINFO: Display a List of Supported Processors
	--CODEOFFSET=address: Specify an Offset For Program Code
	--CR=file: Generate Cross Reference Listing
	--ERRFORMAT and --WARNFORMAT: Format For Compiler Messages
	Using the --ERRFORMAT and --WARNFORMAT Option
	Modifying the Standard Format

	--GETOPTION=app,file: Get Command Line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE Being Used
	--INTRAM=address: Specify Internal RAM Address
	--MEMMAP=file: Display Memory Map
	--NOEXEC: Do Not Execute Compiler
	--NOPS: Insert Debug NOPs
	--NVRAM=address: Specify Non-volatile RAM Address
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTDIR=directory: Specify Output Directory
	--OUTPUT=type: Specify Output File Type
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan For Dependencies
	--SETOPTION=app,file: Set the Command Line Options For Application
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--VER: Display the Compiler's Version Information
	--WARN=level: Set Warning Level

	C Language Features
	Files
	Source Files
	Symbol files
	Standard Libraries
	Run-time Startup Module
	Stack Initialization
	Initialization of Data Psects
	Clearing the Bss Psects
	Linking in the C Libraries
	Executing the Main Function

	The powerup Routine

	Processor-related Features
	Processor Support

	Supported Data Types
	Radix Specifiers and Constants
	Bit Data Types
	Using Bit-Addressable Registers

	8-Bit Data Types
	16-Bit Data Types
	32-Bit Data Types
	Floating Point Types and Variables
	Structures and Unions
	Bit Fields in Structures

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	Near Type Qualifier
	Idata Type Qualifier
	Far Type Qualifier
	Code Type Qualifier

	Pointer Types
	Pointers in small model
	Pointers in the medium, large and huge models
	Function Pointers
	Combining type modifiers and pointers
	Near and Idata pointers
	Far pointers
	Xdata pointers
	Pdata pointers
	Code pointers
	Const pointers

	Storage Class and Object Placement
	Local variables
	Auto Variables
	Static Variables

	Absolute Variables

	Functions
	Function Argument passing
	Small and medium model argument passing
	Reentrant functions
	Large and huge model argument passing
	Variable argument lists
	Small and medium model variable argument lists
	Indirect function calls
	Small and medium model indirect function calls

	Function return values
	8 Bit return values
	16 Bit return values
	32 Bit return values
	Structure return values

	Function Calling Conventions for Huge Model
	Near and Basenear Functions in Huge Model

	The call graph

	Memory Models and Usage
	Register usage
	Compiler generated psects
	Using memory mapped I/O and SFRs
	Interrupt handling in C
	Bank2 and Bank3 interrupts
	Interrupt Levels in small and medium model
	Interrupt handling macros
	The ei() and di() macros
	ROM_VECTOR and set_vector
	RAM based interrupt vectors
	RAM_VECTOR
	CHANGE_VECTOR
	READ_RAM_VECTOR
	Pre-defined interrupt vector names

	Mixing C and 8051 assembler code
	External Assembly Language Functions
	Accessing C objects from within assembler
	#asm, #endasm and asm()

	Preprocessing
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma jis and nojis Directives
	The #pragma printf_check Directive
	The #pragma psect Directive
	The #pragma regsused Directive
	The #pragma strings Directive
	The #pragma switch Directive

	Linking programs
	Replacing Library Modules
	Signature checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O
	Optimizing Code for the 8051

	Macro Assembler
	Assembler Usage
	Assembler options
	8051 Assembly language
	Character set
	Numbers
	Delimiters
	Identifiers
	Assembler generated identifiers
	Location counter
	Predefined Identifiers

	Strings
	Temporary labels
	Expressions
	Statement format
	Addressing modes
	Program sections
	Assembler directives
	PUBLIC
	EXTRN
	GLOBAL
	END
	PSECT
	ORG
	EQU and SET
	DB and DW
	DF
	DS
	FNADDR
	FNARG
	FNBREAK
	FNCALL
	FNCONF
	FNINDIR
	FNSIZE
	FNROOT
	IF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	REPT
	IRP and IRPC
	SIGNAT

	Macro invocations
	Assembler controls
	PAGELENGTH(n)
	PAGEWIDTH(n)
	XREF
	COND
	EJECT
	GEN
	INCLUDE(pathname)
	LIST
	SAVE and RESTORE
	TITLE(string)

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Call Graph Information

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	+ Prefix
	-CK
	-FILL
	-FIND
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-Ofile
	-SERIAL
	-STRING

	Library Functions
	Error and Warning Messages
	Chip information
	Regular Expressions
	Index

